
Analyzing Evolutionary Optimization
in Noisy Environments

Chao Qian qianc@lamda.nju.edu.cn
Yang Yu∗ yuy@lamda.nju.edu.cn
Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing,
210023, China

Abstract
Many optimization tasks must be handled in noisy environments, where the exact
evaluation of a solution cannot be obtained, only a noisy one. For optimization of
noisy tasks, evolutionary algorithms (EAs), a type of stochastic metaheuristic search
algorithm, have been widely and successfully applied. Previous work mainly focuses
on the empirical study and design of EAs for optimization under noisy conditions,
while the theoretical understandings are largely insufficient. In this study, we firstly
investigate how noisy fitness can affect the running time of EAs. Two kinds of noise-
helpful problems are identified, on which the EAs will run faster with the presence of
noise, and thus the noise should not be handled. Secondly, on a representative noise-
harmful problem in which the noise has a strong negative effect, we examine two
commonly employed mechanisms dealing with noise in EAs: the re-evaluation and
the threshold selection strategies. The analysis discloses that using these two strate-
gies simultaneously is effective for the one-bit noise, but ineffective for the asym-
metric one-bit noise. The smooth threshold selection is then proposed, which can
be proven as an effective strategy to further improve the noise tolerance ability in
the problem. We then complement the theoretical analysis by experiments on both
synthetic problems as well as two combinatorial problems, the minimum spanning
tree and the maximum matching. The experimental results agree with the theoretical
findings, and also show that the proposed smooth threshold selection can deal with
the noise better.

Keywords
Noisy optimization, evolutionary algorithms, re-evaluation, threshold selection, run-
ning time, computational complexity.

1 Introduction

Optimization tasks often encounter noisy environments. For example, in industrial
design such as VLSI design (Guo et al., 2014), every prototype is evaluated by simula-
tions; therefore, the result of the evaluation may not be perfect due to the simulation
error. Also, with machine learning, a prediction model is evaluated only on a limited
amount of data (Qian et al., 2015a); therefore, the estimated performance is shifted
from the true performance. It is possible that noisy environments change the proper-
ties of an optimization problem, thus traditional optimization techniques may have
low efficacy. Meanwhile, evolutionary algorithms (EAs) (Bäck, 1996) have been widely

∗Corresponding author

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

C. Qian, Y. Yu, and Z.-H. Zhou

and successfully adopted for noisy optimization tasks (Freitas, 2003; Ma et al., 2006;
Chang and Chen, 2006).

EAs are a type of randomized metaheuristic optimization algorithm, inspired by
natural phenomena including evolution of species, swarm cooperation, immune sys-
tems, and others. EAs typically involve a cycle of three stages: a reproduction stage
that produces new solutions based on the currently maintained solutions; an evalu-
ation stage that evaluates the newly generated solutions; and a selection stage that
wipes out bad solutions. The concept of using EAs for noisy optimization is that the
corresponding natural phenomena have been successfully processed in noisy natu-
ral environments, and hence the algorithmic simulations are also likely to be able to
handle noise.

On one hand, it is believed that noise makes the optimization harder, and
thus handling mechanisms have been proposed to reduce the negative effect of the
noise (Fitzpatrick and Grefenstette, 1988; Beyer, 2000; Arnold and Beyer, 2003). Two
representative strategies are the re-evaluation strategy and the threshold selection. Ac-
cording to the re-evaluation strategy (Jin and Branke, 2005; Goh and Tan, 2007; Doerr
et al., 2012a), whenever the fitness (also called the cost or objective value) of a so-
lution is required, EAs make an independent evaluation of the solution regardless of
whether the solution has been evaluated before, such that the fitness is smoothed.
According to the threshold selection strategy (Markon et al., 2001; Bartz-Beielstein
and Markon, 2002; Bartz-Beielstein, 2005a), in the selection stage, EAs accept a newly
generated solution only if its fitness is larger than the fitness of the old solution by at
least a threshold value τ , such that the risk of accepting a bad solution due to noise is
reduced.

On the other hand, several empirical observations have shown cases where noise
can have a positive impact on the performance of local search (Selman et al., 1994;
Hoos and Stützle, 2000, 2005), which indicates that noise does not always have a neg-
ative impact.

As these previous studies are mainly empirical, theoretical analysis is in need for
a better understanding of evolutionary optimization in noisy environments.

1.1 Related Work

Despite their wide and successful application, the theoretical analysis of EAs on noisy
optimization is rare. Recently, numerous theoretical results on EAs have emerged
(e.g., (Neumann and Witt, 2010; Auger and Doerr, 2011)); however, most of them focus
on clean environments. In noisy environments, the optimization is more complex
and more randomized, thus the theoretical analysis is difficult.

Only a few theoretical analyses for EAs on noisy optimization have been pub-
lished. Gutjahr (2003, 2004) first analyzed the Ant Colony Optimization (ACO) algo-
rithm for stochastic combinatorial optimization and proved convergence under mild
conditions. Then, Droste (2004) gave a running time analysis of EAs in discrete noisy
optimization for the first time. Droste analyzed the (1+1)-EA on the OneMax prob-
lem under one-bit noise and showed the maximal noise strength log(n)/n allowing a
polynomial running time, where the noise strength is characterized by the noise prob-
ability in [0, 1] and n is the problem size. Later, Sudholt and Thyssen (2012) analyzed
the running time of a simple ACO for stochastic shortest path problems where edge
weights are subject to noise, and showed the ability and limitation of the ACO under
various noise models. For the difficulty faced by an ACO under a specific noise model,
Doerr et al. (2012a) further showed that the re-evaluation strategy can overcome it,

2 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

i.e., avoid being misled by an exceptionally optimistic evaluation due to noise. Re-
cently, Qian et al. (2014) have investigated the effectiveness of sampling, a common
strategy to reduce the effect of noise. They proved a sufficient condition under which
sampling is useless (i.e., sampling increases the running time), and applied it to show
that sampling is useless for the (1+1)-EA optimizing the OneMax and the Trap prob-
lem under additive Gaussian noise.

1.2 Our Contribution

In this paper, we study the effect of noise to EAs, and investigate the noise handling
mechanisms when noise needs to be accounted for.

Firstly, the effect of noise on the expected running time of EAs is investigated in
Section 3. On deceptive and flat problems, we will prove that noise can simplify the
optimization (i.e., decreases the expected running time) for EAs. The analysis results
support that for some difficult problems, handling the noise is not necessary.

Secondly, in Section 4, on the OneMax problem which will be proved to be nega-
tively affected by noise in Section 4.1, two commonly employed noise handling mech-
anisms are examined in Section 4.2: the re-evaluation and the threshold selection
strategies. With the (1+1)-EA under one-bit noise, the noise handling mechanisms
are evaluated by the polynomial noise tolerance (PNT), which is the range of the noise
strength such that the expected running time of the algorithm is polynomial. The
wider the PNT is, the better a noise handling mechanism is. For example, the one-bit
noise strength (and thus the PNT) is characterized by the noise probability pn ∈ [0, 1].
The configurations of the (1+1)-EA that we analyzed include: without any noise han-
dling strategy (abbreviated as single-evaluation), single-evaluation with threshold se-
lection (abbreviated as single-evaluation with a value of τ), and re-evaluation with
threshold selection (abbreviated as re-evaluation with a value of τ). Their PNTs are
presented in Table 1, where the PNT of the (1+1)-EA with re-evaluation (but no thresh-
old selection) is directly derived from (Droste, 2004). The comparison shows that,

1. the re-evaluation alone makes the PNT much worse than that of the single-
evaluation.

2. a threshold selection must be combined with the re-evaluation, otherwise, the EA
could not tolerate any noise strength larger than 0; meanwhile the re-evaluation
can also be better if used with the threshold selection.

3. the re-evaluation with threshold selection strategy (threshold = 1) can improve
upon that of the single-evaluation.

Afterwards, in Section 4.3, we disclose a weakness of the above noise handling

Noise handling strategies PNT
single-evaluation [0, 1− 1

Θ(poly(n))]

single-evaluation & τ > 0 [0, 0]

re-evaluation [0,Θ(logn
n)] (Droste, 2004)

re-evaluation & τ = 1 [0, 1]
re-evaluation & τ = 2 [1

Θ(poly(n)) , 1−
1

Θ(poly(n))]

re-evaluation & τ > 2 ∅

Table 1: The PNT with respect to one-bit noise of the (1+1)-EA using different noise
handling strategies on the OneMax problem.

Evolutionary Computation Volume x, Number x 3

C. Qian, Y. Yu, and Z.-H. Zhou

mechanisms: when used with the (1+1)-EA solving the OneMax problem under
asymmetric one-bit noise, all of them are ineffective (i.e., need exponential running
time) when the noise probability reaches 1. The reason of the ineffectiveness of re-
evaluation with threshold selection is because it has a too large probability of accept-
ing false progresses caused by the noise when the threshold τ ≤ 1, it has a too small
probability of accepting true progresses when τ ≥ 2, and setting τ between 1 and 2
is useless due to the minimum fitness gap 1 (i.e., a value of τ ∈ (1, 2) is equivalent
to τ = 2). We then introduce a modification into the threshold selection strategy to
turn the original hard threshold into the smooth threshold, which allows a fractional
threshold to be effective. We prove that with the smooth threshold selection strat-
egy the PNT can be [0, 1], i.e., the (1+1)-EA is always a polynomial algorithm on the
problem regardless of the noise probability.

Finally, we conducted experiments to verify and complement the theoretical re-
sults in Section 5. Firstly, we show using two problem classes, the Jump problem
which is a synthetic problem, and the minimum spanning tree problem which is a
common combinatorial problem, that the badness of the noise is negatively corre-
lated with the hardness of the problem, which was previously not noticed. Therefore,
when the problem is quite hard, the noise can be helpful and thus handling the noise
is not necessary. Then we verify that the smooth threshold selection can better handle
the noise by experiments on the maximum matching problem. Section 6 concludes
the paper.

2 Preliminaries

2.1 Noisy Optimization

A general optimization problem can be represented as arg maxx f(x), where the ob-
jective f is also called fitness in the context of evolutionary computation. In real-
world optimization tasks, the fitness evaluation for a solution is usually disturbed by
noise, and consequently we cannot obtain the exact fitness value but only a noisy one.
Let fN (x) and f(x) denote the noisy and true fitness of a solution x, respectively. In
this study, we will use the following three widely investigated noise models.

[additive]: fN (x) = f(x) + δ, where δ is uniformly selected from [δ1, δ2] at random.

[multiplicative]: fN (x) = f(x) ·δ, where δ is uniformly randomly selected from [δ1, δ2].

[one-bit]: fN (x) = f(x) with probability (1−pn) (pn ∈ [0, 1]); otherwise, fN (x) = f(x′),
where x′ is generated by flipping a uniformly randomly chosen bit of x ∈ {0, 1}n. This
noise is for problems where solutions are represented in binary strings.

Additive and multiplicative noise have often been used to analyze the effect of
noise (Beyer, 2000; Jin and Branke, 2005). One-bit noise is specifically used for op-
timizing pseudo-Boolean problems over {0, 1}n, and has been investigated in the first
work for analyzing the running time of EAs in noisy optimization (Droste, 2004) and
used to understand the role of noise in stochastic local search (Selman et al., 1994;
Hoos and Stützle, 1999; Mengshoel, 2008).

Besides the above noises, we also consider a variant of one-bit noise called asym-
metric one-bit noise, in Definition 1. Inspired from the asymmetric mutation oper-
ator (Jansen and Sudholt, 2010), the asymmetric one-bit noise flips a specific bit po-
sition with probability depending on the number of bit positions that take the same
value. For the flipping of asymmetric one-bit noise on a solution x ∈ {0, 1}n, the
probability of flipping a specific 0 bit is 1

2 ·
1
|x|0 , and the probability of flipping a spe-

4 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

cific 1 bit is 1
2 ·

1
n−|x|0 , where |x|0 = n−

∑n
i=1 xi is the number of 0 bits of x. Note that

for one-bit noise, the probability of flipping any specific bit is 1
n . For both one-bit and

asymmetric one-bit noise, pn controls the noise strength. In this paper, we assume
that the parameters of the environment (i.e., pn, δ1 and δ2) do not change over time.

Definition 1 (Asymmetric One-bit Noise). Given a fitness function f and a solution
x ∈ {0, 1}n, the asymmetric one-bit noise with a parameter pn ∈ [0, 1] leads to a noisy
fitness value fN (x) as fN (x) = f(x) with probability (1−pn), otherwise fN (x) = f(x′),
where x′ is generated by flipping the j-th bit of x, and j is a uniformly randomly chosen
position of

all bits of x, if |x|0 = 0 or n;{
0 bits of x, with probability 1/2;

1 bits of x, with probability 1/2.
, otherwise.

It is possible that a large noise could make an optimization problem extremely
hard for particular algorithms. We are thus interested in the noise strength, under
which an algorithm could be “tolerant” to have a polynomial running time. The noise
strength can be measured by the adjustable parameters, e.g., δ1, δ2 for the additive
and multiplicative noise, and pn for the one-bit noise. We denote gθ(f) as a type of
noisy fitness which disturbs the original fitness function f by the noise with parame-
ter θ (where θ can be a tuple, e.g., θ = (δ1, δ2) for additive noise), and define the PNT
in Definition 2, which characterizes the maximum range of the noise parameter for
allowing a polynomial expected running time. Note that, the PNT is ∅ if the algorithm
never has a polynomial expected running time for any noise strength. We will study
the PNT of EAs in order to analyze the effectiveness of noise handling strategies.

Definition 2 (Polynomial Noise Tolerance (PNT)). For an algorithm A running on a
problem f with a type of noise gθ, let ERT(A; gθ(f)) be the expected running time of A
on f with noise strength represented by the parameter θ. Then, the polynomial noise
tolerance of A on f with the type of noise gθ is the range of the noise strength in which
the expected running time is polynomial to the problem size n, i.e.,

PNT(A; f, gθ) = {θ | ERT(A; gθ(f)) = poly(n)}.

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) (Bäck, 1996) are a type of population-based meta-
heuristic optimization algorithm. Although many variants exist, the common pro-
cedure of EAs can be described as follows:
1. Generate an initial set of solutions (called a population);
2. Reproduce new solutions from the current population;
3. Evaluate the newly generated solutions;
4. Update the population by removing the bad solutions;
5. Repeat steps 2-5 until a specific criterion is met.

The (1+1)-EA, as in Algorithm 1, is a simple EA for maximizing pseudo-Boolean
problems over {0, 1}n, which reflects the common structure of EAs. It maintains only
one solution, and repeatedly improves the current solution by using bit-wise muta-
tion (i.e., the 3rd step of Algorithm 1). It has been widely used for the running time
analysis of EAs, e.g., in (He and Yao, 2001; Droste et al., 2002).

Algorithm 1 ((1+1)-EA). Given pseudo-Boolean function f with solution length n, it
consists of the following steps:

Evolutionary Computation Volume x, Number x 5

C. Qian, Y. Yu, and Z.-H. Zhou

1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x independently with probability p.
4. if f(x′) ≥ f(x)
5. x := x′.

where p ∈ (0, 0.5) is the mutation probability.

The (1+λ)-EA, as in Algorithm 2, applies an offspring population size λ. In each it-
eration, it first generates λ offspring solutions by independently mutating the current
solution λ times, and then selects the best from the current solution and the offspring
solutions as the next solution. It has been used to disclose the effect of offspring pop-
ulation size by running time analysis (Jansen et al., 2005; Neumann and Wegener,
2007). Note that the (1+1)-EA is a special case of the (1+λ)-EA with λ = 1.

Algorithm 2 ((1+λ)-EA). Given pseudo-Boolean function f with solution length n, it
consists of the following steps:

1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. i := 1.
4. Repeat until i > λ.
5. xi := flip each bit of x independently with probability p.
6. i := i+ 1.
7. if max{f(x1), . . . , f(xλ)} ≥ f(x)
8. x = arg maxx′∈{x1,...,xλ} f(x′).

where p ∈ (0, 0.5) is the mutation probability.

The running time of EAs is usually defined as the number of fitness evaluations
(i.e., computing f(·)) until an optimal solution is found for the first time, since the
fitness evaluation is often the computational process with the highest cost of the al-
gorithm (He and Yao, 2001; Yu and Zhou, 2008).

2.3 Markov Chain Modeling

We will analyze EAs by modeling them as Markov chains in this paper. Here, we give
some preliminaries.

EAs often generate solutions only based on their currently maintained solutions,
thus, they can be modeled and analyzed as Markov chains, e.g., in (He and Yao, 2001;
Yu and Zhou, 2008; Yu et al., 2015). A Markov chain {ξt}+∞t=0 modeling an EA is con-
structed by taking the EA’s population space X as the chain’s state space, i.e. ξt ∈ X .
Let X ∗ ⊂ X denote the set of all optimal populations, which contain at least one op-
timal solution. The goal of the EA is to reach X ∗ from an initial population. Thus, the
process of an EA seeking X ∗ can be analyzed by studying the corresponding Markov
chain with the optimal state space X ∗. Note that we consider the discrete state space
(i.e., X is discrete) in this paper.

A Markov chain {ξt}+∞t=0 (ξt ∈ X) is a random process, where ∀t ≥ 0, ξt+1 depends
only on ξt. A Markov chain {ξt}+∞t=0 is said to be homogeneous, if

∀t ≥ 0,∀x, y ∈ X : P (ξt+1 = y|ξt = x) = P (ξ1 = y|ξ0 = x). (1)

In this paper, we always denote X and X ∗ as the state space and the optimal state
space of a Markov chain, respectively.

Given a Markov chain {ξt}+∞t=0 and ξt̂ = x, we define the first hitting time (FHT) of
the chain as a random variable τ such that τ = min{t|ξt̂+t ∈ X ∗, t ≥ 0}. That is, τ is

6 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

the number of steps needed to reach the optimal state space for the first time starting
from ξt̂ = x. The mathematical expectation of τ , E[[τ |ξt̂ = x]] =

∑+∞
i=0 iP (τ = i), is

called the expected first hitting time (EFHT) of this chain starting from ξt̂ = x. If ξ0
is drawn from a distribution π0, E[[τ |ξ0 ∼ π0]] =

∑
x∈X π0(x)E[[τ |ξ0 = x]] is called the

expected first hitting time of the Markov chain over the initial distribution π0.
For the corresponding EA, the running time is the number of calls to the fitness

function until meeting an optimal solution for the first time. Thus, the expected run-
ning time starting from ξ0 and that starting from ξ0 ∼ π0 are respectively equal to

N1 +N2 · E[[τ |ξ0]] and N1 +N2 · E[[τ |ξ0 ∼ π0]], (2)

where N1 and N2 are the number of fitness evaluations for the initial population and
each iteration, respectively. For example, for the (1+1)-EA, N1 = 1 and N2 = 1; for
the (1+λ)-EA, N1 = 1 and N2 = λ. Note that, when involving the expected running
time of an EA on a problem in this paper, if the initial population is not specified,
it is the expected running time starting from a uniform initial distribution πu, i.e.,
N1 +N2 · E[[τ |ξ0 ∼ πu]] = N1 +N2 ·

∑
x∈X

1
|X |E[[τ |ξ0 = x]].

The following two lemmas on the EFHT of Markov chains (Freı̌dlin, 1996) will be
used in the paper.

Lemma 1. Given a Markov chain {ξt}+∞t=0 , we have

∀x ∈ X ∗ : E[[τ |ξt = x]] = 0;

∀x /∈ X ∗ : E[[τ |ξt = x]] = 1 +
∑

y∈X
P (ξt+1 = y|ξt = x)E[[τ |ξt+1 = y]].

Lemma 2. Given a homogeneous Markov chain {ξt}+∞t=0 , it holds

∀t1, t2 ≥ 0, x ∈ X : E[[τ |ξt1 = x]] = E[[τ |ξt2 = x]].

Drift analysis is a commonly used tool for analyzing the EFHT of Markov chains.
It was first introduced to the running time analysis of EAs by He and Yao (2001, 2004).
Later, it has become a popular tool in this field, and advanced variants have been
proposed (e.g., (Doerr et al., 2012b; Doerr and Goldberg, 2013)). In this paper, we will
use the additive version (i.e., Lemma 3). To use it, a function V (x) (x ∈ X) has to be
constructed to measure the distance of a state x to the optimal state space X ∗. The
distance function V (x) satisfies that V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0. Then, we
need to investigate the progress on the distance to X ∗ in each step, i.e., E[[V (ξt) −
V (ξt+1)|ξt]]. An upper (lower) bound of the EFHT can be derived through dividing the
initial distance by a lower (upper) bound of the progress.

Lemma 3 (Additive Drift Analysis (He and Yao, 2001, 2004)). Given a Markov chain
{ξt}+∞t=0 and a distance function V (x), if it satisfies that for any t ≥ 0 and any ξt with
V (ξt) > 0,

0 < cl ≤ E[[V (ξt)− V (ξt+1)|ξt]] ≤ cu,

then the EFHT of this chain satisfies that

V (ξ0)/cu ≤ E[[τ |ξ0]] ≤ V (ξ0)/cl,

where cl, cu do not depend on ξt and t.

The simplified drift theorem (Oliveto and Witt, 2011, 2012) as presented in
Lemma 4 was proposed to prove exponential lower bounds on the FHT of Markov

Evolutionary Computation Volume x, Number x 7

C. Qian, Y. Yu, and Z.-H. Zhou

chains, where Xt is usually represented by a mapping of ξt. It requires two condi-
tions: a constant negative drift and exponentially decaying probabilities of jumping
towards or away from the goal state. To relax the requirement of a constant nega-
tive drift, advanced variants have been proposed, e.g., the simplified drift theorem
with self-loops (Rowe and Sudholt, 2014) and the simplified drift theorem with scal-
ing (Oliveto and Witt, 2014, 2015). In this paper, we will use the original version (i.e.,
Lemma 4).

Lemma 4 (Simplified Drift Theorem (Oliveto and Witt, 2011, 2012)). Let Xt, t ≥ 0,
be real-valued random variables describing a stochastic process over some state space.
Suppose there exists an interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depend-
ing on l := b− a, a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0
the following two conditions hold:

1. E[[Xt −Xt+1 | a < Xt < b]] ≤ −ε,

2. P (|Xt+1 −Xt| ≥ j | Xt > a) ≤ r(l)

(1 + δ)j
for j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it
holds P (T ∗ ≤ 2c

∗l/r(l)) = 2−Ω(l/r(l)).

2.4 Pseudo-Boolean Functions

The pseudo-Boolean function class in Definition 3 is a large function class which only
requires the solution space to be {0, 1}n and the objective space to be R. Many well-
known NP-hard problems (e.g., the vertex cover problem and the 0-1 knapsack prob-
lem) belong to this class. Diverse pseudo-Boolean problems with different structures
and difficulties have been used to disclose properties of EAs, e.g., in (Droste et al.,
1998, 2002; He and Yao, 2001). We consider only maximization problems in this pa-
per. In the following, let xi denote the i-th bit of a solution x ∈ {0, 1}n.

Definition 3 (Pseudo-Boolean Function). A function in the pseudo-Boolean function
class has the form: f : {0, 1}n → R.

The Trap problem in Definition 4 is a special instance in this class, in which the
aim is to maximize the number of 0 bits of a solution except for the global optimum
11 . . . 1 (briefly denoted as 1n). Its optimal function value is 2n, and the function value
for any non-optimal solution is not larger than 0. It has been used in the theoretical
studies of EAs, and the expected running time of the (1+1)-EA with mutation proba-
bility 1

n has been proven to be Θ(nn) (Droste et al., 2002). It has also been recognized
as the hardest instance in the pseudo-Boolean function class with a unique global
optimum for the (1+1)-EA (Qian et al., 2012), i.e., the expected running time of the
(1+1)-EA on the Trap problem is the largest among the class.

Definition 4 (Trap Problem). Trap Problem of size n is to solve the problem

arg maxx∈{0,1}n
(
f(x) = 3n

∏n

i=1
xi −

∑n

i=1
xi

)
.

The Peak problem in Definition 5 has the same fitness for all solutions except for
the global optimum 1n. It has been shown that for solving this problem, the (1+1)-EA
with mutation probability 1

n needs 2Ω(n) running time with an overwhelming proba-
bility (Oliveto and Witt, 2011).

8 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Definition 5 (Peak Problem). Peak Problem of size n is to solve the problem

arg maxx∈{0,1}n
(
f(x) =

∏n

i=1
xi

)
.

The OneMax problem in Definition 6 aims to maximize the number of 1 bits of a
solution. Its optimal solution is 1n with the function value n. The running time of EAs
has been well studied on the OneMax problem (He and Yao, 2001; Droste et al., 2002;
Sudholt, 2013); particularly, the expected running time of the (1+1)-EA with mutation
probability 1

n is Θ(n log n) (Droste et al., 2002). It has also been recognized as the
easiest instance in the pseudo-Boolean function class with a unique global optimum
for the (1+1)-EA (Qian et al., 2012).

Definition 6 (OneMax Problem). OneMax Problem of size n is to solve the problem

arg maxx∈{0,1}n
(
f(x) =

∑n

i=1
xi

)
.

3 On the Effect of Noisy Fitness

In this section, we provide two types of problems in which the noise can make the
optimization easier for EAs. By “easier”, we mean that the EA with noise needs less
expected running time than that without noise to find the optimal solution.

We analyze EAs by modeling them as Markov chains. Here, we first give some
properties of Markov chains, which will be used in the following analysis. We define
a partition of the state space of a homogeneous Markov chain based on the EFHT in
Definition 7, and then define a jumping probability of a chain from one state to one
state space in Definition 8. It is easy to see that X0 in Definition 7 is just X ∗, since
E[[τ |ξ0 ∈ X ∗]] = 0.

Definition 7 (EFHT-Partition). For a homogeneous Markov chain {ξt}+∞t=0 , the EFHT-
Partition is a partition of X into non-empty subspaces {X0,X1, . . . ,Xm} such that

(1) ∀x, y ∈ Xi,E[[τ |ξ0 = x]] = E[[τ |ξ0 = y]];

(2) E[[τ |ξ0 ∈ X0]] < E[[τ |ξ0 ∈ X1]] < . . . < E[[τ |ξ0 ∈ Xm]].

Note that, the EFHT-partition is different from the fitness-partition used in the
fitness-level method (Wegener, 2002; Sudholt, 2013) for EAs’ running time analysis,
since the solutions with the same fitness can have different EFHT, and the EFHT order
can be either consistent (e.g., the (1+λ)-EA on the Trap problem as in Lemma 7) or
inconsistent (e.g., the (1+λ)-EA on the OneMax problem as in Lemma 10) with the
fitness order.

Definition 8. For a Markov chain {ξt}+∞t=0 , P tξ (x,X ′) =
∑
y∈X ′ P (ξt+1 = y|ξt = x) is the

probability of jumping from state x to state space X ′ ⊆ X in one step at time t.

Lemma 5 compares the EFHT of two Markov chains. It intuitively means that if
one chain always has a larger probability of jumping into good states (i.e., Xj with
small j values), it needs less time for reaching the optimal state space.

Lemma 5. Given a Markov chain {ξt}+∞t=0 and a homogeneous Markov chain {ξ′t}+∞t=0

with the same state space X and the same optimal space X ∗, let {X0,X1, . . . ,Xm} de-
note the EFHT-Partition of {ξ′t}+∞t=0 . If for all t ≥ 0, x ∈ X − X0, and for all integers
i ∈ [0,m− 1],∑i

j=0
P tξ (x,Xj) ≥ (≤)

∑i

j=0
P tξ′(x,Xj), (3)

then for all x ∈ X , E[[τ |ξ0 = x]] ≤ (≥)E[[τ ′|ξ′0 = x]].

Evolutionary Computation Volume x, Number x 9

C. Qian, Y. Yu, and Z.-H. Zhou

To prove Lemma 5, we need the following lemma, which is proved by using the
property of majorization and Schur-concavity.

Lemma 6. Let m (m ≥ 1) be an integer. If it satisfies that

(1) 0 ≤ E0 < E1 < . . . < Em;

(2) ∀0 ≤ i ≤ m,Pi, Qi ≥ 0,
∑m

i=0
Pi =

∑m

i=0
Qi = 1;

(3) ∀0 ≤ k ≤ m− 1,
∑k

i=0
Pi ≤

∑k

i=0
Qi,

then it holds that ∑m

i=0
Pi · Ei ≥

∑m

i=0
Qi · Ei.

Proof. Let f(x0, . . . , xm) =
∑m
i=0Eixi. Due to the condition (1) that Ei is increasing,

f is Schur-concave by Theorem A.3 in Chapter 3 of (Marshall et al., 2011). The condi-
tions (2) and (3) imply that the vector (Q0, . . . , Qm) majorizes (P0, . . . , Pm). Thus, we
have f(P0, . . . , Pm) ≥ f(Q0, . . . , Qm), which proves the lemma.

Proof of Lemma 5.
We prove one direction of the inequality, and the other can be proved similarly.

We use Lemma 3 to derive a bound on E[[τ |ξ0]], based on which this lemma holds.
To use Lemma 3 to analyze E[[τ |ξ0]], we first construct a distance function V (x) as

∀x ∈ X , V (x) = E[[τ ′|ξ′0 = x]], (4)

which satisfies that V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0 by Lemma 1.
Then, we investigate E[[V (ξt)− V (ξt+1)|ξt = x]] for any x with V (x) > 0.

E[[V (ξt)− V (ξt+1)|ξt = x]] = V (x)− E[[V (ξt+1)|ξt = x]]

= V (x)−
∑

y∈X
P (ξt+1 = y|ξt = x)V (y)

= 1+
∑

y∈X
P (ξ′1 =y|ξ′0 =x)E[[τ ′|ξ′1 =y]]−

∑
y∈X

P (ξt+1 =y|ξt=x)E[[τ ′|ξ′0 =y]]

(by Eq.4 and Lemma 1)

= 1+
∑

y∈X
P (ξ′t+1 =y|ξ′t=x)E[[τ ′|ξ′0 =y]]−

∑
y∈X

P (ξt+1 =y|ξt=x)E[[τ ′|ξ′0 =y]]

(by Eq.1 and Lemma 2, since {ξ′t}+∞t=0 is homogeneous.)

= 1 +
∑m

j=0

(
P tξ′(x,Xj)− P tξ (x,Xj)

)
E[[τ ′|ξ′0 ∈ Xj]]. (by Definitions 7 and 8)

Since
∑m
j=0 P

t
ξ (x,Xj) =

∑m
j=0 P

t
ξ′(x,Xj) = 1, E[[τ ′|ξ′0 ∈ Xj]] increases with j and Eq.3

holds, by Lemma 6, we have∑m

j=0
P tξ′(x,Xj)E[[τ ′|ξ′0 ∈ Xj]] ≥

∑m

j=0
P tξ (x,Xj)E[[τ ′|ξ′0 ∈ Xj]].

Thus, we have, for all t ≥ 0, all x /∈ X ∗, E[[V (ξt)− V (ξt+1)|ξt = x]] ≥ 1.
By Lemma 3, we get for all x ∈ X , E[[τ |ξ0 = x]] ≤ V (x) = E[[τ ′|ξ′0 = x]].

3.1 On Deceptive Problems

Most practical EAs employ time-invariant operators, thus we can model an EA with-
out noise by a homogeneous Markov chain. While for an EA with noise, since noise

10 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

may change over time, we can just model it by a Markov chain. In the following analy-
sis, we always denote them respectively by {ξ′t}+∞t=0 and {ξt}+∞t=0 , and denote the EFHT-
Partition of {ξ′t}+∞t=0 by {X0,X1, . . . ,Xm}.

An evolutionary process can be characterized by the variation (i.e., producing
new solutions) and the selection (i.e., weeding out bad solutions) process. Denote
the state spaces before and after variation by X and Xvar respectively, and then the
variation process is a mapping X → Xvar and the selection process is a mapping
X × Xvar → X (e.g., for the (1+λ)-EA on any pseudo-Boolean problem, X = {0, 1}n
and Xvar = {{x1, . . . , xλ}|xi ∈ {0, 1}n}). Note that X is just the state space of the
Markov chain. Let Pvar(x, x′) (x ∈ X , x′ ∈ Xvar) be the state transition probability by
the variation process. Let S∗ denote the optimal solution set. The considered solution
set in the paper (e.g., population) may be a multiset. For two multisets y ⊆ x, we mean
that ∀s ∈ y : s ∈ x.

Definition 9 (Deceptive Markov Chain). A homogeneous Markov chain {ξ′t}+∞t=0 mod-
eling an EA optimizing a problem without noise is deceptive, if for any x ∈ Xk (k ≥ 1),

∀ 1 ≤ j ≤ k − 1 : P tξ′(x,Xj) = 0; (5)

∀ k + 1 ≤ i ≤ m :
∑m

j=i
P tξ′(x,Xj) ≥

∑
x′∩S∗=∅,

∃y∈∪mj=iXj :y⊆x∪x
′
Pvar(x, x

′).

Theorem 1. For an EAA optimizing a problem f , which can be modeled by a deceptive
Markov chain, if

∀x /∈ X0 : P tξ (x,X0) =
∑

x′∩S∗ 6=∅
Pvar(x, x

′), (6)

then noise makes f easier forA.

The theorem intuitively means that if an evolutionary process is deceptive and
the optimal solution will always be accepted once generated in the noisy evolutionary
process, then noise will be helpful.
Proof of Theorem 1.

The two EAs with and without noise are different only on whether the fitness eval-
uation is disturbed by noise, thus, they must have the same values on N1 and N2 for
their running time Eq.2. Then, comparing their expected running time is equivalent
to comparing the EFHT of their corresponding Markov chains.

In one step of the evolutionary process, denote the states before and after vari-
ation by x ∈ X and x′ ∈ Xvar respectively, and denote the state after selection by
y ∈ X . Because the selection process does not produce new solutions, it must satisfy
that y ⊆ x ∪ x′. Assume that x ∈ Xk (k ≥ 1). For {ξ′t}+∞t=0 (i.e., without noise), we have

P tξ′(x,X0) ≤
∑

x′∩S∗ 6=∅
Pvar(x, x

′). (7)

For {ξt}+∞t=0 (i.e., with noise), the condition Eq.6 makes that once an optimal solution
is generated, it will be always accepted. Thus, we have

∀ k + 1 ≤ i ≤ m :
∑m

j=i
P tξ (x,Xj) ≤

∑
x′∩S∗=∅,

∃y∈∪mj=iXj :y⊆x∪x
′
Pvar(x, x

′). (8)

By combining Eq.5, Eq.6, Eq.7 and Eq.8, we have

∀ 1 ≤ i ≤ m :
∑m

j=i
P tξ (x,Xj) ≤

∑m

j=i
P tξ′(x,Xj).

Evolutionary Computation Volume x, Number x 11

C. Qian, Y. Yu, and Z.-H. Zhou

Since
∑m
j=0 P

t
ξ (x,Xj) =

∑m
j=0 P

t
ξ′(x,Xj) = 1, the above inequality is equivalent to

∀ 0 ≤ i ≤ m− 1 :
∑i

j=0
P tξ (x,Xj) ≥

∑i

j=0
P tξ′(x,Xj),

which implies that the condition Eq.3 of Lemma 5 holds. Thus, by Lemma 5, we get
∀x ∈ X ,E[[τ |ξ0 = x]] ≤ E[[τ ′|ξ′0 = x]], i.e., noise makes f easier forA.

Then, we give a concrete deceptive evolutionary process, i.e., the (1+λ)-EA opti-
mizing the Trap problem. For the Trap problem given in Definition 4, it is to maximize
the number of 0 bits except for the optimal solution 1n. It is not hard to see that the
EFHT E[[τ ′|ξ′0 = x]] only depends on |x|0 (i.e., the number of 0 bits). We denote E1(j)
as E[[τ ′|ξ′0 = x]] with |x|0 = j. The order of E1(j) is shown in Lemma 7.

Lemma 7. For any mutation probability 0 < p < 0.5, it holds that E1(0) < E1(1) <
E1(2) < . . . < E1(n).

For proving Lemma 7, we need the following two lemmas. Lemma 8 (Witt, 2013)
says that it is more likely that the offspring generated by mutating a parent solution
with less 0 bits has a smaller number of 0 bits. Note that we consider | · |0 instead of
| · |1 in their original lemma. It obviously still holds due to the symmetry. We have
also restricted p < 0.5 instead of p ≤ 0.5, which leads to the strict inequality in the
conclusion. Lemma 9 is very similar to Lemma 6, except that the inequalities in the
condition (3) and the conclusion hold strictly.

Lemma 8 ((Witt, 2013)). Let x, y ∈ {0, 1}n be two search points satisfying |x|0 < |y|0.
Denote by x′ and y′ the random strings obtained by flipping each bit of x and y inde-
pendently with probability p, respectively. If p < 0.5, then for any 0 ≤ j ≤ n− 1,

P (|x′|0 ≤ j) > P (|y′|0 ≤ j).

Lemma 9. Let m (m ≥ 1) be an integer. If it satisfies that

(1) 0 ≤ E0 < E1 < . . . < Em;

(2) ∀0 ≤ i ≤ m,Pi, Qi ≥ 0,
∑m

i=0
Pi =

∑m

i=0
Qi = 1;

(3) ∀0 ≤ k ≤ m− 1,
∑k

i=0
Pi <

∑k

i=0
Qi,

then it holds that
∑m
i=0 Pi · Ei >

∑m
i=0Qi · Ei.

Proof. Let Ri = Pi for 0 ≤ i ≤ m − 2, Rm−1 =
∑m−1
i=0 Qi −

∑m−2
i=0 Pi and Rm = Qm.

Then, it is easy to see that the two vectors (R0, . . . , Rm) and (Q0, . . . , Qm) satisfy the
conditions (2) and (3) of Lemma 6. Furthermore, the condition (1) of Lemma 6 that
Ei is increasing holds. Thus, by Lemma 6, we have

∑m
i=0Ri · Ei ≥

∑m
i=0Qi · Ei.

Then, we compare
∑m
i=0 Pi · Ei with

∑m
i=0Ri · Ei.

m∑
i=0

Pi · Ei −
m∑
i=0

Ri · Ei =

(
Pm−1−

(
m−1∑
i=0

Qi −
m−2∑
i=0

Pi

))
Em−1 + (Pm−Qm)Em

=

(∑m−1

i=0
Pi −

∑m−1

i=0
Qi

)
(Em−1 − Em) > 0.

Thus, we have
∑m
i=0 Pi · Ei >

∑m
i=0Ri · Ei ≥

∑m
i=0Qi · Ei, i.e., the lemma holds.

12 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Proof of Lemma 7.
First, E1(0) < E1(1) trivially holds, because E1(0) = 0 and E1(1) > 0. Then, we

prove ∀ 0 < j < n : E1(j) < E1(j + 1) inductively on j.

(a) Initialization is to prove E1(n − 1) < E1(n). For E1(n), because the next solution
can be only 1n or 0n, we have E1(n) = 1 + (1− (1− pn)λ)E1(0) + (1− pn)λE1(n), then,
E1(n) = 1/(1 − (1 − pn)λ). For E1(n − 1), because the next solution can be 1n, 0n or
a solution with n − 1 number of 0 bits, we have E1(n − 1) = 1 + (1 − (1 − pn−1(1 −
p))λ)E1(0)+P ·E1(n)+((1−pn−1(1−p))λ−P)E1(n−1), whereP denotes the probability
that the next solution is 0n. Then, E1(n−1) = (1+PE1(n))/(1−(1−pn−1(1−p))λ+P).
Thus, we have

E1(n− 1)

E1(n)
=

1− (1− pn)λ + P

1− (1− pn−1(1− p))λ + P
< 1,

where the inequality is by 0 < p < 0.5.

(b) Inductive Hypothesis assumes that

∀ K < j ≤ n− 1(K ≥ 1) : E1(j) < E1(j + 1).

Then, we consider j = K. Let x and y be a solution with K + 1 number of 0 bits
and that with K number of 0 bits, respectively. Let a and b denote the number of 0
bits of the offspring solutions mut(x) and mut(y), respectively. That is, a = |mut(x)|0
and b = |mut(y)|0. For the λ independent mutations on x and y, we use a1, . . . , aλ
and b1, . . . , bλ, respectively. Note that, a1, . . . , aλ are independently and identically
distributed (i.i.d.), and b1, . . . , bλ are also i.i.d. Let pj = P (ai ≤ j) and qj = P (bi ≤ j).
Then, from Lemma 8, we have ∀0 ≤ j ≤ n− 1 : pj < qj .

For E1(K + 1), let P0 and Pi (1 ≤ i ≤ n) be the probability that for the λ offspring
solutions, the least number of 0 bits is 0 (i.e., P0 = P (min{a1, . . . , aλ} = 0)), and
the largest number of 0 bits is i while the least number of 0 bits is larger than 0 (i.e.,
Pi = P (max{a1, . . . , aλ} = i ∧min{a1, . . . , aλ} > 0)), respectively. By considering the
mutation and selection behavior of the (1+λ)-EA on the Trap problem, we have

E1(K + 1) = 1 + P0E1(0) +
∑K+1

i=1
PiE1(K + 1) +

∑n

i=K+2
PiE1(i).

For E1(K), let Q0 = P (min{b1, . . . , bλ} = 0) and Qi = P (max{b1, . . . , bλ} = i ∧
min{b1, . . . , bλ} > 0). Then, we can have

E1(K) = 1 +Q0E1(0) +
∑K

i=1
QiE1(K) +

∑n

i=K+1
QiE1(i).

For comparing E1(K + 1) with E1(K), we need to show that

∀0 ≤ j ≤ n− 1 :
∑j

i=0
Pi <

∑j

i=0
Qi. (9)

For
∑j
i=0 Pi, we have∑j

i=0
Pi=P (min{a1, . . . , aλ}=0)+P (max{a1, . . . , aλ}≤j ∧min{a1, . . . , aλ}>0)

= P (a1 = 0 ∨ . . . ∨ aλ = 0) + P (0 < a1 ≤ j ∧ . . . ∧ 0 < aλ ≤ j)
= 1− (1− p0)λ + (pj − p0)λ < 1− (1− p0)λ + (qj − p0)λ. (by pj < qj)

Evolutionary Computation Volume x, Number x 13

C. Qian, Y. Yu, and Z.-H. Zhou

For
∑j
i=0Qi, we similarly have

∑j
i=0Qi = 1− (1− q0)λ + (qj − q0)λ. Thus,∑j

i=0
Qi −

∑j

i=0
Pi > (1− p0)λ − (1− q0)λ + (qj − q0)λ − (qj − p0)λ

=
(
(1− q0 + q0 − p0)λ − (1− q0)λ

)
−
(
(qj − q0 + q0 − p0)λ − (qj − q0)λ

)
= f(1− q0)− f(qj − q0),

where the last equality is by letting f(x) = (x+ q0 − p0)λ − xλ.
Since q0 > p0, it is easy to verify that f(x) is increasing. Then, we have f(1 − q0) >
f(qj − q0) by qj < 1. Thus, the Eq.9 holds.
By subtracting E1(K) from E1(K + 1), we can get

E1(K+1)−E1(K)=

(
P0E1(0)+

∑K+1

i=1
PiE1(K+1)+

∑n

i=K+2
PiE1(i)−Q0E1(0)

−
∑K+1

i=1
QiE1(K + 1)−

∑n

i=K+2
QiE1(i)

)
+
∑K

i=1
Qi
(
E1(K + 1)− E1(K)

)
>
∑K

i=1
Qi
(
E1(K + 1)− E1(K)

)
,

where the inequality is by applying Lemma 9 to the formula in
(
·
)

. The three condi-
tions of Lemma 9 can be easily verified, because E1(0) = 0 < E1(K + 1) < . . . < E1(n)
by inductive hypothesis;

∑n
i=0 Pi =

∑n
i=0Qi = 1; and Eq.9 holds.

Because
∑K
i=1Qi < 1, we have E1(K + 1) > E1(K).

(c) Conclusion: According to (a) and (b), the lemma holds.
Theorem 2. Either additive noise with δ2 − δ1 < 2n or multiplicative noise with δ2 >
δ1 > 0 makes the Trap problem easier for the (1+λ)-EA with mutation probability less
than 0.5.

Proof. First, we are to show that the (1+λ)-EA optimizing the Trap problem can be
modeled by a deceptive Markov chain. By Lemma 7, the EFHT-Partition of {ξ′t}+∞t=0 is
Xi = {x ∈ {0, 1}n | |x|0 = i} (0 ≤ i ≤ n) and m in Definition 7 equals to n here.

For any x ∈ Xk (k ≥ 1), we denote P (0) and P (j) (1 ≤ j ≤ n) as the
probability that for the λ offspring solutions x1, . . . , xλ generated by bit-wise mu-
tation on x, min{|x1|0, . . . , |xλ|0} = 0 (i.e., the least number of 0 bits is 0), and
min{|x1|0, . . . , |xλ|0} > 0 ∧max{|x1|0, . . . , |xλ|0} = j (i.e., the largest number of 0 bits
is j while the least number of 0 bits is larger than 0), respectively. For {ξ′t}+∞t=0 , because
only the optimal solution or the solution with the largest number of 0 bit among the
parent solution and λ offspring solutions will be accepted, we have

∀ 1 ≤ j ≤ k − 1 : P tξ′(x,Xj) = 0; ∀ k + 1 ≤ j ≤ n : P tξ′(x,Xj) = P (j).

This implies that Eq.5 holds.
Then, we are to show that the condition of Theorem 1 (i.e., Eq.6) holds. For

{ξt}+∞t=0 with additive noise, since δ2 − δ1 < 2n, we have

fN (1n) ≥ f(1n) + δ1 > 2n+ δ2 − 2n = δ2; ∀y 6= 1n, fN (y) ≤ f(y) + δ2 ≤ δ2.

For multiplicative noise, since δ2 > δ1 > 0, then fN (1n) > 0 and ∀y 6= 1n, fN (y) ≤ 0.
Thus, for these two noises, we have ∀y 6= 1n, fN (1n) > fN (y), which implies that if
the optimal solution 1n is generated, it will always be accepted. Thus, we have, note
that X0 = {1n}, P tξ (x,X0) = P (0). This implies that Eq.6 holds.

Thus, by Theorem 1, we get that the Trap problem becomes easier for the (1+λ)-
EA under these two types of noise.

14 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

3.2 On Flat Problems

Besides deceptive problems, we show that noise can also make flat problems easier
for EAs. We take the Peak problem given in Definition 5 as the representative problem,
which has the same fitness for all solutions except for the optimal solution 1n. When
using EAs to solve it, it provides no information for the search direction, thus it is hard
for EAs. We analyze the (1+1)-EA∗ optimizing the Peak problem. The (1+1)-EA∗ is the
same as the (1+1)-EA except that it employs the strict selection strategy. That is, the
step 4 of Algorithm 1 changes to be “if f(x′) > f(x)”. The expected running time of
the (1+1)-EA∗ with mutation probability 1

n on the Peak problem has been proven to
be lower bounded by en ln(n/2) (Droste et al., 2002).

Theorem 3. One-bit noise with pn ∈ (0, 1) being a constant makes the Peak problem
easier for the (1+1)-EA∗ with mutation probability 1

n , when starting from an initial
solution x with |x|0 > 1+pn

pn(1− 1
n)

.

Proof. Let {ξt}+∞t=0 and {ξ′t}+∞t=0 model the (1+1)-EA∗ with one-bit noise and without
noise for maximizing the Peak problem, respectively. It is not hard to see that both
the EFHT E[[τ |ξ0 = x]] and E[[τ ′|ξ′0 = x]] only depend on |x|0. We denote E(i) and E′(i)
as E[[τ |ξ0 = x]] and E[[τ ′|ξ′0 = x]] with |x|0 = i, respectively.

For {ξ′t}+∞t=0 (i.e., without noise) starting from a solution xwith |x|0 = i > 0, in one
step, any non-optimal offspring solution has the same fitness as the parent and then
will be rejected due to the strict selection strategy; only the optimal solution can be
accepted, which happens with probability 1

ni (1−
1
n)n−i. Thus, we have

E′(i) = 1 +
1

ni

(
1− 1

n

)n−i
E′(0) +

(
1− 1

ni

(
1− 1

n

)n−i)
E′(i),

which leads to E′(i) = ni(n
n−1)n−i.

For {ξt}+∞t=0 (i.e., with one-bit noise), we assume using re-evaluation, which re-
evaluates f(x) and evaluates f(x′) in each iteration of Algorithm 1. When starting
from x with |x|0 = 1, if the generated offspring x′ is the optimal solution 1n, it will be
accepted with probability (1−pn)(1−pn 1

n) because only no bit flip for noise on x′ and
no 0 bit flip for noise on x can make fN (x′) > fN (x); otherwise, x will keep |x|0 = 1,
because fN (x′) ≤ fN (x) for any x′ with |x′|0 ≥ 2. Thus, we have

E(1)=1+
1

n

(
1− 1

n

)n−1

(1− pn)
(

1− pn
n

)
E(0)+

(
1− 1

n

(
1− 1

n

)n−1

(1−pn)
(

1− pn
n

))
E(1),

which leads to E(1) = n(n
n−1)n−1 1

(1−pn)(1− pnn)
.

When starting from xwith |x|0 = i ≥ 2, if the offspring x′ is 1n, it will be accepted with
probability (1− pn) because only no bit flip for noise on x′ can make fN (x′) > fN (x);
if |x′|0 = 1, it will be accepted with probability pn 1

n because only flipping the unique
0 bit for noise on x′ can make fN (x′) > fN (x); otherwise, x keeps |x|0 = i, because
fN (x′) = fN (x) for any x′ with |x′|0 ≥ 2. Let muti→1 be the probability of mutating
|x|0 = i to |x′|0 = 1 by bit-wise mutation with p = 1

n . Then, we have, for i ≥ 2,

E(i) =1 +
(n− 1)n−i

nn
(1− pn)E(0) +muti→1 ·

pn
n
E(1)

+

(
1− (n− 1)n−i

nn
(1− pn)−muti→1

pn
n

)
E(i),

Evolutionary Computation Volume x, Number x 15

C. Qian, Y. Yu, and Z.-H. Zhou

which leads to E(i) =
1+muti→1

pn
n E(1)

1

ni
(1− 1

n)n−i(1−pn)+muti→1
pn
n

.

From Eq.2, we know that the expected running time for without noise and with
one-bit noise is 1 + E′(i) and 1 + 2E(i), respectively. To prove that one-bit noise can
be helpful, we need to show that there exists i ≥ 1 such that 2E(i) < E′(i). Obviously,
i = 1 is impossible because E(1) > E′(1). Then, for larger i with i > 1+pn

pn(1− 1
n)

,

(
2E(i)− E′(i)

)
·

(
1

ni

(
1− 1

n

)n−i
(1− pn) +muti→1

pn
n

)

= 1 + pn −muti→1
pn
n

(
ni
(

n

n− 1

)n−i
− 2E(1)

)

≤ 1 + pn −
i

ni−1

(
1− 1

n

)n−i+1
pn
n
ni
(

n

n− 1

)n−i
= 1 + pn − ipn

(
1− 1

n

)
< 0,

where the 1st inequality is becausemuti→1 ≥ i
ni−1 (1− 1

n)n−i+1 and E(1)� ni(n
n−1)n−i

for large enough n and pn being constant, and the last inequality is by i > 1+pn
pn(1− 1

n)
.

This is equivalent to 2E(i)−E′(i) < 0, which implies that noise is helpful when starting
from an initial solution x with |x|0 > 1+pn

pn(1− 1
n)

.

This theorem implies that the Peak problem becomes easier under noise when
starting from an initial solution x with a large number of 0 bits. From the analysis,
we can see that the reason of requiring a large |x|0 is to make muti→1 much larger
than muti→0, which makes that the negative effect of rejecting the optimal solution
by noise can be compensated by the positive effect of accepting the solution x with
|x|0 = 1.

For the (1+1)-EA solving the Peak problem, any offspring solution will be ac-
cepted because its fitness is always not less than the fitness of the parent solution;
thus the solution x in the evolutionary process almost performs a random walk over
{0, 1}n. In this case, we can intuitively find a similar effect of one-bit noise as that
found in the (1+1)-EA∗ solving the Peak problem. Here, we assume that the single-
evaluation strategy is used. Under one-bit noise, for any non-optimal parent solu-
tion x, if |x|0 ≥ 2, then fN (x) = 0 and any offspring will be accepted; if |x|0 = 1
and fN (x) = 0, then any offspring will be accepted; if |x|0 = 1 and fN (x) = 1, any
offspring x′ with |x′|0 ≥ 2 will be rejected because fN (x′) = 0 < fN (x), and the
optimal solution with |x′|0 = 0 will be rejected with probability pn. Compared with
the transition behavior without noise, noise only has an effect when |x|0 = 1 and
fN (x) = 1: the negative effect of rejecting the optimal solution, which has the prob-
ability 1

n (1 − 1
n)n−1pn, and the positive effect of rejecting |x′|0 ≥ 2, which has the

probability at least n−1
n (1− 1

n)n−1. Obviously, the negative effect can be compensated
by the positive effect, which implies that one-bit noise is helpful. Thus, we have the
following conjecture. The rigorous analysis is not easy, and we leave it as a future
work. We will instead verify it in the experiment section.

Conjecture 1. One-bit noise makes the Peak problem easier for the (1+1)-EA with mu-
tation probability 1

n .

4 On the Effect of Noise Handling Strategies

In the previous section, we have studied the effect of the noise, and found that noise
can also make optimization easier for EAs, when the problem presents some decep-

16 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

tiveness and flatness. Meanwhile, on some other problems noisy fitness evaluation
can make an optimization harder for EAs. For example, Droste (2004) proved that the
running time of the (1+1)-EA on the OneMax problem can increase from polynomial
to exponential due to the presence of noise. Thus, in this section, we will investigate
how well different noise handling strategies can perform when the noise is indeed
harmful.

4.1 A Noise-Harmful Case

We consider the case that the (1+λ)-EA is used for optimizing the OneMax problem.
Let {ξt}+∞t=0 and {ξ′t}+∞t=0 model the (1+λ)-EA with and without noise for maximizing
OneMax, respectively. It is not hard to see that the EFHT E[[τ ′|ξ′0 = x]] only depends
on |x|0. We denote E2(j) as E[[τ ′|ξ′0 = x]] with |x|0 = j. The order of E2(j) is shown in
Lemma 10.

Lemma 10. For any mutation probability 0 < p < 0.5, it holds that E2(0) < E2(1) <
E2(2) < . . . < E2(n).

Proof. We prove ∀ 0 ≤ j < n : E2(j) < E2(j + 1) inductively on j.

(a) Initialization is to prove E2(0) < E2(1), which holds since E2(1) > 0 = E2(0).

(b) Inductive Hypothesis assumes that

∀ 0 ≤ j < K(K ≤ n− 1) : E2(j) < E2(j + 1).

Then, we consider j = K. We use the similar analysis method as that in the proof of
Lemma 7 to compare E2(K + 1) with E2(K).

For E2(K + 1), let Pi (0 ≤ i ≤ n) be the probability that the least number of 0 bits
for the λ offspring solutions is i (i.e., Pi = P (min{a1, . . . , aλ} = i)). By considering the
mutation and selection behavior of the (1+λ)-EA on the OneMax problem, we have

E2(K + 1) =
∑K

i=0
PiE2(i) +

∑n

i=K+1
PiE2(K + 1).

For E2(K), let Qi = P (min{b1, . . . , bλ} = i). We have

E2(K) =
∑K−1

i=0
QiE2(i) +

∑n

i=K
QiE2(K).

By subtracting E2(K) from E2(K + 1), we can get

E2(K + 1)− E2(K) =
∑n

i=K+1
Pi
(
E2(K + 1)− E2(K)

)
+(∑K−1

i=0
PiE2(i) +

∑n

i=K
PiE2(K)−

∑K−1

i=0
QiE2(i)−

∑n

i=K
QiE2(K)

)
>
∑n

i=K+1
Pi
(
E2(K + 1)− E2(K)

)
,

where the inequality is by applying Lemma 9 to the formula in
(
·
)

. The three con-
ditions of Lemma 9 can be easily verified, because E2(0) < E2(1) < . . . < E2(K) by
inductive hypothesis;

∑n
i=0 Pi =

∑n
i=0Qi = 1; and the following inequality holds.∑j

i=0
Qi −

∑j

i=0
Pi = P (min{b1, . . . , bλ} ≤ j)− P (min{a1, . . . , aλ} ≤ j)

= P (b1 ≤ j ∨ . . . ∨ bλ ≤ j)− P (a1 ≤ j ∨ . . . ∨ aλ ≤ j)

Evolutionary Computation Volume x, Number x 17

C. Qian, Y. Yu, and Z.-H. Zhou

= 1− (1− qj)λ −
(
1− (1− pj)λ

)
> 0. (by pj < qj)

Because
∑n
i=K+1 Pi < 1, we have E2(K + 1) > E2(K).

(c) Conclusion: According to (a) and (b), the lemma holds.

Theorem 4. Any noise makes the OneMax problem harder for the (1+λ)-EA with mu-
tation probability less than 0.5.

Proof. We use Lemma 5 to prove it. By Lemma 10, the EFHT-Partition of {ξ′t}+∞t=0 is
Xi = {x ∈ {0, 1}n | |x|0 = i} (0 ≤ i ≤ n).

For any non-optimal solution x ∈ Xk (k > 0), we denote P (j) (0 ≤ j ≤ n) as the
probability that the least number of 0 bits for the λ offspring solutions generated by
bit-wise mutation on x is j. For {ξ′t}+∞t=0 , because the solution with the least number of
0 bits among the parent solution and λ offspring solutions will be accepted, we have

∀ 0 ≤ j ≤ k − 1 : P tξ′(x,Xj) = P (j); P tξ′(x,Xk) =
∑n

j=k
P (j).

For {ξt}+∞t=0 , due to the fitness evaluation disturbed by noise, the solution with the
least number of 0 bits among the parent and λ offspring solutions may be rejected.
Thus, we have

0 ≤ i ≤ k − 1 :
∑i

j=0
P tξ (x,Xj) ≤

∑i

j=0
P (j).

Then, we get

∀ 0 ≤ i ≤ n− 1 :
∑i

j=0
P tξ (x,Xj) ≤

∑i

j=0
P tξ′(x,Xj),

which implies that the condition Eq.3 of Lemma 5 holds. Thus, we can get ∀x ∈ X ,
E[[τ |ξ0 = x]] ≥ E[[τ ′|ξ′0 = x]], i.e., noise makes the OneMax problem harder for the
(1+λ)-EA.

In the following subsections, we will analyze the effect of different noise handling
strategies for the (1+1)-EA (a specific case of the (1+λ)-EA) optimizing the OneMax
problem to investigate their usefulness.

4.2 On Re-evaluation and Threshold Selection Strategies

4.2.1 Re-evaluation
There are naturally two fitness evaluation options for EAs (Arnold and Beyer, 2002; Jin
and Branke, 2005; Goh and Tan, 2007):

• single-evaluation: we evaluate a solution once, and use the evaluated fitness for
this solution in the future.

• re-evaluation: every time we access the fitness of a solution by evaluation.

For example, for the (1+1)-EA in Algorithm 1, if using re-evaluation, both f(x′) and
f(x) will be calculated and recalculated in each iteration; if using single-evaluation,
only f(x′) will be calculated and the previous obtained fitness f(x) will be reused.
Note that the analysis in the previous section without explicitly indicating the em-
ployed evaluation strategy assumes single-evaluation.

In (Sudholt and Thyssen, 2012), for an ACO with single-evaluation solving
stochastic shortest path problems, an example graph was constructed to show that

18 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

exponential running time is required for approximating real shortest paths. The diffi-
culty is because once a path is luckily evaluated to have a relatively small length due to
noise, it will always be preferred and make the ACO get stuck in an inferior solution.
By using re-evaluation instead of single-evaluation when evaluating the best-so-far
path, the ACO can easily solve the example graph (Doerr et al., 2012a). Re-evaluation
has also been employed for EAs solving noisy multi-objective optimization problems,
e.g., in (Buche et al., 2002; Park and Ryu, 2011; Fieldsend and Everson, 2015).

Intuitively, re-evaluation can smooth noise and thus could be better for noisy
optimizations, but it also increases the fitness evaluation cost and thus increases the
running time. Its usefulness was not yet clear.

In this subsection, we compare these two options for the (1+1)-EA solving the
OneMax problem under one-bit noise to show whether re-evaluation is useful. Note
that for one-bit noise, pn controls the noise strength, that is, noise becomes stronger
as pn gets larger, and it is also the parameter of the PNT. In the following analysis, let
poly(n) indicate any polynomial of n.

Theorem 5. For the (1+1)-EA with mutation probability 1
n solving the OneMax prob-

lem under one-bit noise, if using single-evaluation, the PNT is [0, 1− 1/Θ(poly(n))].

The theorem is straightforwardly derived from the following two lemmas.
(1) Lemma 11 tells us the expected running time upper bound O(n2 + n/(1 − pn)),
which implies that the expected running time is polynomial if 1

1−pn ∈ O(poly(n)), i.e.,

pn ∈ 1− 1
O(poly(n)) .

(2) Lemma 12 tells us the lower bound Ω(n log n+pn/(1−pn)), which implies that the
running time is super-polynomial if 1

1−pn ∈ w(poly(n)), i.e., pn ∈ 1− 1
w(poly(n)) .

By combining (1) with (2), we can get that the maximum noise strength allowing poly-
nomial expected running time is 1− 1

Θ(poly(n)) , i.e., the PNT is [0, 1− 1/Θ(poly(n))].

Lemma 11. For the (1+1)-EA using single-evaluation with mutation probability 1
n on

the OneMax problem under one-bit noise, the expected running time is upper bounded
by O(n2 + n/(1− pn)).

Proof. Let L denote the noisy fitness value fN (x) of the current solution x. Because
the (1+1)-EA does not accept a solution with a smaller fitness (i.e., the 4th step of
Algorithm 1) and it doesn’t re-evaluate the fitness of the current solution x, L (0 ≤
L ≤ n) will never decrease. By applying the fitness-level technique (Wegener, 2002;
Sudholt, 2013), we first analyze the expected steps until L increases when starting
fromL = i (denoted by E[[i]]), and then sum them up to get an upper bound

∑n−1
i=0 E[[i]]

for the expected steps until L reaches the maximum value n. For E[[i]], we analyze the
probability P that L increases in two steps when L = i, then E[[i]] = 2 · 1

P . Note that,
one-bit noise can makeLbe |x|1−1, |x|1 or |x|1+1, where |x|1 =

∑n
i=1 xi is the number

of 1 bits. When analyzing the noisy fitness fN (x′) of the offspring x′ in each step, we
need to first consider bit-wise mutation on x and then one random bit flip for noise.

When 0 < L < n− 1, |x|1 = L− 1, L or L+ 1.
(1) For |x|1 = L− 1, P ≥ n−L+1

n (1− 1
n)n−1pn

n−L
n + n−L+1

n (1− 1
n)n−1(1− pn)n−Ln (1−

1
n)n−1(1−pn), since it is sufficient to flip one 0 bit for mutation and one 0 bit for noise
in the first step, or flip one 0 bit for mutation and no bit for noise in the first step and
flip one 0 bit for mutation and no bit for noise in the second step.
(2) For |x|1 = L, P ≥ (1− 1

n)npn
n−L
n + n−L

n (1− 1
n)n−1(1− pn), since it is sufficient to

flip no bit for mutation and one 0 bit for noise, or flip one 0 bit for mutation and no
bit for noise in the first step.

Evolutionary Computation Volume x, Number x 19

C. Qian, Y. Yu, and Z.-H. Zhou

(3) For |x|1 = L + 1, P ≥ (1 − 1
n)n(1 − pn + pn

n−L−1
n), since it is sufficient to flip no

bit for mutation and no bit or one 0 bit for noise in the first step.
Thus, for these three cases, we have

P ≥ pn
(

1− 1

n

)n−1
n− L
n

n− L− 1

n
+

(
1− 1

n

)2(n−1)

(1− pn)2n− L
n

n− L− 1

n

≥ 3(n− L)(n− L− 1)

4e2n2
. (by

(
1− 1

n

)n−1

≥ 1

e
and 0 ≤ pn ≤ 1)

When L = 0, |x|1 = 0 or 1. By considering case (2) and (3), we can get the same
lower bound for P .

When L = n − 1 and the optimal solution 1n has not been found, |x|1 = n − 2 or
n− 1. By considering case (1) and (2), we can get P ≥ 3/(2e2n2).

Based on the above analysis, we get that the expected steps until L = n is at most

n−1∑
i=0

E[[i]] ≤ 2 ·

(
n−2∑
L=0

4e2n2

3(n− L)(n− L− 1)
+

2e2n2

3

)
∈ O(n2).

When L = n, |x|1 = n− 1 or n. |x|1 = nmeans that the optimal solution has been
found. Because we are to get an upper bound for the expected running time of finding
1n, we can pessimistically assume that |x|1 = n−1. Starting from |x|1 = n−1 andL = n
(i.e., the current solution has n− 1 one bits and the fitness is n), it will always keep in
such a situation before finding 1n, and the optimal solution 1n can be generated and
accepted in one step only through flipping the unique 0 bit for mutation and no bit
for noise, which happens with probability 1

n (1− 1
n)n−1(1− pn) ≥ (1−pn)

en . This implies
that the expected steps for finding the optimal solution is at most en

(1−pn) .

Thus, the total expected running time is upper bounded by O(n2 + n
1−pn).

Lemma 12. For the (1+1)-EA using single-evaluation with mutation probability 1
n on

the OneMax problem under one-bit noise, the expected running time is lower bounded
by Ω(n log n+ pn/(1− pn)).

Proof. Assume that the number of 1 bits of the initial solution x is less than n− 1, i.e.,
|x|1 < n − 1. Let T denote the running time of finding the optimal solution 1n when
starting from x. Denote A as the event that in the evolutionary process, any solution
x′ with |x′|1 = n− 1 is never found. By the law of total expectation, we have

E[[T]] = E[[T |A]] · P (A) + E[[T |Ā]] · P (Ā).

We are first to show thatP (Ā) ≥ P (A). Let l : x = x1 → x2 → . . .→ xm−1 → xm =
1n denote an evolutionary path from x to the optimal solution 1n, which satisfies that
∀i < m, |xi|1 ≤ n− 2. Then, P (A) is the sum of the probabilities of all possible such l.
For any such l, there must exist a corresponding set of paths S(l) = {x1 → x2 → . . .→
xm−1 → ym → . . . → 1n | |ym|1 = n − 1}, in which the first m − 1 solutions of any
path are the same as that of l and the m-th solution has n− 1 number of one bits. Let
q denote the probability of the sub-path x1 → · · · → xm−1, and let |xm−1|1 = n − j ≤
n− 2. Then, P (l) = q · 1

nj (1− 1
n)n−j . The probability of mutating from xm−1 to ym is at

least j
nj−1 (1 − 1

n)n−j+1, and the acceptance probability of ym is at least 1 − pn + pn
1
n ,

which is reached when |xm−1|1 = n− 2 and fN (xm−1) = n− 1. Thus, we have

P (S(l)) ≥ q · j

nj−1

(
1− 1

n

)n−j+1

·
(

1− pn +
pn
n

)
≥ q · j

nj−1

(
1− 1

n

)n−j+1

· 1

n
≥ P (l).

20 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Moreover, for any two different paths l1, l2, it must hold that S(l1) ∩ S(l2) = ∅. Thus,
P (Ā) ≥ P (A). Because P (Ā) + P (A) = 1, we can get P (Ā) ≥ 1/2. Then,

E[[T]] ≥ E[[T |Ā]] · P (Ā) ≥ 1

2
E[[T |Ā]].

We are then to derive a lower bound on E[[T |Ā]]. We further divide the running
time T into two parts: the running time until finding a solution x′ with |x′|1 = n−1 for
the first time (denoted by T1), and the remaining running time for finding the optimal
solution (denoted by T2). Thus, we have

E[[T |Ā]] = E[[T1|Ā]] + E[[T2|Ā]].

For E[[T2|Ā]], when finding a solution x′ with |x′|1 = n−1 for the first time, we consider
the case that the fitness is evaluated as n, which happens with probability pn 1

n . If
it happens, due to the single-evaluation strategy, the solution will always have n −
1 number of 1 bits and its fitness will always be n. From the upper bound analysis
in Lemma 11, we know that the probability of generating and accepting the optimal
solution in one step in such a situation is 1

n (1− 1
n)n−1(1− pn) ≤ (1−pn)

n . Thus,

E[[T2|Ā]] ≥ pn
1

n
· n

1− pn
=

pn
1− pn

,

which implies that E[[T |Ā]] ≥ pn
(1−pn) , and thus E[[T]] ≥ pn

2(1−pn) .
Because the initial solution is uniformly distributed over {0, 1}n, we have

P (|x|1 < n − 1) = 1 − n+1
2n . Thus, the expected running time of the whole process

is lower bounded by (1− n+1
2n) · pn

2(1−pn) , i.e., Ω(pn
1−pn).

Note that when 1 − pn ∈ Ω(1), the derived lower bound Ω(pn
1−pn) would be quite

loose. Thus, for filling up this gap, we are to derive another lower bound which does
not depend on pn. From Lemma 10 in (Droste et al., 2002), we know that the ex-
pected running time of the (1+1)-EA to optimize linear functions with positive weights
is Ω(n log n). Their proof idea is to analyze the expected running time until all the 0
bits of the initial solution have been flipped at least once, which is obviously a lower
bound on the expected running time of finding the optimal solution 1n. Because
noise will not affect this analysis process, we can directly apply their result to our
setting, and then get the lower bound Ω(n log n).

By combining the derived two lower bounds, we can get that the expected run-
ning time of the whole process is lower bounded by Ω(n log n+ pn/(1− pn)).

We then show the PNT using re-evaluation in the following theorem, which can
be straightforwardly derived from Lemma 13 (Droste, 2004).

Theorem 6. For the (1+1)-EA with mutation probability 1
n solving the OneMax prob-

lem under one-bit noise, if using re-evaluation, the PNT is [0,Θ(log(n)
n)].

Lemma 13 ((Droste, 2004)). For the (1+1)-EA using re-evaluation with mutation prob-
ability 1

n on the OneMax problem under one-bit noise, the expected running time is
polynomial when pn ∈ O(log(n)/n), and super-polynomial when pn ∈ ω(log(n)/n).

4.2.2 Threshold Selection
During the process of evolutionary optimization, most of the improvements in one
generation are small. When using re-evaluation, due to noisy fitness evaluation, a

Evolutionary Computation Volume x, Number x 21

C. Qian, Y. Yu, and Z.-H. Zhou

considerable portion of these improvements are not real, where a worse solution ap-
pears to have a “better” fitness and then survives to replace the true better solution
which has a “worse” fitness. This may mislead the search direction of EAs, and then
slow down the efficiency of EAs or make EAs get trapped in the local optimal solution,
as observed in Section 4.2.1. To deal with this problem, a selection strategy for EAs
handling noise was proposed (Markon et al., 2001; Bartz-Beielstein, 2005a).

• threshold selection: an offspring solution will be accepted only if its fitness is
larger than the parent solution by at least a predefined threshold τ ≥ 0.

For example, for the (1+1)-EA with threshold selection as in Algorithm 3, its 4th step
changes to be “if f(x′) ≥ f(x) + τ” rather than “if f(x′) ≥ f(x)” in Algorithm 1. Such
a strategy can reduce the risk of accepting a bad solution due to noise. Although the
good local performance (i.e., the progress of one step) of EAs with threshold selection
has been shown on some problems (Markon et al., 2001; Bartz-Beielstein and Markon,
2002; Bartz-Beielstein, 2005b), its usefulness for the global performance (i.e., the run-
ning time until finding the optimal solution) of EAs under noise is not yet clear.

Algorithm 3 ((1+1)-EA with threshold selection). Given pseudo-Boolean function f
with solution length n, and a threshold τ ≥ 0, it consists of the following steps:

1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x independently with probability p.
4. if f(x′) ≥ f(x) + τ
5. x := x′.

where p ∈ (0, 0.5) is the mutation probability.

In this subsection, we analyze the running time of the (1+1)-EA with threshold se-
lection solving OneMax under one-bit noise to see whether threshold selection is use-
ful. Note that the analysis here assumes re-evaluation. This is because using single-
evaluation and threshold selection simultaneously will lead to infinite expected run-
ning time for any noise strength pn > 0, as shown in the following theorem.

Theorem 7. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under one-bit noise, if using single-evaluation with threshold selection τ > 0, the PNT
is {0}.

Proof. For the noise strength pn > 0, it is easy to see that in the evolutionary process,
there exists some positive probability that a solution x with |x|1 = n − 1 is found and
its fitness is evaluated as n. Once it happens, it will always keep in such a situation,
because the fitness of the parent solution will never be re-evaluated; the fitness of the
offspring solution is at most n; and then any offspring solution will be rejected by the
threshold selection strategy. This implies that the optimal solution 1n will never be
found. Thus, the expected running time is infinite for pn > 0.

For pn = 0 (i.e., without noise), it is easy to see that in the evolution process, the
number of 1 bits i of the solution will never decrease. When using threshold selection
τ = 1, i can increase in one step with probability at least n−in (1 − 1

n)n−1 ≥ n−i
en , since

it is sufficient to flip one 0 bit and keep other bits unchanged. Thus, by using the
fitness-level method (Wegener, 2002; Sudholt, 2013), the expected running time is at
most

∑n−1
i=0

en
n−i , i.e., O(n log n).

Then, we are to analyze the PNT of the (1+1)-EA using re-evaluation and thresh-
old selection on the OneMax problem for different threshold values τ . Note that the
minimal fitness gap for the OneMax problem is 1. Thus, we first analyze τ = 1.

22 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Theorem 8. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under one-bit noise, if using re-evaluation with threshold selection τ = 1, the PNT is
[0, 1].

The theorem can be directly derived from the following lemma, which implies
the expected running time upper bound O(n log n) for pn ≤ 1/(

√
2e) and O(n2 log n)

for pn > 1/(
√

2e).

Lemma 14. For the (1+1)-EA using re-evaluation with threshold selection τ = 1 and
mutation probability 1

n on the OneMax problem under one-bit noise, the expected
running time is upper bounded by O(n2 log n/p2

n) when pn ∈ [0, 1], and specifically
O(n log n) when pn ≤ 1√

2e
.

Proof. We use additive drift analysis (i.e., Lemma 3) to prove it. Let Hi =
∑i
j=1

1
j

denote the i-th harmonic number, and H0 = 0. We first construct a distance function
V (x) as ∀x ∈ X = {0, 1}n, V (x) = H|x|0 , where |x|0 = n −

∑n
i=1 xi is the number of 0

bits of the solution x. It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0.
Then, we investigate E[[V (ξt) − V (ξt+1)|ξt = x]] for any x with V (x) > 0 (i.e.,

x /∈ X ∗). We denote the number of 0 bits of the current solution x by i (1 ≤ i ≤ n). Let
pi,i+d be the probability that the next solution after bit-wise mutation and selection
has i+ d (−i ≤ d ≤ n− i) number of 0 bits. We then have

E[[V (ξt)− V (ξt+1)|ξt = x]] = Hi −
∑n−i

d=−i
pi,i+d ·Hi+d. (10)

Then, we analyze pi,i+d for 1 ≤ i ≤ n. Let Pd denote the probability that the
offspring solution x′ by bit-wise mutation on x has i + d (−i ≤ d ≤ n − i) number of
0 bits. Note that one-bit noise can change the true fitness of a solution by at most 1,
i.e., |fN (x)− f(x)| ≤ 1.
(1) When d ≥ 2, fN (x′) ≤ n − i − d + 1 ≤ n − i − 1 ≤ fN (x). Because an offspring
solution will be accepted only if fN (x′) ≥ fN (x) + 1, the offspring x′ will be discarded
in this case, which implies that ∀d ≥ 2 : pi,i+d = 0.
(2) When d = 1, the offspring solution x′ will be accepted only if fN (x′) = n − i ∧
fN (x) = n − i − 1, the probability of which is pn i+1

n · pn
n−i
n , since it needs to flip one

0 bit of x′ and flip one 1 bit of x. Thus, pi,i+1 = P1 · (pn i+1
n pn

n−i
n).

(3) When d = −1, if fN (x) = n− i− 1, the probability of which is pn n−in , the offspring
solution x′ will be accepted, since fN (x′) ≥ n− i+ 1− 1 = n− i > fN (x); if fN (x) =
n − i ∧ fN (x′) ≥ n − i + 1, the probability of which is (1 − pn) · (1 − pn + pn

i−1
n), x′

will be accepted; if fN (x) = n − i + 1 ∧ fN (x′) = n − i + 2, the probability of which
is pn in · pn

i−1
n , x′ will be accepted; otherwise, x′ will be discarded. Thus, pi,i−1 =

P−1 · (pn n−in + (1− pn)(1− pn + pn
i−1
n) + pn

i
npn

i−1
n).

(4) When d ≤ −2, it is easy to see that pi,i+d > 0.
By applying these probabilities to Eq.10, we have

E[[V (ξt)− V (ξt+1)|ξt = x]] (11)

≥ Hi − pi,i−1Hi−1 − pi,i+1Hi+1 − (1− pi,i−1 − pi,i+1)Hi

= pi,i−1 ·
1

i
− pi,i+1 ·

1

i+ 1

≥ P−1

(
pn
n− i
n

+ p2
n

i(i− 1)

n2

)
1

i
− P1p

2
n

(i+ 1)(n− i)
n2

1

i+ 1
.

Evolutionary Computation Volume x, Number x 23

C. Qian, Y. Yu, and Z.-H. Zhou

We then bound the two mutation probabilities P−1 and P1. For decreasing the num-
ber of 0 bits by 1 in mutation, it is sufficient to flip one 0 bit and keep other bits un-
changed, thus we have P−1 ≥ i

n (1 − 1
n)n−1. For increasing the number of 0 bits by 1,

it needs to flip one more 1 bit than the number of 0 bits it flips, thus we have

P1 =

min{n−i,i+1}∑
k=1

(
n− i
k

)(
i

k − 1

)
1

n2k−1

(
1− 1

n

)n−2k+1

≤ n− i
n

(
1− 1

n

)n−1

+

min{n−i,i+1}∑
k=2

1

k!(k − 1)!

(n− i)k

nk
ik−1

nk−1

(
1− 1

n

)n−2k+1

≤ n− i
n

(
1− 1

n

)n−1

+
i

n
·

min{n−i,i+1}∑
k=2

1

k!(k − 1)!

(
1− 1

n

)n−1

≤ n− i
n

(
1− 1

n

)n−1

+
i

n
·

+∞∑
k=2

1

k!

(
1− 1

n

)n−1

=
n− i
n

(
1− 1

n

)n−1

+ (e− 2)
i

n

(
1− 1

n

)n−1

.

By applying these two bounds of P−1 and P1 to Eq.11, we can have

E[[V (ξt)− V (ξt+1)|ξt = x]] ≥ 1

n

(
1− 1

n

)n−1

p2
n

(
n− i
n

+
i(i− 1)

n2

)
−
(
n− i
n

+ (e− 2)
i

n

)(
1− 1

n

)n−1

p2
n

n− i
n2

≥ (3− e) i
n2

(
1− 1

n

)n
p2
n

≥ 3− e
2e

p2
n

n2
. (by i ≥ 1 and

(
1− 1

n

)n

≥ 1

2e
)

Thus, by Lemma 3, we get, noting that V (x) ≤ Hn < 1 + log n,

E[[τ |ξ0]] ≤ 2e

3− e
n2

p2
n

V (ξ0) ∈ O
(
n2 log n

p2
n

)
,

i.e., the expected running time of the (1+1)-EA with τ = 1 on the OneMax problem is
upper bounded by O(n2 log n/p2

n).
For pn ≤ 1√

2e
, we can derive a tighter upper bound O(n log n) by applying proper

bounds of the two probabilities pi,i−1 and pi,i+1 to Eq.11. From cases (3) and (2) in the
analysis of pi,i+d, we have

pi,i−1 ≥ P−1(1− pn)2 ≥ i

n

(
1− 1

n

)n−1

(1− pn)2;

pi,i+1 = P1p
2
n

(i+ 1)(n− i)
n2

≤ (i+ 1)(n− i)2

n3
p2
n,

where the last inequality is by P1 ≤ n−i
n since it is necessary to flip at least one 1 bit.

24 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Then, Eq.11 becomes

E[[V (ξt)− V (ξt+1)|ξt = x]] ≥ 1

n

(
1− 1

n

)n−1

(1− pn)2 − (n− i)2

n3
p2
n

≥ 1

n

(
1

e
(1− pn)2 − p2

n

)
> 0.13 · 1

n
,

where the last inequality is because 1
e (1− pn)2 − p2

n decreases with pn for pn ≤ 1√
2e

.
Thus, by Lemma 3, we have

E[[τ |ξ0]] ≤ n

0.13
V (ξ0) ∈ O(n log n),

i.e., the expected running time of the (1+1)-EA with τ = 1 on the OneMax problem is
upper bounded by O(n log n) for pn ≤ 1√

2e
.

Then, we analyze the effect of a relatively large threshold value τ = 2 on the PNT.

Theorem 9. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under one-bit noise, if using re-evaluation with threshold selection τ = 2, the PNT is
[1/Θ(poly(n)), 1− 1/Θ(poly(n))].

The theorem can be directly derived from the following two lemmas.

Lemma 15. For the (1+1)-EA using re-evaluation with threshold selection τ = 2 and
mutation probability 1

n on the OneMax problem under one-bit noise, the expected run-
ning time is upper bounded by O(n log n/(pn(1− pn))).

Proof. Let i (0 ≤ i ≤ n) denote the number of 0 bits of the current solution x. Here, an
offspring x′ will be accepted only if fN (x′)− fN (x) ≥ 2. As in the proof of Lemma 14,
we can derive ∀d ≥ 1 : pi,i+d = 0; ∀d ≥ 2 : pi,i−d > 0;

pi,i−1 = P−1

(
pn
n− i
n

(
1− pn + pn

i− 1

n

)
+ (1− pn)

(
pn
i− 1

n

))
.

Thus, i never increases, and it decreases in one step with probability at least

pi,i−1 ≥
i

n

(
1− 1

n

)n−1(
(1− pn)pn

(
1− 1

n

)
+ p2

n

(n− i)(i− 1)

n2

)
≥ 1

2e
(1− pn)pn

i

n
.

Then, the expected steps until i = 0 (i.e., the optimal solution is found) is at most∑n

i=1

2en

i(1− pn)pn
∈ O

(
n log n

pn(1− pn)

)
.

Lemma 16. For the (1+1)-EA using re-evaluation with threshold selection τ = 2 and
mutation probability 1

n on the OneMax problem under one-bit noise, the expected run-
ning time is lower bounded by Ω(n log n+ n/(pn(1− pn))).

Proof. The proof is very similar to that of Lemma 12 except the calculation of E[[T2|Ā]].
Here we first use a different but simple idea to show that P (Ā) ≥ 1/2. For any evolu-
tionary path with the event A happening, it has to flip at least two bits in the last step

Evolutionary Computation Volume x, Number x 25

C. Qian, Y. Yu, and Z.-H. Zhou

for finding the optimal solution, because any solution x′ with |x′|1 = n − 1 is never
found. Thus, P (A) ≤

(
n
2

)
1
n2 ≤ 1

2 . Since P (Ā) + P (A) = 1, we have P (Ā) ≥ 1/2.
Then, we analyze E[[T2|Ā]], which is the expected running time for finding the

optimal solution when starting from a solution xwith |x|1 = n−1 (i.e., |x|0 = 1). From
the upper bound analysis in the proof of Lemma 15, we know that once a solution x
with |x|0 = 1 is found, it will always satisfy |x|0 = 1 before finding the optimal solution,
because ∀d ≥ 1 : pi,i+d = 0. Meanwhile, the optimal solution (i.e., |x|0 = 0) will be
found in one step with probability p1,0 = 1

n (1 − 1
n)n−1pn(1 − pn)(1 − 1

n) ≤ pn(1−pn)
en .

We then have E[[T2|Ā]] ≥ en
pn(1−pn) . Thus, the lemma holds.

For larger threshold values τ > 2, we have:

Theorem 10. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under one-bit noise, if using re-evaluation with threshold selection τ > 2, the PNT is ∅.

Proof. Let i = |x|0 for the current solution x. An offspring solution x′ will be accepted
only if fN (x′)− fN (x) ≥ τ > 2. Then, we can have

∀d ≥ 1 : pi,i+d = 0; pi,i−1 =

{
P−1 ·

(
pn

n−i
n pn

i−1
n

)
, if τ = 3,

0, otherwise.

In the evolutionary process, it is easy to see that there exists some positive probability
that a solution x with |x|0 = 1 is found (i.e., i = 1). Once it happens, i = 1 will always
hold because p1,0 = 0 and p1,1+d = 0 for any d ≥ 1. In such a situation, the optimal
solution 1n will never be found. Thus, the expected running time is infinite for any
pn ∈ [0, 1].

4.3 Smooth Threshold Selection

We have shown that for the (1+1)-EA solving the OneMax problem under one-bit
noise, the re-evaluation with threshold selection τ = 1 can improve the PNT to [0, 1],
which means that the expected running time of the (1+1)-EA is always polynomial re-
gardless of the noise strength. Under asymmetric one-bit noise, we will prove that all
the above strategies are however not effective when the noise probability pn equals 1,
as shown in Theorem 11.

Theorem 11. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under asymmetric one-bit noise, if using threshold selection τ ≥ 0 with either single-
evaluation or re-evaluation, the expected running time is at least exponential for pn=1.

Proof. We analyze the expected running time for each strategy, respectively.
For single-evaluation with threshold selection τ ≥ 0, where single-evaluation

with threshold selection τ = 0 is equivalent to single-evaluation alone, it is easy to
see that there exists some positive probability that a solution x with |x|0 = 1 and
fN (x) = n is found. Because the fitness is not re-evaluated; fN (1n) = n − 1 due to
pn = 1; and fN (x) ≤ n− 1 for x with |x|0 ≥ 2, it will always keep in such a state. Thus,
the expected running time for finding the optimal solution 1n is infinite.

For re-evaluation with threshold selection τ = 0 (i.e., re-evaluation alone), we
use the simplified drift theorem (i.e., Lemma 4) to prove an exponential running time
lower bound. Let Xt be the number of 0 bits of the solution after t iterations of the
(1+1)-EA. We consider the interval [0, n1/4], i.e., the parameters a = 0 (i.e., the global
optimum) and b = n1/4 in Lemma 4. Then, we analyze the drift E[[Xt −Xt+1|Xt = i]]
for 1 ≤ i < n1/4. Let pi,i+d denote the probability that the next solution after bit-wise

26 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

mutation and selection has i+ d (−i ≤ d ≤ n− i) number of 0 bits (i.e., Xt+1 = i+ d).
We thus have

E[[Xt −Xt+1|Xt = i]] =

i∑
d=1

d · pi,i−d −
n−i∑
d=1

d · pi,i+d. (12)

Let Pd denote the probability that the offspring solution generated by bit-wise muta-
tion has i+ d number of 0 bits. Using the same analysis procedure for pi,i+d as in the
proof of Lemma 14, we have, noting that pn = 1 and τ = 0 here,

∀d ≥ 3, pi,i+d = 0; pi,i+2 = P2/4; pi,i+1 = P1/4;

pi,i−1 ≤ 3P−1/4; ∀2 ≤ d ≤ i, pi,i−d = P−d.

Furthermore, P1 ≥ n−i
n (1− 1

n)n−1 ≥ n−i
en , since it is sufficient to flip one 1 bit and keep

other bits unchanged, and P−d ≤
(
i
d

)
1
nd

, since it is necessary to flip at least d number
of 0 bits. By applying these probabilities to Eq.12, we can have

E[[Xt −Xt+1|Xt = i]] ≤ 3P−1

4
+

i∑
d=2

d · P−d −
P1

4

≤ 3i

4n
+

i∑
d=2

d ·
(
i

d

)
1

nd
− n− i

4en
=

i

n

((
1 +

1

n

)i−1

+
1

4e
− 1

4

)
− 1

4e

= − 1

4e
+O

(
n1/4

n

)
. (since i < n1/4)

Thus, E[[Xt −Xt+1|Xt = i]] = −Ω(1), which implies that the condition 1 of Lemma 4
holds. For its condition 2, we need to investigate P (|Xt+1−Xt| ≥ j | Xt ≥ 1). Because
it is necessary to flip at least j bits, we have

P (|Xt+1 −Xt| ≥ j | Xt ≥ 1) ≤
(
n

j

)
1

nj
≤ 1

j!
≤ 2 · 1

2j
,

which implies that the condition 2 of Lemma 4 holds with δ = 1 and r(l) = 2. Note that
l = b − a = n1/4. Thus, by Lemma 4, the probability that the running time is 2O(n1/4)

when starting from a solution x with |x|0 ≥ n1/4 is exponentially small. Due to the
uniform initial distribution, the probability that the initial solution x has |x|0 < n1/4

is exponentially small by Chernoff’s inequality. Thus, the expected running time is
exponential.

For re-evaluation with threshold selection τ = 1, we use the same analysis pro-
cedure as τ = 0. The only difference is the calculation of pi,i+d:

∀d ≥ 2, pi,i+d = 0; pi,i+1 = P1/4;

pi,i−1 ≤ 3P−1/4; pi,i−2 ≤ 3P−2/4; ∀3 ≤ d ≤ i, pi,i−d = P−d.

It is easy to verify that the analysis of the two conditions of Lemma 4 will not be af-
fected. Thus, we derive the same result as τ = 0: the expected running time is expo-
nential.

For re-evaluation with threshold selection τ ≥ 2, we have

∀d ≥ 1, pi,i+d = 0; ∀2 ≤ d ≤ i, pi,i−d > 0.

Evolutionary Computation Volume x, Number x 27

C. Qian, Y. Yu, and Z.-H. Zhou

For pi,i−1, we need to consider two cases:

(1) for i ≥ 2, pi,i−1 = P−1/4; (2) for i = 1, p1,0 = 0.

It is easy to see that there exists some positive probability that a solution xwith |x|0 =
1 is found. For τ ≥ 2, we have ∀d ≥ 1, p1,1+d = 0 and p1,0 = 0. Thus, it will always
keep in such a state (i.e., |x|0 = 1), which implies that the expected running time for
finding the optimal solution 1n is infinite.

Therefore, the re-evaluation with threshold selection is ineffective in this case.
When the threshold τ ≤ 1, it has a too large probability of accepting false progresses,
which leads to a negative drift and thus the exponential running time. When τ ≥ 2,
although the probability of accepting false progresses is 0 (i.e., ∀d ≥ 1, pi,i+d = 0), it
has a too small probability of accepting true progresses (i.e., p1,0 = 0), which leads to
the infinite running time. However, setting τ between 1 and 2 is useless, because the
minimum fitness gap is 1, which makes a value of τ ∈ (1, 2) equivalent to τ = 2.

We propose the smooth threshold selection as in Definition 10, which modifies
the original threshold selection by changing the hard threshold value to a smooth one.
The “smooth” means that the offspring solution will be accepted with some probabil-
ity when the fitness gap between the offspring and the parent is just the threshold. For
example, (1) + (0.1)-smooth threshold selection accepts the offspring solution with
probability 0.9 when the fitness gap is 1; this makes a fractional threshold 1.1 effec-
tive. Such a strategy of accepting new solutions probabilistically based on the fitness
is similar to the acceptance strategy of simulated annealing (Kirkpatrick, 1984). We
are to show that using the smooth threshold selection with proper threshold values
can improve the PNT to [0, 1] in this case.

Definition 10 (Smooth Threshold Selection). Let δ be the gap between the fitness of the
offspring solution x′ and the parent solution x, i.e., δ = f(x′)− f(x). Given a threshold
(A) + (B) with B ∈ [0, 1], the selection process will behave as follows:
(1) if δ < A, x′ will be rejected;
(2) if δ = A, x′ will be accepted with probability 1−B;
(3) if δ > A, x′ will be accepted.

In the following analysis, we will view the evolutionary process as a random walk
on a graph (i.e., Algorithm 4), which has often been used for analyzing random-
ized search heuristics, e.g., in (Giel and Wegener, 2003; Neumann and Witt, 2010).
Lemma 17 gives an upper bound on the expected steps for a random walk to visit
each vertex of a graph at least once.

Algorithm 4 (Random Walk). Given an undirected connected graph G = (V,E) with
vertex set V and edge set E, it consists of the following steps:

1. start at a vertex v ∈ V .
2. Repeat until the termination condition is met
3. choose a neighbor u of v uniformly at random.
4. set v := u.

Lemma 17 ((Aleliunas et al., 1979)). Given an undirected connected graphG = (V,E),
the expected number of steps until each vertex v ∈ V has been visited at least once for a
random walk on G is upper bounded by 2|E|(|V | − 1).

We first analyze a smooth threshold depending on the current search point.

28 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Theorem 12. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under asymmetric one-bit noise, if using re-evaluation with (1) + (1 − |x|02en)-smooth
threshold selection, the PNT is [0, 1].

Proof. Let i (0 ≤ i ≤ n) denote the number of 0 bits of the current solution x. We
first analyze pi,i+d as that analyzed in the proof of Lemma 14. Note that there are two
differences in the analyses, which are caused by different threshold and noise settings,
respectively. Due to the threshold difference, the acceptance probability is different
when the fitness gap between the offspring x′ and the parent solution x is 1: x′ will
be accepted with probability |x|02en here, while it will be always accepted in the proof
of Lemma 14. Due to the noise difference, the probability of flipping a 0 or 1 bit is
different: a random 0 or 1 bit will be flipped with an equal probability of 1

2 here, while
a uniformly randomly chosen bit will be flipped in the proof of Lemma 14.

Thus, we can similarly derive the value of pi,i+d for 1 ≤ i ≤ n − 1. It is easy to
see that ∀d ≥ 2 : pi,i+d = 0, and pi,i−d > 0. For pi,i+1, the offspring solution x′ will be
accepted only if fN (x′) = n− i ∧ fN (x) = n− i− 1, and the acceptance probability is
i

2en . The probability of fN (x′) = n − i is at most pn, since it needs to flip one 0 bit of
x′ in noise; the probability of fN (x) = n − i − 1 is pn 1

2 , since it needs to flip one 1 bit
of x. Thus, pi,i+1 ≤ P1

(
pn

1
2 · pn

)
· i

2en . For pi,i−1, we need to consider two cases:
(1) 2 ≤ i ≤ n − 1. If fN (x) = n − i − 1, the probability of which is pn 1

2 , there are
three cases for the offspring solution x′: if fN (x′) = n − i (the probability is pn 1

2),
the acceptance probability i

2en , since fN (x′) = fN (x) + 1; if fN (x′) = n − i + 1 or
fN (x′) = n − i + 2 (the probability is (1 − pn) + pn

1
2), the acceptance probability 1,

since fN (x′) > fN (x) + 1. If fN (x) = n− i, the probability of which is 1− pn, there are
two cases for the acceptance of x′: if fN (x′) = n − i + 1 (the probability is (1 − pn)),
the acceptance probability is i

2en ; if fN (x′) = n − i + 2 (the probability is pn 1
2), the

acceptance probability is 1. If fN (x) = n − i + 1, the probability of which is pn 1
2 , x′

will be accepted only if fN (x′) = n− i+ 2 (the probability is pn 1
2), and the acceptance

probability is i
2en . Thus, we have

pi,i−1 = P−1

(
pn

1

2

(
pn

1

2
· i

2en
+ (1− pn) + pn

1

2

)
+(1− pn)

(
(1− pn) · i

2en
+ pn

1

2

)
+ pn

1

2
pn

1

2
· i

2en

)
.

(2) i = 1. The analysis is similar to case (1). The only difference is that when the noise
happens, fN (x′) = n − i with probability 1 here since |x′|0 = i − 1 = 0 reaches the
extreme case, while in case (1), fN (x′) = n− i or n− i+ 2 with an equal probability of
1
2 . Note that P−1 = 1

n (1− 1
n)n−1 for i = 1. Thus, we have

p1,0 =
1

n

(
1− 1

n

)n−1

·
(
pn

1

2

(
pn

1

2en
+ (1− pn)

)
+ (1− pn)(1− pn)

1

2en

)
.

Our goal is to reach i = 0 (i.e., the global optimum). Starting from i = 1, i will
reach 0 in one step with probability

p1,0 ≥
1

en
· 1

2en
·
(
p2
n

2
+ (1− pn)2

)
≥ 1

6e2n2
. (by 0 ≤ pn ≤ 1)

Thus, for reaching i = 0, we need to reach i = 1 for O(n2) times in expectation.

Evolutionary Computation Volume x, Number x 29

C. Qian, Y. Yu, and Z.-H. Zhou

Then, we analyze the expected running time until i = 1. In this process, we can
pessimistically assume that i = 0 will never be reached, because our final goal is to
get the running time upper bound for reaching i = 0. For 2 ≤ i ≤ n− 1, we have

pi,i−1

pi,i+1
≥

P−1 · (pn 1
2pn

1
2)

P1 · (pn 1
2pn) · i

2en

≥
i
n (1− 1

n)n−1 · (pn 1
2pn

1
2)

n−i
n · (pn

1
2pn) · i

2en

≥ n

n− i
> 1.

Again, we can pessimistically assume that pi,i−1 = pi,i+1 and ∀d ≥ 2, pi,i−d = 0, be-
cause we are to get the upper bound on the expected running time until i = 1. Then,
we can view the evolutionary process for reaching i = 1 as a random walk on the path
{1, 2, . . . , n − 1, n}. We call a step that jumps to the neighbor state a relevant step.
Thus, by Lemma 17, it needs at most 2(n− 1)2 expected relevant steps to reach i = 1.
Because the probability of a relevant step is at least

pi,i−1 ≥
i

en
· i

2en

(
(1− pn)2 + p2

n

1

2

)
≥ 4

2e2n2
· 1

3
,

the expected running time for a relevant step is O(n2). Then, the expected running
time for reaching i = 1 is O(n4).

Thus, the expected running time of the whole optimization process is O(n6) for
any pn ∈ [0, 1], and then the PNT is [0, 1].

Although we have shown that the (1) + (1− |x|02en)-smooth threshold selection can
improve the PNT to be [0, 1], the threshold value depends on the current search point;
this implies that designing proper thresholds may require problem knowledge, which
might be unrealistic. Thus, we are then to show that a smooth threshold without de-
pendence on the current search point can also be effective. The proof of Theorem 13
is the same as that of Theorem 12, except that the acceptance probability for the fit-
ness gap 1 is 1

2en instead of |x|02en .

Theorem 13. For the (1+1)-EA with mutation probability 1
n on the OneMax problem

under asymmetric one-bit noise, if using re-evaluation with (1) + (1 − 1
2en)-smooth

threshold selection, the PNT is [0, 1].

We draw an intuitive understanding from the proof of Theorem 12 of why the
smooth threshold selection can be better than the original ones. By changing the hard
threshold to be smooth, it can not only make the probability of accepting a false better
solution in one step small enough, i.e., pi,i−1 ≥ pi,i+1, but also make the probability
of producing real progress in one step large enough, i.e., pi,i−1 is not small.

5 Experiments

In this section we will employ experiments to complement the theoretical analyses.
For any given configuration, we will run the EA 1000 times independently. In each
run, we record the number of fitness evaluations until an optimal solution is found.
Then the running time values of the 1000 runs are averaged as the estimation of the
expected running time, called as the estimated ERT.

5.1 On Noise Helpful Cases

We first present the experiment results on the Trap and the Peak problem to verify
Theorems 2 and 3.

• As for Theorem 2, we conduct experiments using the (1+n)-EA, a specific case
of the (1+λ)-EA with n being the dimensionality of the problem, on the Trap problem.

30 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

We estimate the expected running time of the (1+n)-EA starting from the solution x
with |x|0 = i for each i (0 ≤ i ≤ n). Following Theorem 2, we compare the estimated
ERT of the (1+n)-EA without noise, with additive noise and with multiplicative noise,
respectively. For the mutation probability of the (1+n)-EA, we use the common setting
p = 1

n . For additive noise, δ1 = −n and δ2 = n−1, and for multiplicative noise, δ1 = 0.1
and δ2 = 10. The results for n = 5, 6, 7 are plotted in Figure 1. We can observe that the
curves by these two kinds of noise are always under the curve without noise, which
is consistent with our theoretical result. Note that, the three curves meet at the first
point, since the initial solution with |x|0 = 0 is the optimal solution and then ERT = 1.

0 1 2 3 4 5
0

1000

2000

3000

4000

Initial solution

E
st

im
at

ed
 E

R
T

without noise
additive
multiplicative

0 1 2 3 4 5 6
0

1

2

3

4

5

6
x 10

4

Initial solution

E
st

im
at

ed
 E

R
T

without noise
additive
multiplicative

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12
x 10

5

Initial solution

E
st

im
at

ed
 E

R
T

without noise
additive
multiplicative

(a) n = 5 (b) n = 6 (c) n = 7

Figure 1: Estimated ERT comparison for the (1+n)-EA solving the Trap problem with
or without noise.

• As for Theorem 3, we conduct experiments using the (1+1)-EA∗ on the Peak
problem. The one-bit noise is set with pn = 0.5. The results for n = 6, 7, 8 are plotted
in Figure 2. We can observe that the curve with one-bit noise is always under the
curve without noise when |x|0 is large enough, which is consistent with the analysis
result. We also run the (1+1)-EA on the Peak problem, the results of which are shown
in Figure 3. The observation that the curve with noise is always under that without
noise agrees with Conjecture 1.

0 1 2 3 4 5 6
0

1

2

3

4

5
x 10

4

Initial solution

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

0 1 2 3 4 5 6 7
0

2

4

6

8

10
x 10

5

Initial solution

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

0 2 4 6 8
0

0.5

1

1.5

2
x 10

7

Initial solution

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

(a) n = 6 (b) n = 7 (c) n = 8

Figure 2: Estimated ERT comparison for the (1+1)-EA∗ solving the Peak problem with
or without noise.

We have shown that noise can make deceptive and flat problems easier for EAs.
For deceptive problems, it is intuitively because the EA searches along the deceptive
direction while noise can add some randomness to make the EA have some possibility
to run along the right direction; for flat problems, the EA has no guided information
for search while under some situations noise can make the EA have a larger probabil-
ity to run along the right direction than the wrong direction.

Note that, though the Trap and Peak problems are respectively extremely de-
ceptive and flat, in real applications we often encounter optimization problems with
some degree of deceptiveness and flatness. We then test whether the finding on the
extreme cases also holds on other problems. We employ the (1+1)-EA with mutation

Evolutionary Computation Volume x, Number x 31

C. Qian, Y. Yu, and Z.-H. Zhou

0 2 4 6
0

20

40

60

80

100

120

Initial solution

E
s
ti
m

a
te

d
 E

R
T

without noise

one−bit noise

0 2 4 6
0

50

100

150

200

250

Initial solution

E
s
ti
m

a
te

d
 E

R
T

without noise

one−bit noise

0 2 4 6 8
0

100

200

300

400

500

Initial solution

E
s
ti
m

a
te

d
 E

R
T

without noise

one−bit noise

(a) n = 6 (b) n = 7 (c) n = 8

Figure 3: Estimated ERT comparison for the (1+1)-EA solving the Peak problem with
or without noise.

probability 1
n on the minimum spanning tree (MST) problem. Given an undirected

connected graph G = (V,E) on n vertices and m edges, the MST problem is to find a
connected graphG′ = (V,E′ ⊆ E) with the minimal sum of edge weights. As in (Neu-
mann and Wegener, 2007), a solution x is represented by a Boolean string of lengthm,
i.e., x ∈ {0, 1}m, where xi = 1 means that the edge i is selected by x; and the following
fitness function is used for minimization,

f(x) = (c(x)− 1)w2
ub +

(∑m

i=1
xi − n+ 1

)
wub +

∑m

i=1
xiwi,

where c(x) is the number of connected components of the subgraph represented by x,
andwub = n2 ·max{wi | 1 ≤ i ≤ m}. It is easy to see that each non-minimum spanning
tree is local optimal in the Hamming space, thus the MST problem is a multimodal
problem with local deceptiveness.

We conduct experiments to compare the (1+1)-EA without noise and with one-
bit noise (pn = 0.5) on the graphs with the number of edges m ∈ Θ(n), Θ(n

√
n) and

Θ(n2) respectively. Let v1, v2, . . . , vn denote the n nodes.
sparse graph: we use cyclic graph where v1 is connected with vn and v2, vi (1 < i < n)
is connected with vi−1 and vi+1, and vn is connected with vn−1 and v1. Thus, m = n.
moderate graph: we use the graph where vi is connected with vi+1, vi+2, . . . , vi+b

√
nc

for 1 ≤ i ≤ n− b
√
nc. Thus, m = (n− b

√
nc)b
√
nc.

dense graph: we use complete graph where each node is connected with all the other
nodes. Thus, m = n(n− 1)/2.

For each type of graph, and each independent run, the graph is constructed by
setting the weight of each edge be an integer randomly selected from [1, n]. The ex-
periment results are plotted in Figure 4. We can observe that the curves with one-bit
noise can appear under the curves without noise, which supports our finding that
noise can make problems easier for EAs.

We have derived that in the deceptive and the flat cases noise can make the prob-
lem easier for EAs. Noticing that the deceptiveness and the flatness are two factors
that can block the search of EAs, we hypothesize that the negative effect by noise de-
creases as the problem hardness increases, and noise will bring a positive effect when
the problem is quite hard. The effect of noise can be measured by the estimated ERT
gap,

gap = (E[[τ]]− E[[τ ′]])/E[[τ ′]],

where E[[τ]] and E[[τ ′]] denote the expected running time of the EA optimizing the
problem with and without noise, respectively. Note that the noise is harmful if the
gap is positive, and is helpful if the gap is negative.

32 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

10 20 30 40
0

1000

2000

3000

4000

The number of nodes

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5
x 10

4

The number of nodes

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

5 10 15
0

1

2

3

4

5

6
x 10

4

The number of nodes

E
st

im
at

ed
 E

R
T

without noise
one−bit noise

(a) sparse graph (b) moderate graph (c) dense graph
Figure 4: Estimated ERT comparison for the (1+1)-EA solving the MST problem with
or without noise.

Definition 11 (Jumpm,n Problem). Jumpm,n Problem of size n with 1 ≤ m ≤ n is to
find an n bits binary string x∗ such that

x∗ = arg maxx∈{0,1}n

(
Jumpm,n(x) =

{
m+

∑n
i=1 xi if

∑n
i=1 xi ≤ n−m or = n

n−
∑n
i=1 xi otherwise

)
.

To verify our hypothesis, we test the (1+1)-EA with mutation probability 1
n on the

Jumpm,n problem as in Definition 11, as well as the MST problem.
• The Jumpm,n problem has an adjustable difficulty and can be configured as

the OneMax problem when m = 1 and the Trap problem when m = n. It is known
that the expected running time of the (1+1)-EA on the Jumpm,n problem is Θ(nm +
n log n) (Droste et al., 2002), which implies that the Jumpm,n problem with larger value
of m is harder. In the experiment, we set n = 10, and for noise, we use the additive
noise with δ1 = −0.5n ∧ δ2 = 0.5n, the multiplicative noise with δ1 = 1 ∧ δ2 = 2, and
the one-bit noise with pn = 0.5, respectively. The experiment results on gap values are
plotted in Figure 5. We can have a clear observation that the gap values for largerm are
lower (i.e., the negative effect by noise decreases as the problem hardness increases).

0 2 4 6 8 10
0

2

4

6

8

10

Initial solution

E
st

im
at

ed
 g

ap

m=1
m=2
m=3

m=4
m=5

0 2 4 6 8 10
0

1

2

3

4

Initial solution

E
st

im
at

ed
 g

ap

m=1
m=2
m=3

m=4
m=5

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

Initial solution

E
st

im
a

te
d

 g
a

p

m=1
m=2
m=3

m=4
m=5

(a) additive noise (b) multiplicative noise (c) one-bit noise
Figure 5: Estimated ERT gap for the (1+1)-EA solving the Jumpm,10 problem with or
without noise.

• The MST problem with sparse, moderate and dense graphs are tested. The
expected running time of the (1+1)-EA on the MST problem has been proven to be
O(m2(log n+ logwmax)) (Neumann and Wegener, 2007; Doerr et al., 2012b). With the
assumption that this theoretical upper bound is tight, the hardness order of the three
types of graphs is “sparse”< “moderate”< “dense”. The results are plotted in Figure 6.
We can observe that the height order of the curves is “sparse”> “moderate”> “dense”,
which is consistent with our hypothesis.

Experiments on both the artificial Jumpm,n problem and the combinatorial MST

Evolutionary Computation Volume x, Number x 33

C. Qian, Y. Yu, and Z.-H. Zhou

5 10 15
−0.2

−0.1

0

0.1

0.2

The number of nodes

E
st

im
at

ed
 g

ap

sparse
middle
dense

Figure 6: Estimated ERT gap for the (1+1)-EA solving the MST problem with or without
one-bit noise.

problem reveal the same trend that the effect of the noise can be related to the hard-
ness of the problem to the EA. When the problem is hard, the noise can be helpful to
the EA, and thus the noise handling is not necessary.

5.2 On Noise Harmful Cases

We first verify the theoretical result that any noise will do harm to the OneMax prob-
lem. The experiment setting is the same as that for the (1+λ)-EA on the Trap problem
in Section 5.1. The results for n = 10, 20, 30 are plotted in Figure 7. We can observe
that the curve by any noise is always above the curve without noise, which is consis-
tent with our theoretical result.

0 2 4 6 8 10
0

200

400

600

800

1000

Initial solution

E
st

im
a

te
d

 E
R

T

without noise
additive
multiplicative

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

Initial solution

E
st

im
a

te
d

 E
R

T

without noise
additive
multiplicative

0 5 10 15 20 25 30
0

5000

10000

15000

Initial solution

E
st

im
a

te
d

 E
R

T

without noise
additive
multiplicative

(a) n = 10 (b) n = 20 (c) n = 30

Figure 7: Estimated ERT comparison for the (1+n)-EA on the OneMax problem with
or without noise.

The smooth threshold selection allows us to choose a fractional threshold, and
through the running time analysis on the OneMax problem, we have shown that the
fractional threshold is essential for the EA to keep efficient with the noise. We then run
the (1+1)-EA with mutation probability 1

n on the OneMax problem under asymmetric
one-bit noise. For the noise strength, we set pn to be the maximum value 1. We test
the smooth threshold values (A) + (B) with A = 0, 1 and B = 0, 0.1, . . . , 0.9, 1, which
correspond to the threshold value set {0, 0.1, 0.2, . . . , 2} on the x-axis. The results are
plotted in Figure 8. Note that, x = 0 corresponds to the re-evaluation strategy, and
x = 1, 2 corresponds to the original threshold selection with τ = x. We can observe
that the curves reach the lowest point when x ≈ 1.9, which corresponds to a smooth
threshold. We have also tested the single-evaluation strategy, and the running time is
empirically shown to be infinite. Thus, these empirical observations agree with our
theoretical analyses.

To verify whether the fractional threshold is also useful in practice, we then carry
out experiments to test the (1+1)-EA with mutation probability 1

n solving the maxi-

34 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

0 0.5 1 1.5 2

0.5

1

1.5

2
x 10

4

Threshold

E
s
ti
m

a
te

d
 E

R
T

0 0.5 1 1.5 2

0.5

1

1.5

2
x 10

5

Threshold

E
s
ti
m

a
te

d
 E

R
T

0 0.5 1 1.5 2

0.5

1

1.5

2
x 10

6

Threshold

E
s
ti
m

a
te

d
 E

R
T

(a) n = 20 (b) n = 30 (c) n = 40

Figure 8: Estimated ERT for the (1+1)-EA with different threshold values solving the
OneMax problem under asymmetric one-bit noise pn = 1.

mum matching problem under one-bit noise. For the noise strength, we set pn = 1.
Given an undirected graphG = (V,E) on n vertices andm edges, a matching is a sub-
set E′ of the edge set E, such that no two edges in E′ share a common vertex. The
maximum matching problem is to find a matching with the largest number of edges.
As in (Giel and Wegener, 2003, 2006), a solution is represented as a Boolean string
x ∈ {0, 1}m, where xi = 1 means that the edge i is selected by x, and the following
fitness function is used for maximization,

f(x) =
∑m

i=1
xi − c ·

∑
v∈V

p(v, x),

where p(v, x) = max{0, d(v, x)−1}, d(v, x) is the degree of the vertex v on the subgraph
represented by x, and c ≥ m + 1 is a penalty coefficient which makes any matching
have a larger fitness than any non-matching. Note that (Qian et al., 2015b) recently
discloses that a variable solution representation can be better than Boolean string.

We test on the dense (complete) graph with the number of nodes n = 7, 8, 9. We
test the smooth threshold values (A) + (B) withA = 0, 1, 2, 3 andB = 0, 0.1, . . . , 0.9, 1,
which correspond to the threshold value set {0, 0.1, 0.2, . . . , 4} on the x-axis. The re-
sults are plotted in Figure 9. We can observe that the curves reach the lowest point
when x is fractional between 1 and 2, which corresponds to a smooth threshold. The
running time using the single-evaluation strategy is empirically shown to be infinite.
These empirical observations suggest that smooth threshold selection can lead to bet-
ter performance in noisy environments.

0 1 2 3 4
600

650

700

750

800

Threshold

E
st

im
at

ed
 E

R
T

0 1 2 3 4
3500

4000

4500

5000

5500

6000

6500

7000

Threshold

E
st

im
at

ed
 E

R
T

0 1 2 3 4
2500

3000

3500

Threshold

E
st

im
a
te

d
 E

R
T

(a) n = 7 (b) n = 8 (c) n = 9

Figure 9: Estimated ERT for the (1+1)-EA with different threshold values solving the
maximum matching problem under one-bit noise pn = 1.

6 Discussions and Conclusions

This work studies some theoretical issues of noisy optimization using EAs.

Evolutionary Computation Volume x, Number x 35

C. Qian, Y. Yu, and Z.-H. Zhou

First, we have proven that on deceptive and flat problems, the noise can make the
optimization easier for EAs. Experiments on the minimum spanning tree problem (a
multimodal problem with local deceptiveness) support our theoretical findings. As
deceptive and flat problems are EA-hard, while the noise can also be shown harmful
on the EA-easy problem OneMax, we hypothesize that the negative effect by noise de-
creases as the problem hardness increases, and noise can even bring a positive effect
when the problem is quite hard. This hypothesis is supported by experiments on the
Jumpm,n problem and the minimum spanning tree problem, both of which have an
adjustable difficulty parameter.

In problems where the noise has a negative effect, we studied the usefulness of
two commonly employed noise-handling strategies: re-evaluation and threshold se-
lection. We took the OneMax problem as the representative problem, where the noise
significantly harms the expected running time of the (1+1)-EA. We used the PNT as
the performance measure, and analyzed the PNT of each EA under one-bit noise, as
shown in Table 1.

The re-evaluation strategy seems to be a reasonable method for reducing random
noise. However, we derived that the (1+1)-EA with single-evaluation (i.e., the (1+1)-EA
without any noise handling method) has the PNT [0, 1 − 1

Θ(poly(n))] from Theorem 5,

while the (1+1)-EA with re-evaluation has the PNT [0,Θ(logn
n)]. It is surprising to see

that the re-evaluation strategy leads to a much worse noise tolerance than that with-
out any noise handling method.

The re-evaluation with threshold selection strategy has a better PNT comparing
with the re-evaluation alone. When the threshold is 1, we derived the PNT [0, 1] from
Theorem 8, and when the threshold is 2, we obtained [1

Θ(poly(n)) , 1 −
1

Θ(poly(n))] from
Theorem 9. The improvement from re-evaluation alone could be explained by the fact
that the threshold selection filters out false progresses that are caused by the noise.
Furthermore, it shows an improvement from the (1+1)-EA without any noise handling
method when selecting the proper threshold τ = 1.

We have also studied the single-evaluation with threshold selection. The PNT is
[0, 0], which implies that threshold selection alone cannot help single-evaluation.

Finally, we analyzed the usefulness of these noise handling strategies under a
variant of one-bit noise. All of them are shown to be ineffective when the noise prob-
ability reaches the maximum value 1. We then proposed the smooth threshold selec-
tion, which allows a fractional threshold to be effective. We proved that the (1+1)-EA
with (1) + (1 − |x|02en or 1 − 1

2en)-smooth threshold selection has the PNT [0, 1] from
Theorems 12 and 13, and found that the fractional threshold is essential to the proof.
Our explanation is that, like the original threshold selection, the proposed one filters
out false progresses, while also retaining some chances of accepting true progresses.
We further carry out experiments to verify whether the smooth threshold could be
helpful in practical problems. The experiments on the maximum matching problem
show that the best performance can be achieved at fractional thresholds.

For analyzing the usefulness of noise handling strategies, we have studied a sim-
plified noise model called one-bit noise. A direct generalization that will be studied
in the future is to analyze the bit-wise noise, which flips each bit independently with
some probability. The bit-wise noise can change the solution greatly in evaluation
and thus may make the analysis much more difficult. We shall also improve some
currently derived running time bounds, for example, the current running time upper
and lower bounds of the single-evaluation still have a gap of n. To theoretically an-
alyze the relationship between the effect of noise and the hardness of optimization

36 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

problems is also an interesting future work.

7 Acknowledgements

The authors want to thank the associate editor and anonymous reviewers for help-
ful comments and suggestions. This research was supported by the National Science
Foundation of China (61375061, 61333014), Jiangsu Science Foundation (BK2012303),
Foundation for the Author of National Excellent Doctoral Dissertation of China
(201451), and the Collaborative Innovation Center of Novel Software Technology and
Industrialization.

References

Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., and Rackoff, C. (1979). Random walks, universal
traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science (FOCS’79), pages 218–223, San Juan, Puerto
Rico.

Arnold, D. V. and Beyer, H.-G. (2002). Local performance of the (1+1)-ES in a noisy environ-
ment. IEEE Transactions on Evolutionary Computation, 6(1):30–41.

Arnold, D. V. and Beyer, H.-G. (2003). A comparison of evolution strategies with other direct
search methods in the presence of noise. Computational Optimization and Applications,
24(1):135–159.

Auger, A. and Doerr, B. (2011). Theory of Randomized Search Heuristics: Foundations and Recent
Developments. World Scientific, Singapore.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-
tionary Programming, Genetic Algorithms. Oxford University Press, Oxford, UK.

Bartz-Beielstein, T. (2005a). Evolution strategies and threshold selection. In Proceedings of the
2nd International Workshop on Hybrid Metaheuristics, pages 104–115, Barcelona, Spain.

Bartz-Beielstein, T. (2005b). New experimentalism applied to evolutionary computation. PhD
thesis, University of Dortmund.

Bartz-Beielstein, T. and Markon, S. (2002). Threshold selection, hypothesis tests, and DOE
methods. In Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC’02),
pages 777–782, Honolulu, HI.

Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: Theoretical issues
and guidelines for practice. Computer Methods in Applied Mechanics and Engineering,
186(2):239–267.

Buche, D., Stoll, P., Dornberger, R., and Koumoutsakos, P. (2002). Multiobjective evolutionary
algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 32(4):460–473.

Chang, Y. and Chen, S. (2006). A new query reweighting method for document retrieval based
on genetic algorithms. IEEE Transactions on Evolutionary Computation, 10(5):617–622.

Doerr, B. and Goldberg, L. A. (2013). Adaptive drift analysis. Algorithmica, 65:224–250.

Doerr, B., Hota, A., and Kötzing, T. (2012a). Ants easily solve stochastic shortest path prob-
lems. In Proceedings of the 14th ACM Conference on Genetic and Evolutionary Computation
(GECCO’12), pages 17–24, Philadelphia, PA.

Doerr, B., Johannsen, D., and Winzen, C. (2012b). Multiplicative drift analysis. Algorithmica,
64:673–697.

Evolutionary Computation Volume x, Number x 37

C. Qian, Y. Yu, and Z.-H. Zhou

Droste, S. (2004). Analysis of the (1+1) EA for a noisy OneMax. In Proceedings of the 6th ACM
Conference on Genetic and Evolutionary Computation (GECCO’04), pages 1088–1099, Seattle,
WA.

Droste, S., Jansen, T., and Wegener, I. (1998). A rigorous complexity analysis of the (1+1) evo-
lutionary algorithm for linear functions with Boolean inputs. Evolutionary Computation,
6(2):185–196.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary algo-
rithm. Theoretical Computer Science, 276(1-2):51–81.

Fieldsend, J. and Everson, R. (2015). The rolling tide evolutionary algorithm: A multi-objective
optimiser for noisy optimisation problems. IEEE Transactions on Evolutionary Computation,
19(1):103–117.

Fitzpatrick, J. M. and Grefenstette, J. J. (1988). Genetic algorithms in noisy environments. Ma-
chine learning, 3(2-3):101–120.

Freı̌dlin, M. I. (1996). Markov Processes and Differential Equations: Asymptotic Problems.
Birkhäuser Verlag, Basel, Switzerland.

Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and knowledge dis-
covery. In Ghosh, A. and Tsutsui, S., editors, Advances in Evolutionary Computing: Theory
and Applications, pages 819–845. Springer-Verlag, New York, NY.

Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching problem.
In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’03), pages 415–426, Berlin, Germany.

Giel, O. and Wegener, I. (2006). Maximum cardinality matchings on trees by randomized local
search. In Proceedings of the 8th ACM Conference on Genetic and Evolutionary Computation
(GECCO’06), pages 539–546, Seattle, WA.

Goh, C. and Tan, K. (2007). An investigation on noisy environments in evolutionary multiob-
jective optimization. IEEE Transactions on Evolutionary Computation, 11(3):354–381.

Guo, W., Liu, G., Chen, G., and Peng, S. (2014). A hybrid multi-objective PSO algorithm with
local search strategy for VLSI partitioning. Frontiers of Computer Science, 8(2):203–216.

Gutjahr, W. J. (2003). A converging ACO algorithm for stochastic combinatorial optimization.
In Proceedings of the 2nd International Symposium on Stochastic Algorithms: Foundations
and Applications, pages 10–25, Hatfield, UK.

Gutjahr, W. J. (2004). S-ACO: An ant-based approach to combinatorial optimization under un-
certainty. In Proceedings of the 4th International Workshop on Ant Colony Optimization and
Swarm Intelligence, pages 238–249, Brussels, Belgium.

He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary algorithms.
Artificial Intelligence, 127(1):57–85.

He, J. and Yao, X. (2004). A study of drift analysis for estimating computation time of evolution-
ary algorithms. Natural Computing, 3(1):21–35.

Hoos, H. H. and Stützle, T. (1999). Towards a characterisation of the behaviour of stochastic
local search algorithms for SAT. Artificial Intelligence, 112(1):213–232.

Hoos, H. H. and Stützle, T. (2000). Local search algorithms for SAT: An empirical evaluation.
Journal of Automated Reasoning, 24(4):421–481.

Hoos, H. H. and Stützle, T. (2005). Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco, CA.

38 Evolutionary Computation Volume x, Number x

Analyzing Evolutionary Optimization in Noisy Environments

Jansen, T., Jong, K., and Wegener, I. (2005). On the choice of the offspring population size in
evolutionary algorithms. Evolutionary Computation, 13(4):413–440.

Jansen, T. and Sudholt, D. (2010). Analysis of an asymmetric mutation operator. Evolutionary
Computation, 18(1):1–26.

Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation, 9(3):303–317.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of
Statistical Physics, 34(5):975–986.

Ma, P., Chan, K., Yao, X., and Chiu, D. (2006). An evolutionary clustering algorithm for
gene expression microarray data analysis. IEEE Transactions on Evolutionary Computation,
10(3):296–314.

Markon, S., Arnold, D. V., Back, T., Bartz-Beielstein, T., and Beyer, H.-G. (2001). Thresholding-A
selection operator for noisy ES. In Proceedings of the 2001 IEEE Congress on Evolutionary
Computation (CEC’01), pages 465–472, Seoul, Korea.

Marshall, A. W., Olkin, I., and Arnold, B. (2011). Inequalities: Theory of Majorization and Its
Applications. second edition, Springer.

Mengshoel, O. J. (2008). Understanding the role of noise in stochastic local search: Analysis
and experiments. Artificial Intelligence, 172(8):955–990.

Neumann, F. and Wegener, I. (2007). Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoretical Computer Science, 378(1):32–40.

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer-Verlag, Berlin, Germany.

Oliveto, P. S. and Witt, C. (2011). Simplified drift analysis for proving lower bounds in evolu-
tionary computation. Algorithmica, 59(3):369–386.

Oliveto, P. S. and Witt, C. (2012). Erratum: Simplified drift analysis for proving lower bounds in
evolutionary computation. CORR abs/1211.7184.

Oliveto, P. S. and Witt, C. (2014). On the runtime analysis of the Simple Genetic Algorithm.
Theoretical Computer Science, 545:2–19.

Oliveto, P. S. and Witt, C. (2015). Improved time complexity analysis of the Simple Genetic
Algorithm. Theoretical Computer Science. doi:10.1016/j.tcs.2015.01.002.

Park, T. and Ryu, K. R. (2011). Accumulative sampling for noisy evolutionary multi-objective
optimization. In Proceedings of the 13th ACM Conference on Genetic and Evolutionary Com-
putation (GECCO’11), pages 793–800, Dublin, Ireland.

Qian, C., Yu, Y., Jin, Y., and Zhou, Z.-H. (2014). On the effectiveness of sampling for evolutionary
optimization in noisy environments. In Proceedings of the 13th International Conference on
Parallel Problem Solving from Nature (PPSN’14), pages 302–311, Ljubljana, Slovenia.

Qian, C., Yu, Y., and Zhou, Z.-H. (2012). On algorithm-dependent boundary case identification
for problem classes. In Proceedings of the 12th International Conference on Parallel Problem
Solving from Nature (PPSN’12), pages 62–71, Taormina, Italy.

Qian, C., Yu, Y., and Zhou, Z.-H. (2015a). Pareto ensemble pruning. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI’15), pages 2935–2941, Austin, TX.

Qian, C., Yu, Y., and Zhou, Z.-H. (2015b). Variable solution structure can be helpful in evolu-
tionary optimization. Science China: Information Sciences, in press.

Rowe, J. E. and Sudholt, D. (2014). The choice of the offspring population size in the (1,λ)
evolutionary algorithm. Theoretical Computer Science, 545:20–38.

Evolutionary Computation Volume x, Number x 39

C. Qian, Y. Yu, and Z.-H. Zhou

Selman, B., Kautz, H. A., and Cohen, B. (1994). Noise strategies for improving local search. In
Proceedings of the 12th AAAI Conference on Artificial Intelligence (AAAI’94), pages 337–343,
Seattle, WA.

Sudholt, D. (2013). A new method for lower bounds on the running time of evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435.

Sudholt, D. and Thyssen, C. (2012). A simple ant colony optimizer for stochastic shortest path
problems. Algorithmica, 64(4):643–672.

Wegener, I. (2002). Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In Ruhul A. Sarker, M. M. and Yao, X., editors, Evolutionary Optimization. Kluwer.

Witt, C. (2013). Tight bounds on the optimization time of a randomized search heuristic on
linear functions. Combinatorics, Probability and Computing, 22(2):294–318.

Yu, Y., Qian, C., and Zhou, Z.-H. (2015). Switch analysis for running time anal-
ysis of evolutionary algorithms. IEEE Transactions on Evolutionary Computation.
DOI:10.1109/TEVC.2014.2378891.

Yu, Y. and Zhou, Z.-H. (2008). A new approach to estimating the expected first hitting time of
evolutionary algorithms. Artificial Intelligence, 172(15):1809–1832.

40 Evolutionary Computation Volume x, Number x

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Noisy Optimization
	Evolutionary Algorithms
	Markov Chain Modeling
	Pseudo-Boolean Functions

	On the Effect of Noisy Fitness
	On Deceptive Problems
	On Flat Problems

	On the Effect of Noise Handling Strategies
	A Noise-Harmful Case
	On Re-evaluation and Threshold Selection Strategies
	Re-evaluation
	Threshold Selection

	Smooth Threshold Selection

	Experiments
	On Noise Helpful Cases
	On Noise Harmful Cases

	Discussions and Conclusions
	Acknowledgements

