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Abstract

Asynchronous parallelization is an effective way to accel-
erate optimization. While asynchronous parallelization
can destroy the sequential structure of optimization algo-
rithms, it has been found counter-intuitively that some op-
timization algorithms are proven to preserve their perfor-
mance under asynchronous parallelization, including the
stochastic gradient descent for first-order optimization of
differentiable functions and Pareto optimization for zeroth-
order optimization in binary space. Following this direc-
tion, in this paper, we show that the classification-based
optimization, which is a recently developed framework for
zeroth-order optimization in continuous space, can also
enjoy the asynchronous parallelization. We implement
ASRACOS, an asynchronous version of a classification-
based optimization algorithm SRACOS, to accelerate the
optimization through asynchronous parallelization. Exper-
iments on synthetic functions and controlling tasks in Ope-
nAI Gym demonstrate that ASRACOS can achieve almost
linear speedup while preserving good solution quality.

1 Introduction

Asynchronous parallelism is an effective way to accelerate
optimization. However, for sequential update optimization
algorithms, asynchronous parallelism can destroy the se-
quential structure of the optimization, which deteriorates
the optimization performance. It has been found that some
optimization algorithms are proven to preserve their perfor-
mance under asynchronous parallelization, including the
stochastic gradient decent for first-order optimization of
differentiable functions [21] and Pareto optimization for
zeroth-order optimization in binary space [14].

In this paper, we focus on derivative-free optimization,
which regards the objective function f as a black-box func-
tion: given a solution x , only the function value f (x )
is available. Other information of f such as the gra-
dient is unavailable. Derivative-free optimization meth-
ods can be roughly categorized into three classes: model-
based methods, deterministic Lipschitz optimization meth-
ods and meta-heuristic search. Model-based methods, such
as Bayesian optimization methods [2, 5, 15], learn a model
from the solutions and the model is then applied to guide
sampling of solutions for the next round. Deterministic
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Lipschitz optimization methods need Lipschitz continuity
assumption on f , such as [1, 9, 11, 12]. Meta-heuristic
search is designed with inspired heuristics, such as evolu-
tionary strategies [6, 7, 10, 13].

Classification-based optimization is a recently developed
theoretical framework of model-based derivative-free op-
timization methods, where the model is implemented by
a classification model discriminating good solutions from
bad ones. Its implementation, the SRACOS algorithm [8],
has shown outstanding performance in various applications
[18–20]. However, the sequential structure of SRACOS
keeps it from being parallized, which is unbearable for
time-consuming optimization tasks.

In this paper, we propose an asynchronous classification-
based optimization algorithm ASRACOS. Our theoretical
analyses and empirical studies verify the effectiveness of
the proposed method. In particular, we make the following
key contributions:

• We apply a feasible modification to SRACOS to make
it parallelizable, and implement its asynchronous ver-
sion ASRACOS, which holds the sequential structure
while being able to utilize multiple servers.

• We provide the (ϵ − δ ) query complexity bound of
ASRACOS in theoretical analyses and further give
the condition when ASRACOS can achieve a better
(worse) performance than SRACOS using the same
number of evaluations.

• We empirically compare ASRACOS with several other
parallel classification-based optimization algorithms
on four synthetic testing functions, and apply them to
direct policy search for 6 controlling tasks, where an
artificial neural network is used as the policy and op-
timized. Experiment results show that ASRACOS can
achieve almost linear speedup while preserving good
solution quality.

The rest four sections present the background, the proposed
ASRACOS algorithm, the empirical results, and the conclu-
sion, respectively.

2 Background

Derivative-free optimization, also termed as zeroth-order
or black-box optimization, involves a class of optimization
algorithms that does not rely on gradient information. We
consider general minimization problems in continuous do-
mains. Let X denote a bounded solution space that is a



Algorithm 1 Sequential RACOS (SRACOS)
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
λ: Balancing parameter;
m ∈ N+: Number of negative samples;
k ∈ N+ (≤ m): Number of positive samples;
r =m + k;
N ∈ N+: Budget, i.e., number of evaluations;
Sampling: Sampling sub-procedure;
Selection: Decide the positive/negative solutions;
Replace: Replacing sub-procedures.

Procedure:
1: Collect S = {x1, ...,xr } by i.i.d. sampling fromUX
2: B = {(x1,y1), ..., (xr ,yr )},∀xi ∈ S : yi = f (xi )
3: (B+,B−) = Selection(B;k )
4: Let (x̃ , ỹ)) = argmin(x,y )∈B+ y
5: for t = r + 1 to N do
6: h = C (B+,B−)

7: x =

{
Sampling(UDh ) w.p. λ
Sampling(UX ) w.p. 1 − λ

8: y = f (x )
9: [(x ′,y ′),B+] = Replace((x ,y),B+, ‘strategy_P’)

10: [,B−] = Replace((x ′,y ′),B−, ‘strategy_N’)
11: (x̃ , ỹ) = argmin(x,y )∈B+∪{(x̃,ỹ ) } y
12: end for
13: return (x̃ , ỹ)

compact subset of Rn , and f : X → R denote a mini-
mization problem. Assume that there exists x∗ such that
f (x∗) = minx ∈X f (x ). Let F denote the set of all functions
that satisfy this assumption. Given f ∈ F , the minimization
problem is to find a solution x∗ ∈ X s.t. ∀x ∈ X : f (x∗) ≤
f (x ). For black-box optimization, given a solution x , only
the objective function f (x ) is accessible for evaluating x .

Model-based derivative-free optimization algorithms share
a framework that iteratively learns a model for promis-
ing search areas and samples solutions from the model.
Different kinds of methods usually vary in the design of
the model. For example, cross-entropy methods [4] may
use Gaussian distribution as the model, Bayesian optimiza-
tion methods [15] employ Gaussian process to model the
joint distribution, and the estimation of distribution algo-
rithms have incorporated many kinds of learning models.
Classification-based optimization algorithms learn a partic-
ular type of model: classification model. A classification
model learns to classify solutions into two categories, дood
or bad. Then solutions are sampled from the дood areas.

SRACOS[8] is a recently proposed classification-based op-
timization algorithm. Unlike other model-based optimiza-
tion algorithms, the sampling region of SRACOS is learned
by a simple classifier, which maintains an axis-parallel rect-
angle to cover all the positive but no negative solutions.
SRACOS shows outstanding performance both in theoret-
ical analyses and empirical studies. Its pseudo-code is pre-
sented in Algorithm 1. To initialize, SRACOA samples a

batch of solutions. We will get a solution-value tuple set
B after querying objective function for each solution in S
(line 1 to 2). After that, Selection sub-procedure is used to
split B into two tuple sets B+ and B−, where the positive
set B+ is consisted of the best k solutions and the negative
set B− is consisted of the rest. (line 3). Line 4 and line 11
record the best-so-far solution-value tuple. In the following
loop, SRACOS trains a binary classifier C to learn an axis-
parallel region, which contains a randomly selected posi-
tive solution in B+ and rules out all the negative solutions in
B (line 6). More details about the classifier C can be found
in [17]. Then, a new solution is uniformly sampled from
this learned region with probability λ or uniformly sampled
from the whole solution space with probability 1 − λ (line
7). After evaluating the new sampled solution (line 8, the
most time-consuming part), the solution-value tuple is used
to update B+, B− and the best-so-far solution-value tuple ac-
cordingly (line 9 to 11). Replace(a,A, ‘s’) subprocedure
replaces a tuple in the set A with a according to a strategy
‘s’. There are three strategies proposed in [8]: replacing the
worst solution in A (WR-), randomly replacing a solution
in A (RR-), and replacing the solution in A which has the
largest margin from the best-so-far solution (LM-). Note
that ‘strategy_P’ can only be ‘WR-’, and ‘strategy_N’ can
be any one of these three strategies. Finally, SRACOS will
return the best-so-far tuple (x̃ , ỹ) (line 13).

3 Asynchronous SRACOS

The idea of making SRACOS parallelizable is straightfor-
ward: Sample Ns (the number of evaluation servers) solu-
tions, rather than 1 solution, after initialization. Then these
solutions can be evaluated parallelly. Whenever an evalua-
tion is finished, the method will update the model and sam-
ple the next solution for evaluation. Note that the sequential
update structure is still held through the modification.

With the same as Algorithm 1, Selection(B;k) splits
the solution-value tuple set B into a positive set and a neg-
ative set, where the positive set contains k best-so-far tu-
ples. Replace(a,A, ‘s’) means replacing a tuple from
the set A with a according to some strategy ‘s’, and the
replaced tuple and the updated tuple set will be returned.
λ − Samplingn (UDh ,UX ) means sampling n solutions
and for each solution, it is sampled from the distribution
UDh with probability λ andUX with probability 1 − λ.

The proposed Asynchronous SRACOS is shown in Algo-
rithm 2. After initialization, ASRACOS will get two tuple
sets B+ and B− according to function values (line 3). Then
a binary classifier is trained on the basis of these two sets to
learn the potential high-quality region in the solution space
(line 4). The learned region contains one selected good so-
lution in the positive set and rules out all the bad solutions
in the negative set. ASRACOS contains two first-in-first-
out blocking queues: D for the unevaluated solutions and
E for the evaluated solutions. D and E are also set to be
shared between the main thread and evaluation threads for
data communication. D is initialized with the first batch of
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Algorithm 2 Asynchronous SRACOS (ASRACOS)
Input: (extra input than SRACOS)

Ns ∈ N+: The number of evaluation servers;
Procedure:

1: Collect S = {x1, ...,xr } by i.i.d. sampling fromUX
2: B = {(x1,y1), ..., (xr ,yr )},∀xi ∈ S : yi = f (xi )
3: (B+,B−) = Selection(B;k )
4: h1 = C (B

+,B−)
5: D,E = SharedQueue{ }, SharedQueue{ }
6: D = {xr+1, ...,xr+Ns } = λ − Samplingn (UDh ,UX )
7: Run Evaluation(D, E) sub-procedures on Ns

daemon threads
8: for t = r + 1 to N do
9: (x ,y) = take(E)

10: [(x ′,y ′),B+] = Replace((x ,y),B+, ‘strategy_P’)
11: [,B−] = Replace((x ′,y ′),B−, ‘strategy_N’)
12: (x̃ , ỹ) = argmin(x,y )∈B+∪{(x̃,ỹ ) } y
13: h = C (B+,B−)
14: x = λ − Sampling1 (UDh ,UX )
15: put(x ,D)
16: end for
17: return (x̃ , ỹ)
18:
19: Evaluation(D, E):
20: while true do
21: x = take(D)
22: y = f (x ).
23: put((x ,y),E)
24: end while

sampled solutions and E is initialized to be empty (line 5
and 6). Then, ASRACOS starts Ns evaluation servers (im-
plemented in the newly created threads), each keeping eval-
uating a solution taken from D and putting the result (x ,y)
into E (line 21 to 23). In the following loop, ASRACOS
takes the evaluated tuple (x ,y) from E and uses it to update
the tuple set B+ and B− (line 9 to 11). Once a new binary
classifier C is trained (line 13), a new solution will be sam-
pled and put into D (line 14, 15).

In summary, ASRACOS divides the sequential evaluation
and update procedure in SRACOS into two components:
the asynchronous evaluation component and the sequen-
tial model update component. The asynchronous evalua-
tion component can make use of multiple servers, while the
model update component can still update the classification
model sequentially, which holds the sequential structure in
SRACOS. The blocking queue D and E are created for data
communication between threads.

Figure 1 demonstrates the flow charts of the optimization
procedure of ASRACOS and SRACOS, where the solid ar-
row denotes the sampling and evaluation procedure, the hol-
low arrow denotes an update on the data distribution Dt and
si, sj and sk denote the unused solutions sampled before. It
can be observed that Dt is always updated by the solution
sampled from Dt for SRACOS, while it can be updated by
the solution sampled from another ditribution several iter-

Figure 1: The flow charts of the optimization procedure of
ASRACOS (up, using 3 servers) and SRACOS (down).

ations ago for ASRACOS, which causes the difference of
the data distribution of two algorithms. The next section
discusses the effect of such difference on the query com-
plexity of ASRACOS.

4 Theoretical analysis

For a subset D ⊆ X , let #D =
∫
x ∈X I[x ∈ D]dx , where I [·]

is the indicator function. Define |D | = #D/#X . Let Dα =
{x ∈ X | f (x ) ≤ α }, and Dϵ = {x ∈ X | f (x ) − f (x∗) < ϵ }
for ϵ > 0. A hypothesis is a mapping h : X → {1,+1}.
Let H ⊆ {h : X → {1,+1}} be a hypothesis space. Let
Dh = {x ∈ X |h(x ) = +1} for hypothesis h ∈ H , i.e., the
positive class region represented by h. DenoteUDh the uni-
form distribution over Dh and τh the distribution defined on
Dh induced by h respectively. Let St = λUDht

+ (1−λ)UX
be the sampling distribution in iteration t , Dt be the dis-
tribution under which the classifier is trained in iteration t ,
RDt denote the generalization error of ht ∈ H under the dis-
tribution Dt , DKL denote the Kullback-Leibler (KL) diver-
gence between two probability distributions and N denote
the number of iterations. The superscript S is added to the
symbols to represent SRACOS and A is added to represent
ASRACOS

The complexity of an algorithm is measured by the (ϵ,δ )-
query complexity as Definition 1 [16, 17]. It counts the
total number of calls to the objective function by an algo-
rithm before it finds a solution that reaches the approxima-
tion level ϵ , with high probability.

Definition 1 ((ϵ,δ )-Query Complexity)
Given f ∈ F , an algorithm A, 0 < δ < 1 and ϵ > 0,
the (ϵ,δ )-query complexity is the number of calls to f such
that, with probability at least 1 − δ , A finds at least one
solution x̃ ∈ X ⊆ Rn satisfying f (x̃ ) − f (x∗) ≤ ϵ , where
f (x∗) =minx ∈X f (x ).

Then we derive a upper bound of the query complex-
ity of ASRACOS under the conditions of error-target θ -
dependence and γ -shrinking rate [17].

Lemma 1 Given f ∈ F , 0 < δ < 1 and ϵ > 0, if ASRacos
has error-target θ -dependence and γ -shrinking rate, then
its (ϵ,δ )-query complexity is upper bounded by
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O (max{ 1
|Dϵ |

((1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦA
t )
−1ln

1
δ
,N })

where ΦA
t = (1−RDA

t
− #X

√
1
2DKL (D

A
t | |UX ) − θ ) · |Dαt |−1

and #X is the volume of X.

We omit the proof of Lemma 1 because the proof is the
same as the proof of Theorem 1 in [8] except for the value
of RDt and DKL (Dt | |UX ) at each iteration. By Lemma 1,
we can have a comparison of the query complexity bound
of ASRACOS and the bound of SRACOS. The result is
shown in Theorem 1.

Theorem 1 Ignoring the constant factor and fixing θ and
γ , ASRacos can have a better (or worse) query complexity
upper bound than SRacos if for any iteration t:

RDA
t
−RDS

t
< (>)#X (

√
1
2
DKL (D

S
t | |UX )−

√
1
2
DKL (D

A
t | |UX ))

Theorem 1 discloses that if the difference of the training
distribution between two algorithms is greater than the dif-
ference of generalization error, ASRACOS can be better
than SRACOS even if using the same number of evaluations.
Moreover, ASRACOS can use nearly Ns times more evalu-
ations compared to SRACOS within the same time. So it
is much easier for ASRACOS to find a better solution than
SRACOS in actual use. The proof of Theorem 1 is pre-
sented in the appendix due to the space limitation.

5 Experiments

We evaluate the performance of ASRACOS in two environ-
ments. One is the optimization of classical synthetic func-
tions, containing a convex function and three highly non-
convex functions; the other is the controlling tasks in Ope-
nAI Gym, an open source environment for reinforcement
learning research.

We investigate the properties of the asynchronous paral-
lelism on classification-based optimization methods, in-
cluding convergence rate, speedup and solution qual-
ity. We compare our method with another two parallel
classification-based methods: Parallel RACOS (PRACOS)
and Parallel SRACOS (PSRACOS). PRACOS is a simple
parallel implementation of the batch-mode method RACOS
[17]. PSRACOS shares the same structure with ASRA-
COS, and only varies in that the classification model will
not update until the slowest evaluation server finishes eval-
uation. Note that when the number of evaluation servers
is 1, ASRACOS and PSRACOS are equivalent to SRACOS,
and PRACOS equals RACOS. [8] has compared the perfor-
mance of a sequential classification-based optimization al-
gorithm with other state-of-the-art derivative-free optimiza-
tion algorithms, so we omit these comparisons in this paper.

5.1 On Synthetic Functions

We choose four benchmark testing functions: the con-
vex Sphere function and the highly non-convex Ackley,
Rastrigin and Griewank function. They are defined as:

Sphere (x ) =
∑d

i=1 x
2
i , Ackley (x ) = −20e−

1
5

√
1
d
∑d
i=1 x

2
i −

e
1
d
∑d
i=1 cos (2πxi ) + 20 + e, Rastriдin(x ) = 10d +∑d

i=1[xi
2 − 10 cos (2πxi )] and Griewank (x ) =

∑d
i=1

x 2
i

4000 −∏d
i=1 cos (

xi√
i
) + 1. Graphs of these functions are presented

in the appendix.

All of the functions are minimized within the solution space
X = [−1, 1]d , of which the minimum value is 0 and the op-
timal solution is (0, 0, ..., 0). During implementation, we
choose d = 100 and shift the optimal solution by 0.2,
which means the new optimal solution is (0.2, 0.2, ..., 0.2),
to avoid possible optimization bias to the origin point. In
addition, we add a fixed 1-second sleep for each evaluation.
This is a reasonable modification since any distributed al-
gorithm faces the networking overhead. If the evaluation
time cost is even smaller than the networking overhead,
parallelization may not be necessary. Another 1-second
sleep with 0.25 probability is also added to simulate a situa-
tion where evaluation servers vary in computational perfor-
mance, i.e. some servers are explicitly slower than others,
which is common in real-world applications. Each algo-
rithm is repeated 10 times independently, and the average
performance is reported.
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Figure 2: Comparison of the convergence rate with the
number of evaluation servers Ns = 1, 2, 4, 6, 8, 10.

On convergence rate. We firstly study the convergence
rate of ASRACOS. We set the time for optimization to be
2000 seconds and compare the performance with the num-
ber of evaluation servers Ns = 1, 2, 4, 6, 8, 10. The results
are shown in Figure 2. The dotted line represents the op-
timal value that ASRACOS obtains when uisng one server
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Figure 3: On each objective function, left: speedup, right: the average of the function value (the one closer to 0 the better).

(also the result of SRACOS). It can be observed that AS-
RACOS with more evaluation servers reduces the objective
function value with a higher rate, indicating that the asyn-
chronous parallelism can accelerate the convergence.

On speedup. We then study the speedup w.r.t the number
of evaluation servers (Ns ). We set the budget to be 2000 for
each algorithm and calculate the speedup as Si = T1

Ti
, where

Ti represents the time consumed when Ns = i. The results
are shown in Figure 3. From the left plots of each function,
we can observe that ASRACOS (blue line) achieves linear
speedup, notably better than PRACOS and PSRACOS. The
results reflect the advantage of asynchronous parallelism
over simple parallelism when servers vary in computational
performance.

On solution quality. To study the solution quality w.r.t.
the number of evaluation servers within the same time con-
straint, we set the time for optimization to be 20 minutes
for each algorithm. The results are shown in the right plots
of Figure 3. We can see that algorithms using more servers
get better solution quality and ASRACOS achieves the best
performance among them.

5.2 On Controlling Tasks in OpenAI Gym

OpenAI Gym is a toolkit for developing and comparing
reinforcement learning algorithms. The toolkit provides
many controlling tasts, from which we choose ‘Acrobot’,
‘MountainCar’, ‘Pendulum’, ‘HalfCheetah’, ‘Swimmer’
and ‘Ant’ to investigate the speedup and solution quality
of ASRACOS.

We use the framework of direct policy search to solve
these tasks. Direct policy search employs optimization
algorithms to search in the parameter space of a policy
for maximizing the cumulative reward. The policy is of-
ten represented by a neural network [3], whose weights

Table 1: Parameters of the Gym tasks

Task dState #Actions NN nodes #Weights Horizon

Acrobot-v1 6 1 5, 3 48 500
MountainCar-v0 2 1 5 15 200

Pendulum-v0 3 1 5 20 200
HalfCheetah-v2 17 6 10 230 1000

Swimmer-v2 8 2 5, 3 61 1000
Ant-v2 111 8 15 1785 1000

w = {w1,w2, ...,wn } are the parameters to be optimized.
The neural network takes the observation of the state as
input and outputs an action according to its policy. After
that, it will get the reward of that action and the observa-
tion of the next state. This interaction can be repeated un-
til the game is over or the maximum step is reached. The
cumulative reward is used as an evaluation of the policy
network, i.e. f (w )i =

∑T
t=1 Rt . The agent would have

different cumulative rewards if the initial state is reset to
be different, so we take the avarage of multiple simula-
tions as the final evaluation value of one neural network:
f (w ) =

∑m
i=1 f (w )i/m, which can reduce the noise to some

extent. In a nutshell, our aim is to find the optimal pa-
rameter w for this network so as to achieve the best per-
formance. We list the task information and the settings
of neural network in Table 1, where dState, #Actions, NN
nodes, #Weights and Horizon respectively denote the di-
mension size of observation, the dimension size of action,
the hidden layers of the neural network, the total number of
parameters in the neural network and the maximum step.

Details of each task can be found in the homepage of Ope-
nAI Gym (http://gym.openai.com). Among these tasks,
‘Acrobot’ and ‘MountainCar’ are finding policies with the
smallest step number to achieve the goal. Other tasks are
to find policies to get score from the environment as high
as possible. The average cumulative reward of 200 simu-
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(d) On HalfCheetah
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(e) On Swimmer
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(f) On Ant

Figure 4: For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or −Score (Pendulum, HalfCheetah,
Swimmer, Ant) of the best found policy (the smaller y-axis coordinate value the better).

lations is used as the evaluation value of one network for
‘Acrobot’, ‘MountainCar’ and ‘Pendulum. And for other
tasks, the average reward of 20 simulations is used. The
solution space X is set to be [−10, 10]#Weight. The output of
the neural network is scaled to be within the action space,
which is defined by the environment. Each algorithm is re-
peated 10 times and the mean value of the top-5 results is
reported. The results are plotted in Figure 4.

On speedup. We set the budget to be 2000 for each al-
gorithm. From the left plots of each task, we can observe
that ASRACOS (blue line) can still achieve almost linear
speedup, better than PRACOS and PSRACOS. Due to the
inevitable competition for computing resource, the speedup
ratio in these environments is smaller than that on synthetic
functions, which merely simulate the time-consuming tasks
simply by adding sleep operations. In addition, for ‘Ac-
robot’, ‘MountainCar’ and ‘Ant’, a better solution would
make the game stop earlier, which consumes less evalua-
tion time, and result in a lower speedup.

On solution value. We convert the maximization problems
in ‘Pendulum’, ‘HalfCheetah’, ‘Swimmer’ and ‘Ant’ to the
minimization problems by adding a minus to the score. The
time for optimization is set to be 20 minutes for each algo-
rithm. From the right plots in each subfigure, we can see
that the algorithm using more serves can get better solu-

tion quality in most cases. Nevertheless, in some cases, the
algorithm may get worse solution quality. The reason is
that in one case there exists randomness in the process of
optimization, in another the evaluation is inaccurate under
noisy environments, which may make a bad solution seem
to be good and lead the optimization to the wrong direction.
Similar to the results of the synthetic functions, ASRACOS
achieves the best performance in most cases.

6 Conclusion

In this paper, we propose an asynchronous classification-
based optimization method, ASRACOS, for accelerating
the optimization. We analyze the query complexity of
ASRACOS, and further provide the condition when AS-
RACOS can achieve a better (worse) performance than
SRACOS using the same number of evaluations. Exper-
iments on synthetic functions show that ASRACOS can
achieve higher convergence rate when having more eval-
uation servers. On both synthetic functions and direct pol-
icy search for controlling tasks, ASRACOS demonstrates
almost linear speedup and gets a better solution quality than
other parallel algorithms. Future work includes combining
noise-handling methods into ASRACOS to speed up the op-
timization in noisy environments, and applying ASRACOS
to large-scale optimization problems in real world.
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A Appendix

A.1 Proof of Theorem 2

In order to explicitly compare the query complexity of AS-
RACOS with that of SRACOS, we let DA

t and DS
t denote

the distribution under which the classifier is trained in it-
eration t of ASRACOS and SRACOS, and RDA

t
and RDS

t
denote the generalization error of them, respectively.

Lemma 1. Given f ∈ F , 0 < δ < 1 and ϵ > 0, if ASRacos
has error-target θ -dependence and γ -shrinking rate, then
its (ϵ,δ )-query complexity is upper bounded by

O (max{ 1
|Dϵ |

((1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦA
t )
−1ln

1
δ
,N })

where ΦA
t = (1−RDA

t
− #X

√
1
2DKL (D

A
t | |UX ) − θ ) · |Dαt |−1

and #X is the volume of X.

Theorem 1. Ignoring the constant factor and fixing θ and
γ , ASRacos can have a better (or worse) query complexity
upper bound than SRacos if for any iteration t:

RDA
t
−RDS

t
< (>)#X (

√
1
2
DKL (D

S
t | |UX )−

√
1
2
DKL (D

A
t | |UX ))

Before proving Theorem 1, we first recall the (ϵ ,δ )-
query complexity bound of a classification-based sequen-
tial derivative-free optimization algorithm which has been
derived in [8].

Theorem 2 ([8]) Given f ∈ F , 0 < δ < 1 and ϵ > 0, if a
classification-based sequential derivative-free optimization
algorithm has error-target θ -dependence and γ -shrinking
rate, then its (ϵ ,δ )-query complexity is upper bounded by

O *.,max


1
|Dϵ |

*,(1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦS
t
+-
−1

ln
1
δ
,N


+/- ,

where ΦS
t =

(
1 − RDS

t
− #X

√
1
2DKL (D

S
t ∥UX ) − θ

)
· |Dαt |−1

and #X is the volume of X .

Proof of Theorem 2

Proof. In Lemma 1, ignoring the constant factor and let-
ting ϵ > 0 be small enough such that we only need to focus
on the part of

1
|Dϵ |

*,(1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦA
t
+-
−1

ln
1
δ
,

where ΦA
t =

(
1 − RDA

t
− #X

√
1
2DKL (D

A
t ∥UX ) − θ

)
·|Dαt |−1

and #X is the volume of X . On the basis of Lemma 1 and
Theorem 2, to compare ASRACOS with SRACOS, it is suffi-

cient to compare the part of 1−RDA
t
−#X
√

1
2DKL (D

A
t ∥UX )−

θ with 1 − RDS
t
− #X

√
1
2DKL (D

S
t ∥UX ) − θ if we ig-

nore the corresponding constant factors. It can be
verified directly that, for any iteration t , if RDA

t
−

RDS
t
< #X (

√
1
2DKL (D

S
t | |UX ) −

√
1
2DKL (D

A
t | |UX )), then

ASRACOS is better than SRACOS; if RDA
t
− RDS

t
>

#X (
√

1
2DKL (D

S
t | |UX ) −

√
1
2DKL (D

A
t | |UX )), then ASRA-

COS is worse than SRACOS. ■

A.2 Synthetic Functions

(a) Sphere (b) Ackley

(c) Rastrigin (d) Griewank

Figure 5: Graphs of four synthetic functions
(http://www.sfu.ca/ ssurjano/optimization.html).
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