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Abstract
In real-world optimization tasks, the objective (i.e., fitness) function evaluation is of-
ten disturbed by noise due to a wide range of uncertainties. Evolutionary algorithms
are often employed in noisy optimization, where reducing the negative effect of noise
is a crucial issue. Sampling is a popular strategy for dealing with noise: to estimate
the fitness of a solution, it evaluates the fitness multiple (k) times independently and
then uses the sample average to approximate the true fitness. Obviously, sampling
can make the fitness estimation closer to the true value, but also increases the esti-
mation cost. Previous studies mainly focused on empirical analysis and design of ef-
ficient sampling strategies, while the impact of sampling is unclear from a theoretical
viewpoint. In this paper, we show that sampling can speed up noisy evolutionary op-
timization exponentially via rigorous running time analysis. For the (1+1)-EA solving
the OneMax and the LeadingOnes problems under prior (e.g., one-bit) or posterior
(e.g., additive Gaussian) noise, we prove that, under a high noise level, the running
time can be reduced from exponential to polynomial by sampling. The analysis also
shows that a gap of one on the value of k for sampling can lead to an exponential
difference on the expected running time, cautioning for a careful selection of k. We
further prove by using two illustrative examples that sampling can be more effective
for noise handling than parent populations and threshold selection, two strategies
that have shown to be robust to noise. Finally, we also show that sampling can be
ineffective when noise does not bring a negative impact.
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1 Introduction

In many real-world optimization tasks, the exact objective (i.e., fitness) evaluation of
candidate solutions is almost impossible, while we can obtain only a noisy one. Evo-
lutionary algorithms (EAs) (Bäck, 1996) are general-purpose optimization algorithms
inspired from natural phenomena, and have been widely and successfully applied to
solve noisy optimization problems (Jin and Branke, 2005; Bianchi et al., 2009; Zeng
et al., 2015). During evolutionary optimization, handling noise in fitness evaluation is
very important, since noise may mislead the search direction and then deteriorate the
efficiency of EAs. Many studies thus have focused on reducing the negative effect of
noise in evolutionary optimization (Arnold, 2002; Beyer, 2000; Jin and Branke, 2005).

One popular way to cope with noise in fitness evaluation is sampling (Arnold
and Beyer, 2006), which, instead of evaluating the fitness of one solution only once,
evaluates the fitness k times and then uses the average to approximate the true fit-
ness. Sampling obviously can reduce the standard deviation of the noise by a factor
of
√
k, while also increasing the computation cost k times. This makes the fitness

estimation closer to the true value, but computationally more expensive. In order
to reduce the sampling cost as much as possible, many smart sampling approaches
have been proposed, including adaptive (Aizawa and Wah, 1994; Stagge, 1998) and
sequential (Branke and Schmidt, 2003, 2004) methods, which dynamically decide the
size of k for each solution in each generation.

The impact of sampling on the convergence of EAs in noisy optimization has
been empirically and theoretically investigated (Gutjahr, 2003; Arnold and Beyer,
2006; Heidrich-Meisner and Igel, 2009; Rolet and Teytaud, 2010). On the running time,
a more practical performance measure for how soon an algorithm can solve a prob-
lem, previous experimental studies have reported conflicting conclusions. In (Aizawa
and Wah, 1994), it was shown that sampling can speed up a standard genetic algo-
rithm on two test functions; while in (Cantú-Paz, 2004), sampling led to a larger com-
putation time for a simple generational genetic algorithm on the OneMax function.
However, little work has been done on theoretically analyzing the impact of sampling
on the running time. Thus, there are many fundamental theoretical issues on sam-
pling that have not been addressed, e.g., if sampling can reduce the running time of
EAs from exponential to polynomial in noisy environments, and if sampling will in-
crease the running time in some cases.

The running time is usually counted by the number of fitness evaluations needed
to find an optimal solution for the first time, because the fitness evaluation is deemed
as the most costly computational process (Droste et al., 2002; Yu and Zhou, 2008; Qian
et al., 2015b). Rigorous running time analysis has been a leading theoretical aspect
for randomized search heuristics (Neumann and Witt, 2010; Auger and Doerr, 2011).
Recently, progress has been made on the running time analysis of EAs. Numerous an-
alytical results for EAs solving synthetic problems as well as combinatorial problems
have been reported, e.g., (Neumann and Witt, 2010; Auger and Doerr, 2011). Mean-
while, general running time analysis approaches have also been proposed, e.g., drift
analysis (He and Yao, 2001; Doerr et al., 2012b; Doerr and Goldberg, 2013), fitness-
level methods (Wegener, 2002; He and Yao, 2003; Sudholt, 2013; Dang and Lehre,
2015b), and switch analysis (Yu et al., 2015; Yu and Qian, 2015). However, most of
them focus on noise-free environments, where the fitness evaluation is exact.

For EAs in noisy environments, few results have been reported on running time
analysis. Droste (2004) first analyzed the (1+1)-EA on the OneMax problem in the
presence of one-bit noise and showed the maximal noise level log(n)/n allowing a
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polynomial running time, where the noise level is characterized by the noise prob-
ability p ∈ [0, 1] and n is the problem size. This result was later extended to the
LeadingOnes problem and to many different noise models in (Gießen and Kötzing,
2016), which also proved that small populations of size Θ(log n) can make elitist EAs
i.e., (µ+1)-EA and (1+λ)-EA, perform well in high noise levels. The robustness of
populations to noise was also proved in the setting of non-elitist EAs with muta-
tion only (Dang and Lehre, 2015a) or uniform crossover only (Prugel-Bennett et al.,
2015). However, Friedrich et al. (2015) showed the limitation of parent populations to
cope with noise by proving that the (µ+1)-EA needs super-polynomial time for solv-
ing OneMax in the presence of additive Gaussian noise N (0, σ2) with σ2 ≥ n3. This
difficulty can be overcome by the compact genetic algorithm (cGA) (Friedrich et al.,
2015) and a simple Ant Colony Optimization (ACO) algorithm (Friedrich et al., 2016),
both of which find the optimal solution in polynomial time with a high probability.
Recently, Qian et al. (2015a) proved that the threshold selection strategy is also ro-
bust to noise: the expected running time of the (1+1)-EA using threshold selection
on OneMax in the presence of one-bit noise is always polynomial regardless of the
noise level. They also showed the limitation of threshold selection under asymmetric
one-bit noise and further proposed smooth threshold selection, which can overcome
the difficulty. Note that there was also a sequence of papers analyzing the running
time of ACO on single destination shortest paths (SDSP) problems with edge weights
disturbed by noise (Sudholt and Thyssen, 2012; Doerr et al., 2012a; Feldmann and
Kötzing, 2013).

In addition to the above results, there exist two other pieces of work on running
time analysis in noisy evolutionary optimization that involve sampling. Akimoto et al.
(2015) proved that sampling with a large enough k can make optimization under ad-
ditive unbiased noise behave as optimization in a noise-free environment, and thus
concluded that noisy optimization using sampling can be solved in k∗r running time,
where r is the noise-free running time. A similar result was also achieved for an adap-
tive Pareto sampling (APS) algorithm solving bi-objective optimization problems un-
der additive Gaussian noise N (0, σ2) (Gutjahr, 2012). These results, however, do not
describe any impact of sampling on the running time, because they do not compare
the running time in noisy optimization without sampling.

In this paper, we show that sampling can speed up noisy evolutionary optimiza-
tion exponentially via rigorous running time analysis. For the (1+1)-EA solving the
OneMax and the LeadingOnes problems under prior (e.g., one-bit) or posterior (e.g.,
additive Gaussian) noise, we prove that the running time is exponential when the
noise level is high (i.e., Theorems 1, 4, 6, 7), while sampling can reduce the running
time to be polynomial (i.e., Theorems 3, 5, Corollaries 1, 2). Particularly, for the (1+1)-
EA solving OneMax under one-bit noise with p = 1, the analysis also shows that a gap
of one on the value of k for sampling can lead to an exponential difference on the ex-
pected running time (i.e., Theorems 2, 3), which reveals that a careful selection of k is
important for the effectiveness of sampling.

As previous studies (Qian et al., 2015a; Gießen and Kötzing, 2016) have shown
that parent populations and threshold selection can bring about robustness to noise,
we also compare sampling with these two strategies. On the OneMax problem under
additive Gaussian noiseN (0, σ2) with σ2 ≥ n3, the (µ+1)-EA needs super-polynomial
time (Friedrich et al., 2015) (i.e., Theorem 8), while the (1+1)-EA using sampling can
solve the problem in polynomial time (i.e., Corollary 1). On the OneMax problem
under asymmetric one-bit noise with p = 1, the (1+1)-EA using threshold selection
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needs at least exponential time (Qian et al., 2015a) (i.e., Theorem 9), while the (1+1)-
EA using sampling can solve it in O(n log2 n) time (i.e., Theorem 10). Therefore, these
results show that sampling can be more tolerant of noise than parent populations and
threshold selection, respectively.

Finally, for the (1+1)-EA solving the Trap problem under additive Gaussian noise,
we prove that noise does not bring a negative impact. Under the assumption that the
positive impact of noise increases with the noise level, we conjecture that sampling is
ineffective in this case since it will decrease the noise level. The conjecture is verified
by experiments. Note that the conjecture is consistent with that in (Qian et al., 2015a).
In that work it is hypothesized that the impact of noise is correlated with the problem
hardness: when the problem is EA-hard (He and Yao, 2004) w.r.t. a specific EA (e.g.,
the Trap problem for the (1+1)-EA), noise can be helpful and does not need to be
handled, but when the problem is EA-easy (He and Yao, 2004), noise can be harmful
and needs to be tackled.

This paper extends our preliminary work (Qian et al., 2014) and improves one
previous statement. In (Qian et al., 2014), we proved a sufficient condition under
which sampling is ineffective, and applied it to the cases that the (1+1)-EA solving
OneMax and Trap under additive Gaussian noise. The proof assumed the mono-
tonicity of a quantity. By finding that an upper/lower-bound of the quantity is mono-
tonic, we hypothesized that the quantity itself is also monotonic. Considering that
this property does not always hold, we have corrected our previous statement on the
OneMax problem by proving that sampling with a moderate sample size is possible
to exponentially reduce the running time of the (1+1)-EA from no sampling (i.e., The-
orem 6, Corollary 1). Meanwhile, both analysis and experiments (i.e., Section 6) show
that sampling is ineffective on the Trap problem.

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
naries. The robustness analysis of sampling to prior and posterior noise is presented
in Sections 3 and 4, respectively. Section 5 compares sampling with the other two
strategies, parent populations and threshold selection, on the robustness to noise.
Section 6 gives a case where sampling is ineffective. Section 7 concludes the paper.

2 Preliminaries

In this section, we first introduce the noise models, problems and evolutionary algo-
rithms studied in this paper, respectively, then describe the sampling strategy, and
finally present the analysis tools that we use throughout this paper.

2.1 Noise Models

Noise models can be generally divided into two categories: prior and posterior (Jin
and Branke, 2005; Gießen and Kötzing, 2016). For prior noise, the noise comes from
the variation on a solution instead of the evaluation process. One-bit noise as pre-
sented in Definition 1 is a representative one, which flips a random bit of a solution
before evaluation with probability p. For posterior noise, the noise comes from the
variation on the fitness of a solution. A representative model is additive Gaussian
noise as presented in Definition 2, which adds a value drawn from a Gaussian dis-
tribution. Both one-bit noise and additive Gaussian noise have been widely used in
previous empirical and theoretical studies, e.g., (Beyer, 2000; Droste, 2004; Jin and
Branke, 2005; Gießen and Kötzing, 2016). In this paper, we will also use these two
kinds of noise models.
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Definition 1 (One-bit Noise). Given a parameter p ∈ [0, 1], let fn(x) and f(x) denote
the noisy and true fitness of a binary solution x ∈ {0, 1}n, respectively, then

fn(x) =

{
f(x) with probability 1− p,
f(x′) with probability p,

where x′ is generated by flipping a uniformly randomly chosen bit of x.

Definition 2 (Additive Gaussian Noise). Given a Gaussian distribution N (θ, σ2), let
fn(x) and f(x) denote the noisy and true fitness of a solution x, respectively, then

fn(x) = f(x) + δ,

where δ is randomly drawn fromN (θ, σ2), denoted by δ ∼ N (θ, σ2).

In addition to the above noises, we also consider a variant of one-bit noise called
asymmetric one-bit noise (Qian et al., 2015a), in Definition 3. For the flipping of
asymmetric one-bit noise on a solution x ∈ {0, 1}n, if |x|0 = 0, a random 1 bit is
flipped; if |x|0 = n, a random 0 bit is flipped; otherwise, the probability of flipping
a specific 0 bit is 1

2 ·
1
|x|0 , and the probability of flipping a specific 1 bit is 1

2 ·
1

n−|x|0 ,
where |x|0 = n−

∑n
i=1 xi is the number of 0-bits of x. Note that for one-bit noise, the

probability of flipping any specific bit is 1
n .

Definition 3 (Asymmetric One-bit Noise). Given a parameter p ∈ [0, 1], let fn(x) and
f(x) denote the noisy and true fitness of a binary solution x ∈ {0, 1}n, respectively, then
fn(x) = f(x) with probability (1 − p), otherwise fn(x) = f(x′), where x′ is generated
by flipping the j-th bit of x, and j is a uniformly randomly chosen position of

all bits of x, if |x|0 = 0 or n;{
0 bits of x, with probability 1/2;

1 bits of x, with probability 1/2.
, otherwise.

2.2 Optimization Problems

As most theoretical analyses of EAs start from simple synthetic problems, we also use
two well-known test functions OneMax and LeadingOnes, which have been widely
studied in both noise-free (e.g., (He and Yao, 2001; Droste et al., 2002; Sudholt, 2013))
and noisy (e.g., (Droste, 2004; Dang and Lehre, 2015a; Gießen and Kötzing, 2016))
evolutionary optimization.

The OneMax problem as presented in Definition 4 aims to maximize the number
of 1-bits of a solution. Its optimal solution is 11 . . . 1 (briefly denoted as 1n) with the
function value n. It has been shown that the expected running time of the (1+1)-EA
on OneMax is Θ(n log n) (Droste et al., 2002).

Definition 4 (OneMax). The OneMax Problem of size n is to find an n bits binary string
x∗ such that

x∗ = arg maxx∈{0,1}n
(
f(x) =

∑n

i=1
xi

)
.

The LeadingOnes problem as presented in Definition 5 aims to maximize the
number of consecutive 1-bits counting from the left of a solution. Its optimal solu-
tion is 1n with the function value n. It has been proved that the expected running
time of the (1+1)-EA on LeadingOnes is Θ(n2) (Droste et al., 2002).
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Definition 5 (LeadingOnes). The LeadingOnes Problem of size n is to find an n bits
binary string x∗ such that

x∗ = arg maxx∈{0,1}n

(
f(x) =

∑n

i=1

∏i

j=1
xj

)
.

We will also use an EA-hard problem Trap in Definition 6, the aim of which is
to maximize the number of 0-bits of a solution except for the optimal solution 1n.
Its optimal function value is C − n > 0, and the function value for any non-optimal
solution is not larger than 0. The expected running time of the (1+1)-EA on Trap has
been proven to be Θ(nn) (Droste et al., 2002).

Definition 6 (Trap). The Trap Problem of size n is to find an n bits binary string x∗ such
that, let C > n,

x∗ = arg maxx∈{0,1}n
(
f(x) = C ·

∏n

i=1
xi −

∑n

i=1
xi

)
.

2.3 Evolutionary Algorithms

In this paper, we consider the (1+1)-EA as described in Algorithm 1, which is a simple
EA for maximizing pseudo-Boolean problems over {0, 1}n. The (1+1)-EA reflects the
common structure of EAs. It maintains only one solution (i.e., the population size
is 1), and repeatedly improves the current solution by using bit-wise mutation (i.e.,
step 3) and selection (i.e., steps 4 and 5). The (1+1)-EA has been widely used in the
running time analysis of EAs, see (Neumann and Witt, 2010; Auger and Doerr, 2011).

Algorithm 1 ((1+1)-EA). Given a function f over {0, 1}n to be maximized, it consists of
the following steps:

1. x := uniformly randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x independently with probability 1/n.
4. if f(x′) ≥ f(x)
5. x := x′.

For the (1+1)-EA in noisy environments, only a noisy fitness value fn(x) is avail-
able, and thus step 4 of Algorithm 1 changes to be “if fn(x′) ≥ fn(x)”. Note that we
assume that the reevaluation strategy is used as in (Droste, 2004; Doerr et al., 2012a;
Gießen and Kötzing, 2016), that is, when accessing the fitness of a solution, it is al-
ways calculated by sampling a new random variate, or drawing a new random single-
bit mask. For example, for the (1+1)-EA, both fn(x′) and fn(x) will be evaluated and
reevaluated in each iteration. The running time in noisy optimization is usually de-
fined as the number of fitness evaluations needed to find an optimal solution w.r.t.
the true fitness function f for the first time (Droste, 2004; Akimoto et al., 2015; Gießen
and Kötzing, 2016).

In noisy optimization, a worse solution may appear to have a “better” fitness and
then survive to replace the true better solution which has a “worse” fitness. This may
mislead the search direction of EAs, and then deteriorate the efficiency of EAs. To deal
with this problem, a selection strategy for EAs handling noise was proposed (Markon
et al., 2001; Bartz-Beielstein, 2005).

• threshold selection: an offspring solution will be accepted only if its fitness is
larger than the parent solution by at least a predefined threshold τ ≥ 0.
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For example, when using threshold selection, the 4th step of the (1+1)-EA in Algo-
rithm 1 changes to be “if f(x′) ≥ f(x) + τ” rather than “if f(x′) ≥ f(x)”. Such a
strategy can reduce the risk of accepting a bad solution due to noise. In (Qian et al.,
2015a), it has been proved that threshold selection with τ = 1 can make the (1+1)-
EA solve the OneMax problem in polynomial time even if one-bit noise occurs with
probability 1.

2.4 Sampling

In noisy evolutionary optimization, sampling as described in Definition 7 has often
been used to reduce the negative effect of noise (Aizawa and Wah, 1994; Stagge, 1998;
Branke and Schmidt, 2003, 2004). It approximates the true fitness f(x) using the aver-
age of a number of random evaluations. Sampling can estimate the true fitness more
accurately. For example, the output fitness f̂(x) by sampling under additive Gaussian
noise N (θ, σ2) can be represented by f(x) + δ with δ ∼ N (θ, σ2/k), that is, sampling
reduces the variance of noise by a factor of k. However, the computation time for the
fitness estimation of a solution is also increased by k times.

Definition 7 (Sampling). Sampling first evaluates the fitness of a solution k times inde-
pendently and obtains the noisy fitness values fn1 (x), . . . , fnk (x), and then outputs their
average as

f̂(x) =
1

k

∑k

i=1
fni (x).

For the (1+1)-EA using sampling, the 4th step of Algorithm 1 changes to be “if
f̂(x′) ≥ f̂(x)”. Note that k = 1 is equivalent to that sampling is not used.

2.5 Analysis Tools

To derive running time bounds in this paper, we first model EAs as Markov chains,
and then use a variety of drift theorems.

The evolution process usually goes forward only based on the current popula-
tion, thus, an EA can be modeled as a Markov chain {ξt}+∞t=0 (e.g., in (He and Yao,
2001; Yu and Zhou, 2008)) by taking the EA’s population space X as the chain’s state
space, i.e. ξt ∈ X . Note that the population space X consists of all possible popula-
tions. Let X ∗ ⊂ X denote the set of all optimal populations, which contain at least
one optimal solution. The goal of the EA is to reach X ∗ from an initial population.
Thus, the process of an EA seeking X ∗ can be analyzed by studying the correspond-
ing Markov chain with the optimal state space X ∗. Note that we consider the discrete
state space (i.e., X is discrete) in this paper.

Given a Markov chain {ξt}+∞t=0 and ξt̂ = x, we define its first hitting time (FHT)
as a random variable τ such that τ = min{t | ξt̂+t ∈ X ∗, t ≥ 0}. That is, τ is the
number of steps needed to reach the optimal space for the first time starting from
ξt̂ = x. The mathematical expectation of τ , E[[τ | ξt̂ = x]] =

∑+∞
i=0 iP (τ = i), is called

the expected first hitting time (EFHT) of this chain starting from ξt̂ = x. If ξ0 is drawn
from a distribution π0, E[[τ | ξ0 ∼ π0]] =

∑
x∈X π0(x)E[[τ | ξ0 = x]] is called the EFHT

of the Markov chain over the initial distribution π0. Thus, the expected running time
of the corresponding EA starting from ξ0 ∼ π0 is equal to N1 + N2 · E[[τ | ξ0 ∼ π0]],
where N1 and N2 are the number of fitness evaluations for the initial population and
each iteration, respectively. For example, for the (1+1)-EA using sampling, N1 = k
and N2 = 2k due to the reevaluation strategy. Note that when involving the expected
running time of an EA on a problem in this paper, it is the expected running time
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starting from a uniform initial distribution πu, i.e.,N1 +N2 ·E[[τ | ξ0 ∼ πu]] = N1 +N2 ·∑
x∈X

1
|X |E[[τ | ξ0 = x]].

Thus, in order to analyze the expected running time of EAs, we just need to ana-
lyze the EFHT of the corresponding Markov chains. In the following, we introduce the
drift theorems which will be used to derive the EFHT of Markov chains in the paper.

Drift analysis was first introduced to the running time analysis of EAs by He and
Yao (2001). Since then, it has become a popular tool in this field, and many variants
have been proposed (e.g., in (Doerr et al., 2012b; Doerr and Goldberg, 2013)). In this
paper, we will use its additive (i.e., Lemma 1) as well as multiplicative (i.e., Lemma 2)
version. To use them, a function V (x) has to be constructed to measure the distance
of a state x to the optimal state space X ∗. The distance function V (x) satisfies that
V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0. Then, we need to investigate the progress on
the distance to X ∗ in each step, i.e., E[[V (ξt)− V (ξt+1) | ξt]]. For additive drift anal-
ysis (i.e., Lemma 1), an upper bound of the EFHT can be derived through dividing
the initial distance by a lower bound of the progress. Multiplicative drift analysis (i.e.,
Lemma 2) is much easier to use when the progress is roughly proportional to the cur-
rent distance to the optimum.

Lemma 1 (Additive Drift Analysis (He and Yao, 2001)). Given a Markov chain {ξt}+∞t=0

and a distance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there exists a
real number c > 0 such that

E[[V (ξt)− V (ξt+1) | ξt]] ≥ c,

then the EFHT satisfies that E[[τ | ξ0]] ≤ V (ξ0)/c.

Lemma 2 (Multiplicative Drift Analysis (Doerr et al., 2012b)). Given a Markov chain
{ξt}+∞t=0 and a distance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there
exists a real number c > 0 such that

E[[V (ξt)− V (ξt+1) | ξt]] ≥ c · V (ξt),

then the EFHT satisfies that

E[[τ | ξ0]] ≤ 1 + log(V (ξ0)/Vmin)

c
,

where Vmin = min{V (x) | V (x) > 0}.
The simplified drift theorem (Oliveto and Witt, 2011, 2012) as presented in

Lemma 3 was proposed to prove exponential lower bounds on the FHT of Markov
chains, where Xt is usually represented by a mapping of ξt. It requires two condi-
tions: a constant negative drift and exponentially decaying probabilities of jumping
towards or away from the goal state. To relax the requirement of a constant nega-
tive drift, the simplified drift theorem with self-loops (Rowe and Sudholt, 2014) as
presented in Lemma 4 has been proposed, which takes into account large self-loop
probabilities.

Lemma 3 (Simplified Drift Theorem (Oliveto and Witt, 2011, 2012)). Let Xt, t ≥ 0,
be real-valued random variables describing a stochastic process over some state space.
Suppose there exists an interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depend-
ing on l := b− a, a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0
the following two conditions hold:

1. E[[Xt −Xt+1 | a < Xt < b]] ≤ −ε,
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2. P (|Xt+1 −Xt| ≥ j | Xt > a) ≤ r(l)

(1 + δ)j
for j ∈ N0.

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it holds
P (T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

Lemma 4 (Simplified Drift Theorem with Self-loops (Rowe and Sudholt, 2014)). Let
Xt, t ≥ 0, be real-valued random variables describing a stochastic process over some
state space. Suppose there exists an interval [a, b] ⊆ R, two constants δ, ε > 0 and,
possibly depending on l := b − a, a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such
that for all t ≥ 0 the following two conditions hold:

1. E[[Xt −Xt+1 | Xt = i]] ≤ −ε · P (Xt+1 6= i | Xt = i) for a < i < b,

2. P (|Xt+1−Xt| ≥ j | Xt= i)≤ r(l)

(1+δ)j
· P (Xt+1 6= i | Xt= i) for i > a, j ∈ N0.

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it holds
P (T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

3 Robustness to Prior Noise

In this section, by comparing the expected running time of the (1+1)-EA with or with-
out sampling for solving the OneMax and the LeadingOnes problems under one-bit
noise, we show the robustness of sampling to prior noise.

3.1 The OneMax Problem

One-bit noise with p = 1 is considered here. We first analyze the case in which sam-
pling is not used. Note that Droste (2004) proved that the expected running time is
super-polynomial for p ∈ ω(log(n)/n). Gießen and Kötzing (2016) have recently re-
proved the super-polynomial lower bound for p ∈ ω(log(n)/n) ∩ 1 − ω(log(n)/n) by
using the simplified drift theorem (Oliveto and Witt, 2011, 2012). However, their proof
does not cover p = 1. Here, we use the simplified drift theorem with self-loops (Rowe
and Sudholt, 2014) to prove the lower bound of the exponential running time for p = 1
as shown in Theorem 1.

Theorem 1. For the (1+1)-EA solving the OneMax problem under one-bit noise with
p = 1, the expected running time is exponential.

Proof. We use Lemma 4 to prove this theorem. Let Xt be the number of 0-bits of the
solution after t iterations of the (1+1)-EA. We consider the interval [0, n1/4], i.e., the
parameters a = 0 (i.e., the global optimum) and b = n1/4 in Lemma 4.

Then, we analyze the drift E[[Xt −Xt+1 | Xt = i]] for 1 ≤ i < n1/4. Let pi,i+d de-
note the probability that the next solution after bit-wise mutation and selection has
i+ d (−i ≤ d ≤ n− i) number of 0-bits (i.e., Xt+1 = i+ d). We thus have

E[[Xt −Xt+1 | Xt = i]] =

i∑
d=1

d · pi,i−d −
n−i∑
d=1

d · pi,i+d. (1)

We then analyze the probabilities pi,i+d for i ≥ 1. Let Pd denote the probability
that the offspring solution x′ generated by bit-wise mutation has i + d number of 0-
bits. Note that one-bit noise with p = 1 makes the noisy fitness and the true fitness
of a solution have a gap of one, i.e., |fn(x) − f(x)| = 1. For a solution x with |x|0 = i,
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fn(x) = n − i + 1 with a probability of i
n ; otherwise, fn(x) = n − i − 1. Let x and x′

denote the current solution and the offspring solution, respectively.
(1) When d ≥ 3, fn(x′) ≤ n− i− d+ 1 ≤ n− i− 2 < fn(x). Thus, the offspring x′ will
be discarded in this case, which implies that ∀d ≥ 3 : pi,i+d = 0.
(2) When d = 2, the offspring solution x′ will be accepted if and only if fn(x′) =
n− i− 1 = fn(x), the probability of which is i+2

n ·
n−i
n , since it needs to flip one 0-bit

of x′ and flip one 1-bit of x in noise. Thus, pi,i+2 = P2 · ( i+2
n

n−i
n ).

(3) When d = 1, x′ will be accepted if and only if fn(x′) = n − i ∧ fn(x) = n − i − 1,
the probability of which is i+1

n ·
n−i
n , since it needs to flip one 0-bit of x′ and flip one

1-bit of x in noise. Thus, pi,i+1 = P1 · ( i+1
n

n−i
n ).

(4) When d = −1, x′ will be rejected if and only if fn(x′) = n − i ∧ fn(x) = n − i + 1,
the probability of which is n−i+1

n · in , since it needs to flip one 1-bit of x′ and flip one
0-bit of x in noise. Thus, pi,i−1 = P−1 · (1− n−i+1

n
i
n ).

(5) When d ≤ −2, fn(x′) ≥ n − i − d − 1 ≥ n − i + 1 ≥ fn(x). Thus, the offspring x′

will always be accepted in this case, which implies that ∀d ≤ −2 : pi,i+d = Pd.
We then bound the probabilities Pd. For d > 0, Pd ≥

(
n−i
d

)
1
nd

(1 − 1
n )n−d, since

it is sufficient to flip d 1-bits and keep other bits unchanged; P−d ≤
(
i
d

)
1
nd

, since it is
necessary to flip at least d 0-bits. Thus, we can upper bound

∑i
d=2 dP−d as follows:

i∑
d=2

dP−d ≤
i∑

d=2

d

(
i

d

)
1

nd
=

i∑
d=1

d

(
i

d

)
1

nd
− i

n

=
i

n

i−1∑
d=0

(
i− 1

d

)
1

nd
− i

n
=

i

n

((
1 +

1

n

)i−1

− 1

)
.

For P−1, we also need a tighter upper bound (see Lemma 2 in (Paixão et al., 2015))

P−1 ≤
i

n

(
1− 1

n

)n−1

· 1.14.

By applying these probabilities to Eq. (1), we have

E[[Xt −Xt+1 | Xt = i]]

=

(
1− n− i+ 1

n

i

n

)
P−1 +

i∑
d=2

dP−d −
i+ 1

n

n− i
n

P1 − 2
i+ 2

n

n− i
n

P2

≤
(

1− n− i+ 1

n

i

n

)
i

n

(
1− 1

n

)n−1

· 1.14 +
i

n

((
1 +

1

n

)i−1

− 1

)

− i+ 1

n

n− i
n

n− i
n

(
1− 1

n

)n−1

− 2
i+ 2

n

n− i
n

(n− i)(n− i− 1)

2n2

(
1− 1

n

)n−2

≤ i

n

(
1− 1

n

)n−1(
1.14− 1− 2 · 1

2

)
+O

((
i

n

)2
)

(since i < n1/4)

≤ −0.3 · i
n

+O

((
i

n

)2
)
. (by

(
1− 1

n

)n−1

≥ 1

e
)

To investigate the condition of Lemma 4, we also need to analyze the probability
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P (Xt+1 6= i | Xt = i) for 1 ≤ i < n1/4. We have

P (Xt+1 6= i | Xt = i) =

(
1−n− i+ 1

n

i

n

)
P−1+

i∑
d=2

P−d+
i+ 1

n

n− i
n

P1+
i+ 2

n

n− i
n

P2.

It is easy to verify that P (Xt+1 6= i | Xt = i) = Θ( in ). Thus, E[[Xt −Xt+1 | Xt = i]] =
−Ω(P (Xt+1 6= i | Xt = i)), which implies that condition 1 of Lemma 4 holds.

For condition 2 of Lemma 4, we need to compare P (|Xt+1 − Xt| ≥ j | Xt = i)

with r(l)
(1+δ)j · P (Xt+1 6= i | Xt = i) for i ≥ 1. We rewrite P (Xt+1 6= i | Xt = i)

as P (|Xt+1 − Xt| ≥ 1 | Xt = i), and show that condition 2 holds with δ = 1 and
r(l) = 32e

7 . For j ∈ {1, 2, 3}, it trivially holds, because r(l)
(1+δ)j > 1. For j ≥ 4, according

to the analysis on pi,i+d, we have

P (|Xt+1 −Xt| ≥ j | Xt = i) =

i∑
d=j

P−d ≤
(
i

j

)
1

nj
≤ 1

j!

(
i

n

)j
≤ 2

2j
· i
n
,

where the first inequality is because for decreasing the number of 0-bits by at least j
in mutation, it is necessary to flip at least j 0-bits. Furthermore, we have

P (|Xt+1 −Xt| ≥ 1 | Xt = i) ≥ pi,i−1 =

(
1− n− i+ 1

n

i

n

)
· P−1

≥
(

1− n− i+ 1

n

i

n

)
· i
n

(
1− 1

n

)n−1

≥ 7

16e
· i
n
,

where the last inequality holds with n ≥ 2. Thus,

r(l)

(1 + δ)j
· P (|Xt+1 −Xt| ≥ 1 | Xt = i) ≥ 32e

7

1

2j
· 7

16e

i

n

=
2

2j
i

n
≥ P (|Xt+1 −Xt| ≥ j | Xt = i),

which implies that condition 2 of Lemma 4 holds.
Note that l = b − a = n1/4. Thus, by Lemma 4, the probability that the run-

ning time is 2O(n1/4) when starting from a solution x with |x|0 ≥ n1/4 is exponentially
small. Due to the uniform initial distribution, the probability that the initial solution
x has |x|0 < n1/4 is exponentially small by Chernoff’s inequality. Thus, the expected
running time is exponential.

Then, we analyze the case in which sampling with k = 2 is used. The expected
running time is still exponential, as shown in Theorem 2. The proof is very similar to
that of Theorem 1. The change of the probabilities pi,i+d led by increasing k from 1 to
2 does not affect the application of the simplified drift theorem with self-loops (i.e.,
Lemma 4). The detailed proofs are shown in the supplementary material due to space
limitations.

Theorem 2. For the (1+1)-EA solving the OneMax problem under one-bit noise with
p = 1, if using sampling with k = 2, the expected running time is exponential.

We have shown that sampling with k = 2 is not effective. In the following, we
prove that increasing k from 2 to 3 can reduce the expected running time to be poly-
nomial as shown in Theorem 3, the proof of which is accomplished by applying mul-
tiplicative drift analysis (Doerr et al., 2012b).
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Theorem 3. For the (1+1)-EA solving the OneMax problem with n ≥ 18 under one-bit
noise with p = 1, if using sampling with k = 3, the expected running time is O(n log n).

Proof. We use Lemma 2 to prove this theorem. We first construct a distance function
V (x) as ∀x ∈ X = {0, 1}n, V (x) = |x|0, where |x|0 = n−

∑n
i=1 xi is the number of 0-bits

of the solution x. It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0.
Then, we investigate E[[V (ξt)− V (ξt+1) | ξt = x]] for any x with V (x) > 0 (i.e., x /∈

X ∗). We denote the number of 0-bits of the current solution x by i (where 1 ≤ i ≤
n). Let pi,i+d be the probability that the next solution after bit-wise mutation and
selection has i+ d number of 0-bits (where−i ≤ d ≤ n− i). Note that we are referring
to the true number of 0-bits of a solution instead of the effective number of 0-bits
after noisy evaluation. Thus,

E[[V (ξt)− V (ξt+1) | ξt = x]] =

i∑
d=1

d · pi,i−d −
n−i∑
d=1

d · pi,i+d. (2)

We then analyze pi,i+d for 1 ≤ i ≤ n as in the proof of Theorem 1. Note that for a
solution x, the fitness value output by sampling with k = 3 is the average of noisy
fitness values output by three independent fitness evaluations, i.e., f̂(x) = (fn1 (x) +
fn2 (x) + fn3 (x))/3.
(1) When d ≥ 3, f̂(x′) ≤ n− i− d+ 1 ≤ n− i− 2 < f̂(x). Thus, the offspring x′ will be
discarded, then we have ∀d ≥ 3 : pi,i+d = 0.
(2) When d = 2, x′ will be accepted if and only if f̂(x′) = n − i − 1 = f̂(x), the
probability of which is ( i+2

n )3 · (n−in )3, since it needs to always flip one 0-bit of x′ and
flip one 1-bit of x in three noisy fitness evaluations. Thus, pi,i+2 = P2 · ( i+2

n )3(n−in )3.
(3) When d = 1, there are three possible cases for the acceptance of x′: f̂(x′) = n −
i ∧ f̂(x) = n − i − 1, f̂(x′) = n − i ∧ f̂(x) = n − i − 1

3 and f̂(x′) = n − i − 2
3 ∧

f̂(x) = n − i − 1. The probability of f̂(x′) = n − i is ( i+1
n )3, since it needs to always

flip one 0-bit of x in three noisy evaluations. The probability of f̂(x′) = n − i − 2
3 is

3( i+1
n )2 n−i−1

n , since it needs to flip one 0-bit of x in two noisy evaluations and flip one
1-bit in the other noisy evaluation. Similarly, we can derive that the probabilities of
f̂(x) = n − i − 1 and f̂(x) = n − i − 1

3 are (n−in )3 and 3(n−in )2 i
n , respectively. Thus,

pi,i+1 = P1 · (( i+1
n )3((n−in )3 + 3(n−in )2 i

n ) + 3( i+1
n )2 n−i−1

n (n−in )3).
(4) When d = −1, there are three possible cases for the rejection of x′: f̂(x′) = n −
i ∧ f̂(x) = n − i + 1, f̂(x′) = n − i ∧ f̂(x) = n − i + 1

3 and f̂(x′) = n − i + 2
3 ∧ f̂(x) =

n − i + 1. The probability of f̂(x′) = n − i is (n−i+1
n )3, since it needs to always flip

one 1-bit of x′ in three noisy evaluations. The probability of f̂(x′) = n − i + 2
3 is

3(n−i+1
n )2 i−1

n , since it needs to flip one 1-bit of x′ in two noisy evaluations and flip
one 0-bit in the other evaluation. Similarly, we can derive that the probabilities of
f̂(x) = n − i + 1 and f̂(x) = n − i + 1

3 are ( in )3 and 3( in )2 n−i
n , respectively. Thus,

pi,i−1 = P−1 · (1− (n−i+1
n )3(( in )3 + 3( in )2 n−i

n )− 3(n−i+1
n )2 i−1

n ( in )3).
(5) When d ≤ −2, f̂(x′) ≥ n − i − d − 1 ≥ n − i + 1 ≥ f̂(x). Thus, x′ will always be
accepted, then we have ∀d ≤ −2 : pi,i+d = Pd.

By applying these probabilities to Eq. (2), we have

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ pi,i−1 − pi,i+1 − 2 · pi,i+2 (3)

= P−1 ·

(
1−
(
n−i+1

n

)3
((

i

n

)3

+3

(
i

n

)2
n−i
n

)
−3

(
n−i+1

n

)2
i−1

n

(
i

n

)3
)
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−P1 ·

((
i+1

n

)3
((

n−i
n

)3

+3

(
n−i
n

)2
i

n

)
+3

(
i+1

n

)2
n−i−1

n

(
n−i
n

)3
)

− 2 · P2 ·
(
i+ 2

n

)3(
n− i
n

)3

.

We simplify the above equation by using simple mathematical calculations.(
i+ 1

n

)3
((

n− i
n

)3

+ 3

(
n− i
n

)2
i

n

)
+ 3

(
i+ 1

n

)2
n− i− 1

n

(
n− i
n

)3

=
i+ 1

n

n− i
n
·

(
−5

(
i+ 1

n

n− i
n

)2

+ 3

(
1 +

1

n

)
· i+ 1

n

n− i
n

)

≤ 9

20

i+ 1

n

n− i
n

(
n+ 1

n

)2

,

where the inequality is because−5x2 + 3(1 + 1
n )x ≤ 9

20 (n+1
n )2.

By replacing i with n− i in the above equation, we get(
n− i+ 1

n

)3
((

i

n

)3

+ 3

(
i

n

)2
n− i
n

)
+ 3

(
n− i+ 1

n

)2
i− 1

n

(
i

n

)3

≤ 9

20

i

n

n− i+ 1

n

(
n+ 1

n

)2

.

Thus, Eq. (3) becomes

E[[V (ξt)− V (ξt+1) | ξt = x]] (4)

≥ P−1 ·

(
1− 9

20

i

n

n− i+ 1

n

(
n+ 1

n

)2
)
− P1 ·

9

20

i+ 1

n

n− i
n

(
n+ 1

n

)2

− 2 · P2 ·
(
i+ 2

n

)3(
n− i
n

)3

.

We then bound the three mutation probabilities P−1, P1 and P2. For decreasing the
number of 0-bits by 1 in mutation, it is sufficient to flip one 0-bit and keep other bits
unchanged, thus we haveP−1 ≥ i

n (1− 1
n )n−1. For increasing the number of 0-bits by 2,

it is necessary to flip at least two 1-bits, thus we have P2 ≤
(
n−i

2

)
1
n2 = (n−i)(n−i−1)

2n2 . For
increasing the number of 0-bits by 1, it needs to flip one more 1-bit than the number
of 0-bits it flips, thus we have

P1 =

min{n−i,i+1}∑
k=1

(
n− i
k

)(
i

k − 1

)
1

n2k−1

(
1− 1

n

)n−2k+1

≤ n− i
n

(
1− 1

n

)n−1

+

min{n−i,i+1}∑
k=2

1

k!(k − 1)!

(n− i)k

nk
ik−1

nk−1

(
1− 1

n

)n−2k+1

≤ n− i
n

(
1− 1

n

)n−1

+
i

n
·

min{n−i,i+1}∑
k=2

1

k!(k − 1)!

(
1− 1

n

)n−1
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≤ n− i
n

(
1− 1

n

)n−1

+
i

n
·

+∞∑
k=2

1

k!

(
1− 1

n

)n−1

=
n− i
n

(
1− 1

n

)n−1

+ (e− 2)
i

n

(
1− 1

n

)n−1

.

By applying these probability bounds to Eq. (4), we have

E[[V (ξt)− V (ξt+1) | ξt = x]]

≥ i

n

(
1− 1

n

)n−1
(

1− 9

20

(
n+1

n

)2(
i

n

n−i+1

n
+
i+ 1

i

n−i
n

(
n−i
n

+ (e− 2)
i

n

)))

− i

n
· 2 · (n− i)(n− i− 1)

2n2
· i+ 2

i

(
i+ 2

n

)2(
n− i
n

)3

.

When i ≥ 2, 1 + 1/i ≤ 3/2 and 1 + 2/i ≤ 2, thus we get

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ i

en

(
1− 9

20

(
n+ 1

n

)2

· 3

2

)
− 32

729

i

n

(
n+ 2

n

)5

=
i

n
·

(
1

e
− 27

40e

(
n+ 1

n

)2

− 32

729

(
n+ 2

n

)5
)
≥ 0.003 · i

n
,

where the first inequality is by using (n−i)(n−i−1)
n2 ( i+2

n )2(n−in )3 ≤ n−2
n ( i+2

n (n−in )2)2 ≤
n−2
n ( 4

27 (n+2
n )3)2 ≤ 16

729 (n+2
n )5, and the last inequality holds with n ≥ 15.

When i = 1, using Eq. (3), we get

E[[V (ξt)− V (ξt+1) | ξt = x]]

= P−1 ·

(
1−

((
1

n

)3

+ 3

(
1

n

)2
n− 1

n

))
− 2 · P2 ·

(
3

n

)3(
n− 1

n

)3

− P1 ·

((
2

n

)3
((

n− 1

n

)3

+ 3

(
n− 1

n

)2
1

n

)
+ 3

(
2

n

)2
n− 2

n

(
n− 1

n

)3
)

≥ 1

en

(
1− 3

n2
− 16

n2
− 12

n

)
− 27

n3
≥ 0.01 · 1

n
,

where the last inequality holds with n ≥ 18.
Thus, the condition of Lemma 2 holds with E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ 0.003

n ·V (ξt).
We then get, noting that Vmin = 1 and V (x) ≤ n,

E[[τ | ξ0]] ≤ n

0.003
(1 + log V (ξ0)) ∈ O(n log n),

i.e., the expected running time is upper bounded by O(n log n).

Thus, we have shown that sampling is robust to noise for the (1+1)-EA solving
the OneMax problem in the presence of one-bit noise. By comparing Theorem 2 with
Theorem 3, we also find that a gap of one on the value of k can lead to an exponential
difference on the expected running time, which reveals that a careful selection of k is
important for the effectiveness of sampling. The complexity transition from k = 2 to
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k = 3 is because sampling with k = 3 can make false progress (i.e., accepting solutions
with more 0-bits) dominated by true progress (i.e., accepting solutions with fewer 0-
bits), while sampling with k = 2 is not sufficient.

We have also conducted experiments to complement the theoretical results,
which give bounds only. For each value of n and k, we run the (1+1)-EA 1000 times
independently. In each run, we record the number of fitness evaluations until an op-
timal solution w.r.t. the true fitness function is found for the first time. Then the total
number of evaluations of the 1000 runs are averaged as the estimation of the expected
running time, called as the estimated ERT. We will always compute the estimated ERT
in this way for the experiments throughout this paper.

We estimate the expected running time of the (1+1)-EA using sampling with k
from 1 to 30. The results for n = 40, 50, 60 are plotted in Figure 1. We can observe
that the curves are high at k = 1, 2 and drop suddenly at k = 3, which is consistent
with our theoretical results in Theorems 1-3. Note that the curves grow linearly since
k = 3, which is because ERT = 2k· EFHT (i.e., the number of fitness evaluations in
each iteration × the number of iterations), and when the noise has been sufficiently
reduced by sampling, the number of iterations cannot further reduce as k increases,
but the sampling cost increases linearly with k.
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Figure 1: Estimated ERT for the (1+1)-EA using sampling on the OneMax problem
under one-bit noise with p = 1.

3.2 The LeadingOnes Problem

One-bit noise with p = 1
2 is considered here. For the case in which sampling is not

used, Gießen and Kötzing (2016) have proved the exponential running time lower
bound as shown in Theorem 4. We prove in Theorem 5 that sampling can reduce
the expected running time to be polynomial.

Theorem 4. (Gießen and Kötzing, 2016) For the (1+1)-EA solving the LeadingOnes
problem under one-bit noise with p = 1

2 , the expected running time is 2Ω(n).

Theorem 5. For the (1+1)-EA solving the LeadingOnes problem under one-bit noise
with p = 1

2 , if using sampling with k = 10n4, the expected running time is O(n6).

Proof. We use Lemma 1 to prove this theorem. Let LO(x) =
∑n
i=1

∏i
j=1 xj denote the

number of leading 1-bits of a solution x. We first construct a distance function V (x)
as ∀x ∈ X = {0, 1}n, V (x) = n− LO(x). It is easy to verify that V (x ∈ X ∗ = {1n}) = 0
and V (x /∈ X ∗) > 0.

Then, we analyze E[[V (ξt)− V (ξt+1) | ξt = x]] for any xwith V (x) > 0. For the cur-
rent solution x, assume that LO(x) = i (where 0 ≤ i ≤ n − 1). Let x′ be the offspring
solution produced by mutating x. We consider three mutation cases for LO(x′):
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(1) The l-th leading 1-bit is flipped and the first (l − 1) leading 1-bits remain un-
changed, which leads to LO(x′) = l − 1. Thus, ∀1 ≤ l ≤ i : P (LO(x′) = l − 1) =
(1− 1

n )l−1 1
n .

(2) The (i + 1)-th bit (which must be 0) is flipped and the first i leading 1-bits remain
unchanged, which leads to LO(x′) ≥ i + 1. Thus, we have P (LO(x′) ≥ i + 1) =
(1− 1

n )i 1
n .

(3) The first (i + 1) bits remain unchanged, which leads to LO(x′) = i. Thus,
P (LO(x′) = i) = (1− 1

n )i+1.
Assume that LO(x′) = j. We then analyze the acceptance probability of x′, i.e.,

P (f̂(x′) ≥ f̂(x)). Note that f̂(x) = (
∑k
i=1 f

n
i (x))/k, where fni (x) is the fitness output

by one independent noisy evaluation. By one-bit noise with p = 1
2 , the fn(x) value

can be calculated as follows:
(1) The noise does not occur, whose probability is 1− p = 1

2 . Thus, P (fn(x) = i) = 1
2 .

(2) The noise occurs, the probability of which is p = 1
2 .

(2.1) It flips the l-th leading 1-bit, then fn(x) = l − 1. Thus, we have ∀1 ≤ l ≤ i :
P (fn(x) = l − 1) = 1

2n .
(2.2) It flips the (i + 1)-th bit, which leads to fn(x) ≥ i + 1. Thus, we have P (fn(x) ≥
i + 1) = 1

2n . Note that fn(x) reaches the minimum i + 1 when x has 0-bit at position
i+ 2, and fn(x) reaches the maximum n when x has all 1-bits since position i+ 2.
(2.3) Otherwise, fn(x) remains unchanged. Thus, we have P (fn(x) = i) = 1

2 (1− i+1
n ).

For each i, let xopt
i be the solution which has only 1-bits except for the (i + 1)-th bit

(i.e., xopt
i = 1i01n−i−1), and let xpes

i be the solution with i leading 1-bits and otherwise
only 0-bits (i.e., xpes

i = 1i0n−i). Then we have the stochastic ordering fn(xpes
i ) �

fn(x) � fn(xopt
i ), which implies that f̂(xpes

i ) � f̂(x) � f̂(xopt
i ). We can similarly get

f̂(xpes
j ) � f̂(x′) � f̂(xopt

j ). Thus, it is easy to see that

P (f̂(xpes
j ) ≥ f̂(xopt

i )) ≤ P (f̂(x′) ≥ f̂(x)) ≤ P (f̂(xopt
j ) ≥ f̂(xpes

i )). (5)

Let Pmut(x, x′) be the probability that x′ is generated by mutating x. By combin-
ing the mutation probability with the acceptance probability, we have

E[[V (ξt)− V (ξt+1) | ξt = x]] (6)

=

n∑
j=0

∑
LO(x′)=j

Pmut(x, x
′) · P (f̂(x′) ≥ f̂(x)) · (n− i− (n− j))

≥
i−1∑
j=0

∑
LO(x′)=j

Pmut(x, x
′) · P (f̂(xopt

j ) ≥ f̂(xpes
i )) · (j − i)

+

n∑
j=i+1

∑
LO(x′)=j

Pmut(x, x
′) · P (f̂(xpes

j ) ≥ f̂(xopt
i )) · (j − i) (by Eq. (5))

≥
i−1∑
j=0

∑
LO(x′)=j

Pmut(x, x
′) · P (f̂(xopt

i−1) ≥ f̂(xpes
i )) · (j − i)

+

n∑
j=i+1

∑
LO(x′)=j

Pmut(x, x
′) · P (f̂(xpes

i+1) ≥ f̂(xopt
i )) · (i+ 1− i)

(Because P (f̂(xoptj ) ≥ f̂(xpesi )) ≤ P (f̂(xopti−1) ≥ f̂(x
pes
i )) for j ≤ i− 1,

and P (f̂(xpesj ) ≥ f̂(xopti )) ≥ P (f̂(xpesi+1) ≥ f̂(x
opt
i )) for j ≥ i+ 1)
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=

(
1− 1

n

)i
1

n
P (f̂(xpes

i+1)≥ f̂(xopt
i ))−

i−1∑
j=0

(
1− 1

n

)j
1

n
· (i−j)

P (f̂(xopt
i−1)≥ f̂(xpes

i ))

(Because
n∑

j=i+1

∑
LO(x′)=j

Pmut(x, x
′) = P (LO(x′) ≥ i+ 1) =

(
1− 1

n

)i
1

n

and ∀0 ≤ j ≤ i− 1 :
∑

LO(x′)=j

Pmut(x, x
′) = P (LO(x′) = j) =

(
1− 1

n

)j
1

n
)

≥ 1

en
P (f̂(xpes

i+1) ≥ f̂(xopt
i ))− i(i+ 1)

2n
P (f̂(xopt

i−1) ≥ f̂(xpes
i )).

(Because i ≤ n− 1 and 1 ≥
(
1− 1

n

)i

≥
(
1− 1

n

)n−1

≥ 1

e
)

We then bound the probabilities P (f̂(xpes
i+1) ≥ f̂(xopt

i )) and P (f̂(xopt
i−1) ≥ f̂(xpes

i )).
First, we have

P (f̂(x′) ≥ f̂(x)) = P

((
k∑
i=1

fni (x′)

)
/k ≥

(
k∑
i=1

fni (x)

)
/k

)

= P

(
k∑
i=1

fni (x′)−
k∑
i=1

fni (x) ≥ 0

)
= P (Z(x′, x) ≥ 0),

where the random variable Z(x′, x) is used to represent
∑k
i=1 f

n
i (x′) −

∑k
i=1 f

n
i (x)

for convenience. We then calculate the expectation and variance of fn(xopt
i ) and

fn(xpes
i ). Based on the analysis of fn(x), we can easily derive

E[[fn(xopt
i )]] =

1

2
i+

i−1∑
j=0

1

2n
j +

1

2n
n+

1

2

(
1− i+ 1

n

)
i = i+

1

2
− i2 + 3i

4n
,

E[[fn(xpes
i )]] =

1

2
i+

i−1∑
j=0

1

2n
j +

1

2n
(i+ 1) +

1

2

(
1− i+ 1

n

)
i = i− i2 + i− 2

4n
,

Var(fn(xopt
i )) = E[[(fn(xopt

i ))2]]− (E[[fn(xopt
i )]])2

=
1

2
i2 +

i−1∑
j=0

1

2n
j2 +

1

2n
n2 +

1

2

(
1− i+ 1

n

)
i2 −

(
i+

1

2
− i2 + 3i

4n

)2

≤ 1

6
n2 +

3

2
n+

5

6
≤ 7

6
n2,

Var(fn(xpes
i )) = E[[(fn(xpes

i ))2]]− (E[[fn(xpes
i )]])2

=
1

2
i2 +

i−1∑
j=0

1

2n
j2 +

1

2n
(i+ 1)2 +

1

2

(
1− i+ 1

n

)
i2 −

(
i− i2 + i− 2

4n

)2

≤ 1

6
n2 +

1

4
n+

1

12
+

1

2n
≤ 5

12
n2.

Note that the last inequalities for Var(fn(xopt
i )) and Var(fn(xpes

i )) hold with n ≥ 2.
Thus, we have

E[[Z(xpes
i+1, x

opt
i )]] = k(E[[fn(xpes

i+1)]]− E[[fn(xopt
i )]]) =

k

2
,
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E[[Z(xopt
i−1, x

pes
i )]] = k(E[[fn(xopt

i−1)]]− E[[fn(xpes
i )]]) = −k

2
,

Var(Z(xpes
i+1, x

opt
i )) = k(Var(fn(xpes

i+1)) + Var(fn(xopt
i ))) ≤ 19

12
kn2,

Var(Z(xopt
i−1, x

pes
i )) = k(Var(fn(xopt

i−1)) + Var(fn(xpes
i ))) ≤ 19

12
kn2.

Then, we can get the bounds on the probabilities P (f̂(xpes
i+1) ≥ f̂(xopt

i )) and
P (f̂(xopt

i−1) ≥ f̂(xpes
i )) by Chebyshev’s inequality. Note that Z(x′, x) is integer-valued.

P (f̂(xpes
i+1) ≥ f̂(xopt

i )) = P (Z(xpes
i+1, x

opt
i ) ≥ 0) = 1− P (Z(xpes

i+1, x
opt
i ) ≤ −1)

= 1− P (Z(xpes
i+1, x

opt
i )− E[[Z(xpes

i+1, x
opt
i )]] ≤ −1− E[[Z(xpes

i+1, x
opt
i )]])

≥ 1− P (|Z(xpes
i+1, x

opt
i )− E[[Z(xpes

i+1, x
opt
i )]]| ≥ 1 + k/2)

≥ 1−
Var(Z(xpes

i+1, x
opt
i ))

(1 + k/2)2
(by Chebyshev’s inequality) ≥ 1− 19n2

3k
.

Similarly, we have

P (f̂(xopt
i−1) ≥ f̂(xpes

i )) = P (Z(xopt
i−1, x

pes
i ) ≥ 0)

= P (Z(xopt
i−1, x

pes
i )− E[[Z(xopt

i−1, x
pes
i )]] ≥ −E[[Z(xopt

i−1, x
pes
i )]])

≤ P (|Z(xopt
i−1, x

pes
i )− E[[Z(xopt

i−1, x
pes
i )]]| ≥ k/2)

≤
Var(Z(xopt

i−1, x
pes
i ))

(k/2)2
(by Chebyshev’s inequality) ≤ 19n2

3k
.

By applying these two probability bounds to Eq. (6), we have

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ 1

en

(
1− 19n2

3k

)
− i(i+ 1)

2n

19n2

3k

≥ 1

en

(
1− 19

30n2

)
− (n− 1)n

2n

19

30n2
(by i ≤ n− 1 and k = 10n4)

≥ 0.05

n
− 19

30en3
.

Thus, condition of Lemma 1 holds with E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ Ω( 1
n ). We can

get, noting that V (x) = n− LO(x) ≤ n,

E[[τ | ξ0]] ≤ O(n) · V (ξ0) ∈ O(n2),

i.e., the expected iterations of the (1+1)-EA for finding the optimal solution is upper
bounded by O(n2). Because the expected running time is 2k i.e., (the number of fit-
ness evaluations in each iteration) × the expected iterations and k = 10n4, we con-
clude that the expected running time is O(n6).

4 Robustness to Posterior Noise

In the above section, we have shown that sampling can be robust to one-bit noise (a
kind of prior noise) for the (1+1)-EA solving the OneMax and the LeadingOnes prob-
lems. In this section, by comparing the expected running time of the (1+1)-EA with
or without sampling for solving OneMax and LeadingOnes under additive Gaussian
noise, we will prove that sampling can also be robust to posterior noise.
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4.1 The OneMax Problem

Additive Gaussian noiseN (θ, σ2) with σ2 ≥ 1 is considered here. We first analyze the
case in which sampling is not used. By applying the original simplified drift theo-
rem (Oliveto and Witt, 2011, 2012), we prove that the expected running time is expo-
nential, as shown in Theorem 6.

Theorem 6. For the (1+1)-EA solving the OneMax problem under additive Gaussian
noiseN (θ, σ2) with σ2 ≥ 1, the expected running time is exponential.

Proof. We use Lemma 3 to prove this theorem. Let Xt be the number of 0-bits
of the solution after t iterations of the (1+1)-EA. We consider the interval [0, n1/4],
i.e., the parameters a = 0 and b = n1/4 in Lemma 3. Then, we analyze the drift
E[[Xt −Xt+1 | Xt = i]] for 1 ≤ i < n1/4. Let pi,i+d denote the probability that the next
solution after bit-wise mutation and selection has i + d (−i ≤ d ≤ n − i) number of
0-bits (i.e., Xt+1 = i+ d), and let Pd denote the probability that the offspring solution
generated by bit-wise mutation has i + d number of 0-bits (i.e., |x′|0 = i + d). Then,
we have, for d 6= 0,

pi,i+d = Pd · P (fn(x′) ≥ fn(x)) = Pd · P (n− i− d+ δ1 ≥ n− i+ δ2)

= Pd · P (δ1 − δ2 ≥ d) = Pd · P (δ ≥ d),

where δ1, δ2 ∼ N (θ, σ2) and δ ∼ N (0, 2σ2). We thus have

E[[Xt −Xt+1 | Xt = i]] =

i∑
d=1

d · pi,i−d −
n−i∑
d=1

d · pi,i+d ≤
i∑

d=1

d · pi,i−d − pi,i+1 (7)

≤
i∑

d=1

d · P−d − P1 · P (δ ≥ 1).

Let δ′ ∼ N (0, 1). Then, P (δ ≥ 1) = P (δ′ ≥ 1√
2σ

) ≥ P (δ′ ≥ 1√
2
) = P (δ′ ≤ − 1√

2
) ≥ 0.23,

where the first inequality is by σ ≥ 1, and the last one is obtained by calculating the
CDF of the standard normal distribution. Furthermore, P1 ≥ n−i

n (1 − 1
n )n−1 ≥ n−i

en ,
and P−d ≤

(
i
d

)
1
nd

. Applying these probability bounds to Eq. (7), we have

E[[Xt −Xt+1 | Xt = i]] ≤
i∑

d=1

d ·
(
i

d

)
1

nd
− n− i

en
· 0.23

= −0.23

e
+

0.23

e

i

n
+
i

n

(
1 +

1

n

)i−1

≤ −0.23

e
+

(
0.23

e
+ e

)
i

n

= −0.23

e
+O

(
n1/4

n

)
. (since i < n1/4)

Thus, E[[Xt −Xt+1 | Xt = i]] = −Ω(1), which implies that condition 1 of Lemma 3
holds. For condition 2, we need to investigate P (|Xt+1 −Xt| ≥ j | Xt ≥ 1). Because it
is necessary to flip at least j bits, we have

P (|Xt+1 −Xt| ≥ j | Xt ≥ 1) ≤
(
n

j

)
1

nj
≤ 1

j!
≤ 2 · 1

2j
,

which implies that condition 2 of Lemma 3 holds with δ = 1 and r(l) = 2. Note that
l = b− a = n1/4. Thus, by Lemma 3, the expected running time is exponential.
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Note that Friedrich et al. (2015) have proved that for solving OneMax under ad-
ditive Gaussian noise N (0, σ2) with σ2 ≥ n3, the classical (µ+1)-EA needs super-
polynomial expected running time. Our result in Theorem 6 is complementary to
their result with µ = 1, since it covers a constant variance. We then prove in Corol-
lary 1 that using sampling can reduce the expected running time to be polynomial.
The proof idea is that sampling with a large enough k can reduce the noise to be
σ2 = O(log n/n), which allows a polynomial running time, as shown in the follow-
ing lemma. In the following analysis, let poly(n) indicate any polynomial of n.

Lemma 5. (Gießen and Kötzing, 2016) Suppose posterior noise, sampling from some
distributionD with variance σ2. Then we have that the (1+1)-EA optimizes OneMax in
polynomial time if σ2 = O(log n/n).

Corollary 1. For the (1+1)-EA solving the OneMax problem under additive Gaussian
noiseN (θ, σ2) with σ2 ≥ 1 and σ2 ∈ O(poly(n)), if using sampling with k = d nσ

2

logne, the
expected running time is polynomial.

Proof. The noisy fitness is fn(x) = f(x) + δ, where δ ∼ N (θ, σ2). The fitness output
by sampling is f̂(x) = (

∑k
i=1 f

n
i (x))/k = (

∑k
i=1 f(x) + δi)/k = f(x) +

∑k
i=1 δi/k,

where δi ∼ N (θ, σ2). Thus, f̂(x) = f(x) + δ′, where δ′ ∼ N (θ, σ
2

k ). That is, sampling

reduces the variance σ2 of noise to be σ2

k . Because k = d nσ
2

logne, we have σ2

k ≤
logn
n . By

Lemma 5, the expected iterations of the (1+1)-EA for finding the optimal solution is
polynomial. We know that the expected running time is 2k × the expected iterations.
Since σ2 ∈ O(poly(n)), the expected running time is polynomial.

Thus, the comparison between Theorem 6 and Corollary 1 correct our previous
statement in (Qian et al., 2014), that sampling is ineffective for the (1+1)-EA solving
OneMax under additive Gaussian noise. We have conducted experiments to comple-
ment the theoretical results, which give bounds only. For the additive Gaussian noise,
we set θ = 0 and σ = 1. The results for n = 10, 20, 30 are plotted in Figure 2. Note that
the point with k = 1 in the figure corresponds to the ERT without sampling.

From Figure 2(b and c), we can observe that the ERT has a fast drop at the begin-
ning of the curve, reaches the minimum at a small sample size, and consistently grows
after that. The minimum is much smaller than the value at k = 1, thus it is clear that
a moderate sampling can reduce the running time from no sampling, which is con-
sistent with our theoretical result. However, in Figure 2(a), the ERT always increases
with k, which is similar to what was observed in Figure 1 in (Qian et al., 2014). The
setting in (Qian et al., 2014) is n = 10, θ = 0 and σ = 10. A too small n (e.g., n = 10)
makes the decrease of the number of iterations easily dominated by the increase of k,
therefore, we did not observe the dropping stage of the curve.

4.2 The LeadingOnes Problem

Additive Gaussian noise N (θ, σ2) with σ2 ≥ n2 is considered here. We first analyze
the case in which sampling is not used. Using the original simplified drift theo-
rem (Oliveto and Witt, 2011, 2012), we prove that the expected running time is ex-
ponential, as shown in Theorem 7.

Theorem 7. For the (1+1)-EA solving the LeadingOnes problem under additive Gaus-
sian noiseN (θ, σ2) with σ2 ≥ n2, the expected running time is exponential.

Proof. We use Lemma 3 to prove this theorem. Let Xt be the number of 0-bits of the
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Figure 2: Estimated ERT for the (1+1)-EA using sampling on the OneMax problem
under additive Gaussian noise with θ = 0 and σ = 1.

solution after t iterations of the (1+1)-EA. As in the proof of Theorem 6, we have

E[[Xt −Xt+1 | Xt = i]] ≤
i∑

d=1

d · pi,i−d − pi,i+1 (8)

For pi,i−d, we use pi,i−d ≤ P−d ≤
(
i
d

)
1
nd

. For pi,i+1, we considern−ipossible cases such
that one 1-bit is flipped and the other bits remain unchanged, the probability of which
is 1

n (1 − 1
n )n−1. Let x and x′ denote the current solution and the offspring solution,

respectively. Let LO denote the number of leading 1-bits of x, i.e., LO = f(x). The
noisy fitness of x is fn(x) = LO + δ1, where δ1 ∼ N (θ, σ2). Then, the acceptance
probability of x′ in these n− i cases can be calculated as follows:
(1) If the flipped 1-bit is the j-th leading 1-bit, fn(x′) = j − 1 + δ2, where 1 ≤ j ≤ LO
and δ2 ∼ N (θ, σ2). Thus, the acceptance probability is P (fn(x′) ≥ fn(x)) = P (j − 1 +
δ2 ≥ LO + δ1) = P (δ2 − δ1 ≥ LO − j + 1) = P (δ ≥ LO − j + 1), where δ ∼ N (0, 2σ2).
(2) Otherwise, fn(x′) = LO + δ2. Thus, the acceptance probability is P (δ ≥ 0).

Applying these probability bounds to Eq. (8), we have

E[[Xt −Xt+1 | Xt = i]]

≤
i∑

d=1

d·
(
i

d

)
1

nd
− 1

n

(
1− 1

n

)n−1

·

LO∑
j=1

P (δ ≥ LO−j+1) + (n−i−LO)P (δ ≥ 0)


≤ i

n

(
1 +

1

n

)i−1

− 1

en
·
n−i∑
j=1

P (δ ≥ n− i− j + 1),

where the second “≤” is since the term in
()

reaches the minimum when LO = n− i.
Let δ′ ∼ N (0, 1). Using P (δ′ ≥ u) ≥ 1

2 (1 −
√

1− e−u2) ≥ 1
2 (1 − u) for u > 0 (see

Eq. (D.17) in (Mohri et al., 2012)), we have

P (δ ≥ n− i− j + 1) = P

(
δ√
2σ
≥ n− i− j + 1√

2σ

)
= P

(
δ′ ≥ n− i− j + 1√

2σ

)
≥ 1

2

(
1− n− i− j + 1√

2σ

)
≥ 1

2

(
1− n− i− j + 1√

2n

)
,

where the last inequality is by σ ≥ n. Thus, we have

E[[Xt −Xt+1 | Xt = i]] ≤ i

n

(
1 +

1

n

)i−1

− 1

en
·
n−i∑
j=1

1

2

(
1− n− i− j + 1√

2n

)
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=
i

n

(
1 +

1

n

)i−1

− n− i
2en

·
(

1− n− i+ 1

2
√

2n

)
≤ − 1

2e

(
1− 1

2
√

2

)
+O

(
n

1
4

n

)
,

where the last inequality is by i < n
1
4 . Thus, E[[Xt −Xt+1 | Xt = i]] = −Ω(1), which

implies that condition 1 of Lemma 3 holds. As in the proof of Theorem 6, it is easy
to verify that condition 2 of Lemma 3 holds with δ = 1 and r(l) = 2. Thus, we can
conclude that the expected running time is exponential.

We then prove in Corollary 2 that using sampling can reduce the expected run-
ning time to be polynomial. The idea is that sampling with a large enough k can re-
duce the noise to be σ2 ≤ 1/(12en2), which allows a polynomial running time, as
shown in the following lemma.

Lemma 6. (Gießen and Kötzing, 2016) Suppose posterior noise, sampling from some
distribution D with variance σ2. Then we have that the (1+1)-EA optimizes Leadin-
gOnes in O(n2) time if σ2 ≤ 1/(12en2).

Corollary 2. For the (1+1)-EA solving the LeadingOnes problem under additive Gaus-
sian noise N (θ, σ2) with σ2 ≥ n2 and σ2 ∈ O(poly(n)), if using sampling with
k = d12en2σ2e, the expected running time is polynomial.

Proof. As in the proof of Corollary 1, sampling reduces the variance σ2 of noise to be
σ2

k . Because k = d12en2σ2e, we have σ2

k ≤
1

12en2 . By Lemma 6, the expected iterations
of the (1+1)-EA for finding the optimal solution is O(n2). Because the expected run-
ning time is 2k × the expected iterations and σ2 ∈ O(poly(n)), the expected running
time is polynomial.

Note that Akimoto et al. (2015) have investigated the running time of a gen-
eral optimization algorithm solving a class of integer-valued functions under additive
Gaussian noise. They have proved in Theorem 2.2 of (Akimoto et al., 2015) that with a
high probability, the running time by using sampling is not larger than the noise-free
running time by a logarithmic factor. Note that although their algorithm and prob-
lem setting covers the case we considered that the (1+1)-EA is used to solve OneMax
and LeadingOnes, the employed sampling technique is different. A rounding func-
tion bf̂ + 0.5c is applied to the average fitness value f̂ in (Akimoto et al., 2015), while
we directly use the average value.

5 Comparing with Parent Populations and Threshold Selection

In the above two sections, we have proved that sampling is robust to both one-bit and
additive Gaussian noise for the (1+1)-EA solving OneMax and LeadingOnes. Previous
studies (Qian et al., 2015a; Gießen and Kötzing, 2016) have shown that populations
and threshold selection can also bring robustness to noise. For solving the OneMax
problem under one-bit noise with p ∈ w(log n/n) (i.e., the noise level is high), the
expected running time of the (1+1)-EA is super-polynomial (Droste, 2004). Gießen
and Kötzing (2016) proved that the (µ+1)-EA with µ ≥ 12 log(15n)/p finds the optimal
solution in time O(µn log n), and the (1+λ)-EA with λ ≥ max{12/p, 24}n log n needs
O((n2 log n+n2λ)/p) time; Qian et al. (2015a) proved that the (1+1)-EA using threshold
selection τ = 1 needs time O(n2 log n/p2). That is, employing populations or thresh-
old selection can reduce the running time to be polynomial. Thus, a natural question
is whether sampling can be better than these two strategies? We give positive answers
by analyzing two concrete examples.
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5.1 Sampling vs. Parent Populations

To compare sampling with parent populations, we consider the OneMax problem un-
der additive Gaussian noiseN (θ, σ2). Recently, Friedrich et al. (2015) have proved that
the (µ+1)-EA needs super-polynomial time when θ = 0 and σ2 ≥ n3, as shown in The-
orem 8. In Corollary 1, we have proved that the (1+1)-EA using sampling with k =

d nσ
2

logne can solve the problem in polynomial time when σ2 ≥ 1 and σ2 ∈ O(poly(n)).
Thus, the comparison between Corollary 1 and Theorem 8 directly shows that sam-
pling can be more tolerant of noise than parent populations.

Theorem 8. (Friedrich et al., 2015) For the (µ+1)-EA solving the OneMax problem un-
der additive Gaussian noise N (0, σ2), if σ2 ≥ n3 and µ is bounded from above by a
polynomial in n, the expected running time is super-polynomial.

5.2 Sampling vs. Threshold Selection

When proving the robustness of threshold selection to one-bit noise, Qian et al.
(2015a) also showed its limitation by proving that the (1+1)-EA using threshold se-
lection needs at least exponential time for solving the OneMax problem under asym-
metric one-bit noise with p = 1, as shown in Theorem 9. To show that sampling can be
better than threshold selection, we thus consider the asymmetric one-bit noise model
here. We prove in Theorem 10 that the (1+1)-EA using sampling with k = d24 log ne
can solve OneMax in time O(n log2 n). The proof is finished by using Lemma 2, and is
similar to that of Theorem 3 except that the probabilities pi,i+d are different due to the
difference on the noise and the value of k. The detailed proofs are shown in the sup-
plementary material due to space limitations. The comparison between Theorems 9
and 10 shows that sampling can be more tolerant of noise than threshold selection.

Theorem 9. (Qian et al., 2015a) For the (1+1)-EA solving the OneMax problem under
asymmetric one-bit noise with p = 1, if using threshold selection τ ≥ 0, the expected
running time is at least exponential.

Theorem 10. For the (1+1)-EA solving the OneMax problem with n ≥ 7 under asym-
metric one-bit noise with p = 1, if using sampling with k = d24 log ne, the expected
running time is O(n log2 n).

6 The Ineffectiveness of Sampling

In the previous sections, we have shown that sampling is an effective strategy to cope
with noise. Then, a natural question is that if sampling can be always effective. We
give a negative answer by analyzing the (1+1)-EA solving the Trap problem under ad-
ditive Gaussian noise. We first prove in Lemma 7 that noise does not bring a nega-
tive impact in this case, which means that the expected running time for finding an
optimal solution under noise is not larger than that without noise. The proof is by
applying additive drift analysis (He and Yao, 2001).

Lemma 7. For the (1+1)-EA solving the Trap problem with C ≥ n + 1 under additive
Gaussian noise N (θ, σ2) with σ2 ≤ n2/(8 log n), when n ≥ 8, noise does not bring a
negative impact, i.e., the expected running time is not larger than that without noise.

Proof. The two EAs with and without noise are different only on whether the fitness
evaluation is disturbed by noise, thus, they have the same number of fitness evalu-
ations in each iteration. Then, comparing their expected running time is equivalent
to comparing their expected iterations. Let Markov chains {ξt}+∞t=0 and {ξ′t}+∞t=0 model
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the (1+1)-EA with additive Gaussian noise and without noise for maximizing the Trap
problem, respectively. Let E[x] and E′[x] denote their EFHT when starting from x,
respectively. Thus, our goal is to show that E[x] ≤ E′[x].

We use Lemma 1 to derive an upper bound on E[x]. Let the distance function be
∀x ∈ X = {0, 1}n : V (x) = E′[x]. Then, it is easy to verify that V (x ∈ X ∗ = {1n}) = 0
and V (x /∈ X ∗) > 0. From Lemma 2 in (Qian et al., 2012), we know that E′[x] only
depends on the number of 0-bits of x (denoted by i), and it increases with i. Let E′[i]
denote E′[x] with |x|0 = i, then we have E′[0] = 0 < E′[1] < . . . < E′[n].

We are then to analyze the drift E[V (ξt)− V (ξt+1) | ξt = x] for any xwith |x|0 ≥ 1.
Let i (where 1 ≤ i ≤ n) denote the number of 0-bits of the current solution x. Let
muti,j be the probability that the offspring solution x′ generated by mutating x has
j number of 0-bits. For the two chains {ξt}+∞t=0 and {ξ′t}+∞t=0 , let pi,j and p′i,j be the
probabilities that the next solution after mutation and selection has j number of 0-
bits, respectively. For the (1+1)-EA solving Trap without noise (i.e., {ξ′t}+∞t=0 ), only the
offspring solution with more 0-bits or the optimal solution 1n will be accepted, thus

p′i,0 = muti,0, ∀0 < j < i : p′i,j = 0, p′i,i =

i∑
j=1

muti,j , ∀j > i : p′i,j = muti,j .

For the (1+1)-EA solving Trap under noise (i.e., {ξt}+∞t=0 ), due to the fitness evaluation
disturbed by noise, the offspring solution with more 0-bits and the optimal solution
may be rejected, while the offspring solution with less 0-bits may be accepted. Thus,

pi,0 ≤ muti,0, ∀0 < j < i : pi,j ≥ 0, ∀j > i : pi,j ≤ muti,j .

We then have

E[V (ξt)− V (ξt+1) | ξt = x] = V (x)− E[V (ξt+1) | ξt = x] (9)

= E′[i]−
n∑
j=0

pi,jE′[j] = 1 +

n∑
j=0

p′i,jE′[j]−
n∑
j=0

pi,jE′[j]

= 1− (p′i,0 − pi,0)E′[i] +

i−1∑
j=1

pi,j(E′[i]− E′[j]) +

n∑
j=i+1

(p′i,j − pi,j)(E′[j]− E′[i]),

where the last equality can be derived by using the above calculation of p′i,j and pi,j .
Let δ1, δ2 ∼ N (θ, σ2), δ ∼ N (0, 2σ2) and δ′ ∼ N (0, 1). Let j denote the number of

0-bits of the offspring solution x′ generated by mutation. For j ≥ 1 ∧ j 6= i, we have

pi,j = muti,j · P (fn(x′) ≥ fn(x)) = muti,j · P (−(n− j) + δ1 ≥ −(n− i) + δ2)

= muti,j · P (δ ≥ i− j) = muti,j · P (δ′ ≥ (i− j)/(
√

2σ)).

For j = 0 (i.e., the offspring solution x′ is optimal), we have

pi,0 = muti,0 · P (fn(1n) ≥ fn(x)) = muti,0 · P (C − n+ δ1 ≥ −(n− i) + δ2)

= muti,0 · P (δ ≤ C − i) ≥ muti,0 · P (δ′ ≤ (n+ 1− i)/(
√

2σ)),

where the inequality is by C ≥ n+ 1.
We then derive a lower bound on E′[i+ 1]−E′[i] for i ≥ 1. In (Qian et al., 2012), it

has been proved that E′[i+ 1] > E′[i]. In their proof of Lemma 2, they derived that

E′[i+ 1]− E′[i] = P0 · (1− 2p)E′[i+ 1] +

(∑i−1

j=1
Pj + (1− p)Pi + pP0

)
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·
(
E′[i+ 1]− E′[i]

)
+ (1− 2p) ·

(∑n−1

j=i+1
Pj(E′[j + 1]− E′[j])

)
,

where Pj (0 ≤ j ≤ n− 1) denotes the probability that the number of 0-bits changes to
be j after bit-wise mutation on a Boolean string z ∈ {0, 1}n−1 with |z|0 = i. The proof
idea is to utilize a common mutation on a Boolean string z ∈ {0, 1}n−1 with |z|0 = i
for the expansion of E′[i + 1] and E′[i], because the bit-wise mutation on a solution
with i+ 1 0-bits can be equivalently divided into mutation on one 0-bit and mutation
on z, and the mutation on a solution with i 0-bits can be divided into mutation on one
1-bit and mutation on z. Note that they considered a general setting for the mutation
probability of the (1+1)-EA, i.e., each bit is flipped independently with a probability
of p ∈ (0, 0.5). Since E′[i+ 1] > E′[i] for any i ≥ 0, we get

E′[i+ 1]− E′[i] ≥ P0 · (1− 2p)E′[i+ 1] =
1

ni

(
1− 1

n

)n−1−i

·
(

1− 2

n

)
E′[i+ 1],

where the equality is obtained by replacing p with 1
n and using P0 = 1

ni (1−
1
n )n−1−i.

Based on the above analysis, we can simplify Eq. (9). For i ≥ 2, we have

E[V (ξt)− V (ξt+1) | ξt = x] ≥ 1− (p′i,0 − pi,0)E′[i] + pi,i−1(E′[i]− E′[i− 1])

≥ 1−muti,0 · P
(
δ′ ≥ n+ 1− i√

2σ

)
· E′[i]

+muti,i−1 · P
(
δ′ ≥ 1√

2σ

)
· 1

ni−1

(
1− 1

n

)n−i
·
(

1− 2

n

)
E′[i]

≥ 1− 1

ni

(
1− 1

n

)n−i
· P
(
δ′ ≥ n+ 1− i√

2σ

)
· E′[i]

+
i

n

(
1− 1

n

)n−1

· P
(
δ′ ≥ 1√

2σ

)
· 1

ni−1

(
1− 1

n

)n−i
·
(

1− 2

n

)
E′[i].

For i = 1, we have

E[V (ξt)− V (ξt+1) | ξt = x] ≥ 1− (p′1,0 − p1,0)E′[1] + (p′1,2 − p1,2)(E′[2]− E′[1])

≥ 1− 1

n

(
1− 1

n

)n−1

· P
(
δ′ ≥ n√

2σ

)
· E′[1]

+
n− 1

n

(
1− 1

n

)n−1

· P
(
δ′ ≥ 1√

2σ

)
· 1

n

(
1− 1

n

)n−2

·
(

1− 2

n

)
E′[1].

Thus, in order to show that E[V (ξt)− V (ξt+1) | ξt = x] ≥ 1, we need to prove that, for
1 ≤ i ≤ n, the following inequality holds:

i

(
1− 1

n

)n−1(
1− 2

n

)
· P
(
δ′ ≥ 1√

2σ

)
≥ P

(
δ′ ≥ n+ 1− i√

2σ

)
. (10)

Using the inequality for the standard normal distribution 1√
2π

t
t2+1e

− t22 < P (δ′ ≥ t) <
1√
2π

1
t e
− t22 for t > 0 (Cook, 2009), we get

P
(
δ′ ≥ 1√

2σ

)
P
(
δ′ ≥ n+1−i√

2σ

) > 1√
2π

1√
2σ

1
2σ2

+1
e−

1
4σ2

1√
2π

√
2σ

n+1−ie
− (n+1−i)2

4σ2

=
n+ 1− i
1 + 2σ2

e
(n+1−i)2−1

4σ2 .
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Thus, we only need to show that

i

e

(
1− 2

n

)
n+ 1− i
1 + 2σ2

e
(n+1−i)2−1

4σ2 ≥ 1.

For i = 1, we have

1

e

(
1− 2

n

)
n

1 + 2σ2
e
n2−1

4σ2 =
1

e

n− 2

1 + 2σ2
e
n2−1

4σ2 ≥ 1

e

n

2(1 + 2σ2)
e
n2

8σ2

≥ 1

e

n

2(1 + n2/(4 log n))
n ≥ 1

e
· 3

2
log n ≥ 1,

where the first inequality holds with n ≥ 4, the second inequality is by σ2 ≤
n2/(8 log n), the third inequality is obtained by using 1 + n2/(4 log n) ≤ n2/(3 log n)
for n ≥ 5, and the last one holds with n ≥ 7.
For i = 2, we can similarly get, for n ≥ 6,

2

e

(
1− 2

n

)
n− 1

1 + 2σ2
e

(n−1)2−1

4σ2 ≥ 2

e

n

2(1 + 2σ2)
e
n2

8σ2 ≥ 2

e
log n ≥ 1.

For i = 3, we have, for n ≥ 8,

3

e

(
1− 2

n

)
n− 2

1 + 2σ2
e

(n−2)2−1

4σ2 ≥ 3

e

n

2(1 + 2σ2)
e
n2

8σ2 ≥ 3

e
log n ≥ 1.

For i ≥ 4, Eq. (10) trivially holds, since i
e (1− 2

n ) ≥ 1 for n ≥ 7.
Thus, we can conclude that when n ≥ 8, E[V (ξt) − V (ξt+1) | ξt = x] ≥ 1,

which implies that the condition of Lemma 1 holds with c = 1. We then get that
∀x ∈ X ,E[x] ≤ V (x) = E′[x], and thus the lemma holds.

We have also conducted experiments to verify the theoretical results. We com-
pare the estimated expected running time (ERT) of the (1+1)-EA without noise and
with additive Gaussian noise. For the parameter C of the Trap problem, we test n+ 1,
n2 and 2n, respectively; for additive Gaussian noise, we set θ = 0, and the variance σ2

is set as (log n)/8, n/8 and n2/(8 log n), respectively. We test the problem size n from 8
to 12. For each value of C and n, the ERT of the (1+1)-EA is estimated by the average
number of fitness evaluations of 1000 independent runs. The results are plotted in
Figure 3. We can observe that the curves with noise are always under the curve with-
out noise, which is consistent with our theoretical result. Furthermore, we can make
a clear observation that the curve with larger noise variance is lower, which implies
that the positive impact of noise increases with the level of noise. Note that the curves
are almost the same for different C values. This is because the value of C only affects
the acceptance probability of the optimal solution (which is always at least 1/2), and
thus the behavior of the (1+1)-EA is almost the same for different C values.

For the (1+1)-EA solving the Trap problem under additive Gaussian noise, noise
may bring a positive impact and sampling will reduce the noise level (i.e., the variance
of noise is reduced by a factor of k). Under the assumption that the positive impact
of noise increases with the level of noise (observed in Figure 3), we can conclude that
sampling will decrease the positive impact and then increase the running time, as
shown in Conjecture 1. When the noise level is very large, i.e., σ2 → +∞, the noise
will completely obscure the underlying deception of the Trap problem, and the (1+1)-
EA behaves similar to that on the Needle problem (i.e., a random walk), the running
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(a) C = n+ 1 (b) C = n2 (c) C = 2n

Figure 3: Estimated ERT comparison for the (1+1)-EA solving the Trap problem with
or without noise, where a base 10 logarithmic scale is used for the y-axis.

time of which is 2Ω(n) (Oliveto and Witt, 2011). As the sample size k increases, the
noise level σ2/k decreases. When the noise tends to disappear, i.e., σ2/k → 0, the
(1+1)-EA on Trap will behave close to that without noise, the expected running time
of which is Θ(nn) (Droste et al., 2002). A rigorous analysis will be studied in the future,
but we verify the conjecture by experiments here. For additive Gaussian noise, we set
θ = 0 and σ = 10. The parameter C of the Trap problem is set to be n+ 1. The results
for the problem size n = 8, 10, 12 are plotted in Figure 4. We can observe that the ERT
always increases with k, which is consistent with our conjecture.

Conjecture 1. For the (1+1)-EA solving the Trap problem under additive Gaussian
noise, sampling is ineffective, i.e., using sampling will increase the running time.
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Figure 4: Estimated ERT for the (1+1)-EA using sampling on the Trap problem under
additive Gaussian noiseN (θ, σ2) with θ = 0 and σ = 10.

7 Conclusion

EAs have been widely applied to solve noisy optimization problems, which are of-
ten encountered in real-world optimization tasks. Sampling is a popular method
to reduce the negative effect of noise in evolutionary optimization. Previous stud-
ies mainly focused on empirical analysis and design of efficient sampling strategies,
while the impact of sampling on the running time is unclear theoretically. In this pa-
per, we study the effectiveness of sampling by rigorous running time analysis. Firstly,
we show that sampling can speed up noisy evolutionary optimization exponentially.
For the (1+1)-EA solving the OneMax and the LeadingOnes problems under one-bit
or additive Gaussian noise, we prove that when the noise level is high, sampling can
reduce the running time from exponential to be polynomial. The analysis also shows
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that a gap of one on the sample size k can lead to an exponential difference on the ex-
pected running time, which indicates that a careful selection of k is important for the
effectiveness of sampling. Secondly, we prove that sampling can be better than using
parent populations and threshold selection, two strategies that have been proven to
be robust to noise. Finally, we also show that sampling can be ineffective when the
noise does not have a negative impact.
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Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-
tionary Programming, Genetic Algorithms. Oxford University Press, Oxford, UK.

Bartz-Beielstein, T. (2005). Evolution strategies and threshold selection. In Proceedings of the
2nd International Workshop on Hybrid Metaheuristics, pages 104–115, Barcelona, Spain.

Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: Theoretical issues
and guidelines for practice. Computer Methods in Applied Mechanics and Engineering,
186(2):239–267.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A survey on metaheuris-
tics for stochastic combinatorial optimization. Natural Computing, 8(2):239–287.

Branke, J. and Schmidt, C. (2003). Selection in the presence of noise. In Proceedings of the 5th
ACM Conference on Genetic and Evolutionary Computation, pages 766–777, Chicago, IL.

Branke, J. and Schmidt, C. (2004). Sequential sampling in noisy environments. In Proceedings
of the 8th International Conference on Parallel Problem Solving from Nature, pages 202–211,
Birmingham, UK.
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