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ABSTRACT
In noisy evolutionary optimization, sampling is a common
strategy to deal with noise, which evaluates the fitness of a
solution multiple times (called sample size) independently
and then uses the average to approximate the true fitness.
Previous studies mainly focused on the empirical design of
efficient sampling strategies, and the few theoretical analy-
ses mainly proved the effectiveness of sampling with a fixed
sample size in some situations. There are many fundamen-
tal theoretical issues to be addressed. In this paper, we first
investigate the effect of sample size. By analyzing the (1+1)-
EA on noisy LeadingOnes, we show that as the sample size
increases, the running time can reduce from exponential to
polynomial, but then return to exponential. This discloses
that a proper sample size is crucial in practice. Then, we in-
vestigate what other strategies can work when sampling with
any fixed sample size fails. By two illustrative examples, we
prove that using parent populations can be better, and if us-
ing parent populations is also ineffective, adaptive sampling
(i.e., sampling with an adaptive sample size) can work.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are a type of general-purpose
randomized optimization algorithms, inspired by natural
evolution. They have been widely applied to solve real-world
optimization problems, which are often subject to noise.
Sampling is a popular strategy for dealing with noise: to esti-
mate the fitness of a solution, it evaluates the fitness multiple
(𝑚) times (called sample size) independently and then uses
the sample average to approximate the true fitness. Sampling
reduces the variance of noise by a factor of 𝑚, but also in-
creases the computation time for the fitness estimation of a
solution by 𝑚 times. Previous studies mainly focused on the
empirical design of efficient sampling methods, e.g., adap-
tive sampling [3, 4], which dynamically decides the sample
size 𝑚 for each solution in each generation. The theoretical
analysis on sampling was rarely touched.

Due to their sophisticated behaviors of mimicking natural
phenomena, the theoretical analysis of EAs is difficult. Much
effort thus has been devoted to understanding the behavior
of EAs from a theoretical point of view [2, 14], but most of
them focus on noise-free optimization. The presence of noise
further increases the randomness of optimization, and thus
also the difficulty of analysis.

For running time analysis (one essential theoretical as-
pect) in noisy evolutionary optimization, only a few results
have been reported. The classic (1+1)-EA algorithm was first
studied on the OneMax and LeadingOnes problems under
various noise models [8, 12, 18]. The results showed that
the (1+1)-EA is efficient only under low noise levels, e.g.,
for the (1+1)-EA solving OneMax in the presence of one-bit
noise, the maximal noise level of allowing a polynomial run-
ning time is log𝑛/𝑛, where the noise level is characterized
by the noise probability 𝑝 ∈ [0, 1] and 𝑛 is the problem size.
Later studies mainly proved the robustness of different strate-
gies to noise, including using populations [5, 12, 17], sam-
pling [18, 19] and threshold selection [20]. For example, the
(𝜇+1)-EA with 𝜇 = Θ(log𝑛) can solve OneMax in polynomial
time even if the probability of one-bit noise reaches 1. Note
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that there was also a sequence of papers analyzing the run-
ning time of the compact genetic algorithm [11] and a simple
ant colony optimization algorithm [6, 9, 10, 21] solving noisy
problems, including OneMax as well as the combinatorial
optimization problem single destination shortest paths.

The very few running time analyses involving sampling [18,
19] mainly showed the effectiveness of sampling with a large
enough fixed sample size 𝑚. For example, for the (1+1)-EA
solving OneMax under one-bit noise with 𝑝 = 𝜔(log𝑛/𝑛),
using sampling with 𝑚=4𝑛3 can reduce the running time
exponentially. In addition, Akimoto et al. [1] proved that us-
ing sampling with a large enough 𝑚 can make optimization
under additive unbiased noise behave as optimization in a
noise-free environment. However, there are still many funda-
mental theoretical issues that have not been addressed, e.g.,
how the sample size can affect the effectiveness of sampling,
and what other strategies can work when sampling fails.

In this paper, we first theoretically investigate the effect of
sample size. It may be believed that once the sample size 𝑚
reaches an effective value, the running time will always be
polynomial as 𝑚 continues to increase. We give a counterex-
ample, i.e., the (1+1)-EA solving LeadingOnes under one-bit
noise with 𝑝 = 1. Qian et al. [18] have shown that the run-
ning time will reduce from exponential to polynomial when
𝑚 = 4𝑛4 log𝑛/15. We prove that the running time will return
to exponential when 𝑚 ≥ 𝑛5. Our analysis suggests that the
selection of sample size should be careful in practice.

Then, we theoretically compare the two strategies of using
parent populations and sampling on the robustness to noise.
Previous studies have shown that both of them are effective
for solving OneMax under one-bit noise [12, 18, 19], while
using sampling is better for solving OneMax under additive
Gaussian noise [19]. Here, we complement this comparison
by constructing two specific noisy OneMax problems. For
one of them, using parent populations is better, while for the
other, using neither parent populations nor sampling is effec-
tive. For the latter case, we further prove that using adaptive
sampling can reduce the running time exponentially, which
provides some theoretical justification for the good empirical
performance of adaptive sampling in practice [22, 26].

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 analyzes the effect
of sample size. Sections 4 and 5 then show the effectiveness
of using parent populations and adaptive sampling when
sampling fails. Finally, Section 6 concludes the paper.

2 PRELIMINARIES
In this section, we first introduce the EAs studied in this pa-
per, then introduce the sampling strategy, and finally present
the analysis tools that we use throughout this paper.

2.1 Evolutionary Algorithms
The (1+1)-EA as described in Algorithm 1 maintains only one
solution, and iteratively tries to produce one better solution.
The (𝜇+1)-EA as described in Algorithm 2 uses a parent pop-
ulation size 𝜇. In each iteration, it also generates one new

solution 𝑥′, and then uses 𝑥′ to replace the worst solution in
the population 𝑃 if 𝑥′ is not worse. When 𝜇 = 1, the (𝜇+1)-EA
degenerates to the (1+1)-EA. Note that for the (𝜇+1)-EA, a
slightly different updating rule is also used [24]: 𝑥′ is sim-
ply added into 𝑃 and then the worst solution in 𝑃 ∪ {𝑥′} is
deleted. Our results about the (𝜇+1)-EA derived in the paper
also apply to this setting.

In noisy optimization, only a noisy fitness value 𝑓n(𝑥) in-
stead of the exact one 𝑓(𝑥) can be accessed. Note that in our
analysis, we assume that the reevaluation strategy is used
as in [6, 8, 12]. That is, besides evaluating the noisy fitness
𝑓n(𝑥′) of the offspring solution, the noisy fitness values of
parent solutions will be reevaluated in each iteration. The
running time of EAs is usually defined as the number of fit-
ness evaluations needed to find an optimal solution w.r.t. the
true fitness function 𝑓 for the first time [1, 8, 12].

ALGORITHM 1 ((1+1)-EA). Given a function 𝑓 over {0, 1}𝑛
to be maximized, it consists of the following steps:

1. Let 𝑥 be a uniformly chosen solution.
2. Repeat until the termination condition is met
3. 𝑥′ :=flip each bit of 𝑥 independently with prob. 1/𝑛.
4. if 𝑓(𝑥′) ≥ 𝑓(𝑥) then 𝑥 := 𝑥′.

ALGORITHM 2 ((𝜇+1)-EA). Given a function 𝑓 over {0, 1}𝑛
to be maximized, it consists of the following steps:

1. Let 𝑃 be a set of 𝜇 uniformly chosen solutions.
2. Repeat until the termination condition is met
3. 𝑥 := uniformly selected from 𝑃 at random.
4. 𝑥′ := flip each bit of 𝑥 independently with prob. 1/𝑛.
5. Let 𝑧 ∈ argmin𝑧∈𝑃 𝑓(𝑧); ties are broken randomly.
6. if 𝑓(𝑥′) ≥ 𝑓(𝑧) then 𝑃 := (𝑃 ∖ {𝑧}) ∪ {𝑥′}.

2.2 Sampling
Sampling as described in Definition 2.1 is a common strat-
egy to deal with noise. It approximates the true fitness 𝑓(𝑥)
using the average of a number of random evaluations. The
number 𝑚 of random evaluations is called the sample size.
Note that 𝑚 = 1 is equivalent to that sampling is not used.
Qian et al. [18, 19] have theoretically shown the robustness
of sampling to noise. Particularly, they proved that by using
sampling with some fixed sample size, the running time of
the (1+1)-EA for solving OneMax and LeadingOnes under
noise can reduce from exponential to polynomial.

Definition 2.1 (Sampling). Sampling first evaluates the fit-
ness of a solution 𝑚 times independently and obtains the
noisy fitness values 𝑓n

1 (𝑥), 𝑓
n
2 (𝑥), . . . , 𝑓

n
𝑚(𝑥), and then out-

puts their average, i.e., 𝑓(𝑥) =
∑︀𝑚

𝑖=1 𝑓
n
𝑖 (𝑥)/𝑚.

Adaptive sampling dynamically decides the sample size for
each solution in the optimization process, instead of using a
fixed size. For example, one popular strategy [3, 4] is to first
estimate the fitness of two solutions by a small number of
samples, and then sequentially increase samples until the
difference can be significantly discriminated. It has been
found well useful in many applications [22, 26], while there
has been no theoretical work supporting its effectiveness.
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2.3 Analysis Tools
EAs often generate offspring solutions only based on the
current population, thus, an EA can be modeled as a Markov
chain {𝜉𝑡}+∞

𝑡=0 (e.g., in [13, 25]) by taking the EA’s population
space 𝒳 as the chain’s state space (i.e., 𝜉𝑡 ∈ 𝒳 ) and taking
the set 𝒳 * of all optimal populations as the chain’s target
state space. Note that the population space 𝒳 consists of all
possible populations, and an optimal population contains at
least one optimal solution.

Given a Markov chain {𝜉𝑡}+∞
𝑡=0 and 𝜉𝑡, we define its first

hitting time as 𝜏 = min{𝑡 | 𝜉𝑡+𝑡 ∈ 𝒳 *, 𝑡 ≥ 0}. The mathe-
matical expectation of 𝜏 , E(𝜏 | 𝜉𝑡) =

∑︀+∞
𝑖=0 𝑖 · P(𝜏 = 𝑖 | 𝜉𝑡),

is called the expected first hitting time (EFHT). If 𝜉0 is drawn
from a distribution 𝜋0, E(𝜏 | 𝜉0∼𝜋0)=

∑︀
𝜉0∈𝒳 𝜋0(𝜉0)E(𝜏 | 𝜉0)

is called the EFHT of the chain over the initial distribution
𝜋0. Thus, the expected running time of the (𝜇+1)-EA starting
from 𝜉0 ∼ 𝜋0 is 𝜇+ (𝜇+ 1) · E(𝜏 | 𝜉0 ∼ 𝜋0), where the term
𝜇 corresponds to evaluating the initial population, and the
factor (𝜇+1) corresponds to evaluating the offspring solution
𝑥′ and reevaluating the 𝜇 parent solutions in each iteration.
For the (1+1)-EA, the expected running time is calculated by
setting 𝜇 = 1, i.e., 1+2 ·E(𝜏 | 𝜉0 ∼ 𝜋0). For the (1+1)-EA with
sampling, it becomes 𝑚+ 2𝑚 · E(𝜏 | 𝜉0 ∼ 𝜋0), since estimat-
ing the fitness of a solution needs𝑚 independent evaluations.
Note that we consider the expected running time of an EA
starting from a uniform initial distribution in this paper.

In the following, we give two drift theorems that will be
used to derive upper and lower bounds on the EFHT of
Markov chains in the paper.

LEMMA 2.2 (MULTIPLICATIVE DRIFT [7]). Given a Markov
chain {𝜉𝑡}+∞

𝑡=0 and a distance function 𝑉 over 𝒳 , if for any
𝑡≥ 0 and any 𝜉𝑡 with 𝑉 (𝜉𝑡)> 0, there exists 𝑐 > 0 such that
E(𝑉 (𝜉𝑡)−𝑉 (𝜉𝑡+1) | 𝜉𝑡) ≥ 𝑐 · 𝑉 (𝜉𝑡), then the EFHT satisfies
that E(𝜏 | 𝜉0) ≤ 1+log(𝑉 (𝜉0)/𝑉min)

𝑐
, where 𝑉min denotes the

minimum among all possible positive values of 𝑉 .

LEMMA 2.3 (NEGATIVE DRIFT [15, 16]). Let 𝑋𝑡, 𝑡 ≥ 0,
be real-valued random variables describing a stochastic pro-
cess. Suppose there exists an interval [𝑎, 𝑏] ⊆ R, two constants
𝛿, 𝜖 > 0 and, possibly depending on 𝑙 := 𝑏− 𝑎, a function 𝑟(𝑙)
satisfying 1 ≤ 𝑟(𝑙) = 𝑜(𝑙/ log(𝑙)) such that for all 𝑡 ≥ 0:

(1) E(𝑋𝑡 −𝑋𝑡+1 | 𝑎 < 𝑋𝑡 < 𝑏) ≤ −𝜖,

(2) P(|𝑋𝑡+1−𝑋𝑡|≥𝑗 | 𝑋𝑡>𝑎) ≤ 𝑟(𝑙)/(1+𝛿)𝑗 for 𝑗 ∈ N+.

Then there is a constant 𝑐 > 0 such that for 𝑇 := min{𝑡≥ 0 :

𝑋𝑡 ≤ 𝑎 | 𝑋0 ≥ 𝑏} it holds P(𝑇 ≤ 2𝑐𝑙/𝑟(𝑙)) = 2−Ω(𝑙/𝑟(𝑙)).

3 THE EFFECT OF SAMPLE SIZE
Previous studies [18, 19] have shown that for noisy evolution-
ary optimization, sampling with some fixed sample size 𝑚
can reduce the running time exponentially in some situa-
tions. For example, for the (1+1)-EA solving OneMax under
one-bit noise with the noise probability 𝑝 = 𝜔(log𝑛/𝑛), the
expected running time is super-polynomial [8]; while by us-
ing sampling with 𝑚 = 4𝑛3, the running time reduces to
polynomial [18]. Then, a natural question is that whether the

running time will always be polynomial by using any poly-
nomially bounded sample size larger than the effective 𝑚. It
may be believed that the answer is yes, since the sample size
𝑚 has been effective and using a larger sample size will make
the fitness estimation more accurate. For example, for the
(1+1)-EA solving OneMax under one-bit noise, it is easy to
see from Lemma 6 in [18] that using a larger sample size than
4𝑛3 will make the probability of accepting a true worse solu-
tion in the comparison continue to decrease and the running
time will obviously stay polynomial. In this section, we give
a counterexample by considering the (1+1)-EA solving the
LeadingOnes problem under one-bit noise, which suggests
that the selection of sample size should be careful in practice.

The LeadingOnes problem as presented in Definition 3.1
aims to maximize the number of consecutive 1-bits count-
ing from the left of a solution. Its optimal solution is 11 . . . 1
(denoted as 1𝑛). As presented in Definition 3.2, one-bit noise
flips a random bit of a solution before evaluation with prob-
ability 𝑝. When 𝑝 = 1, it was known [18] that the expected
running time of the (1+1)-EA is exponential, while the run-
ning time will reduce to polynomial by using sampling with
𝑚 = 4𝑛4 log𝑛/15. We prove in Theorem 3.3 that the running
time of the (1+1)-EA will return to exponential if 𝑚 ≥ 𝑛5.

Definition 3.1 (LeadingOnes). The LeadingOnes Problem
of size 𝑛 is to find a binary string 𝑥* that maximises

𝑓(𝑥) =
∑︀𝑛

𝑖=1

∏︀𝑖
𝑗=1𝑥𝑗 .

Definition 3.2 (One-bit Noise). Given a parameter 𝑝 ∈ [0, 1],
let 𝑓n(𝑥) and 𝑓(𝑥) denote the noisy and true fitness of a solu-
tion 𝑥 ∈ {0, 1}𝑛, respectively, then

𝑓n(𝑥) =

{︃
𝑓(𝑥) with prob. 1− 𝑝,

𝑓(𝑥′) with prob. 𝑝,

where 𝑥′ is generated by flipping a randomly chosen bit of 𝑥.

From Lemma 9 in [18], we can find the reason why sam-
pling is effective only with a moderate sample size in this
case. Let 𝑓(𝑥) and 𝑓n(𝑥) denote the true and noisy fitness
of a solution, respectively. In most cases, if 𝑓(𝑥) > 𝑓(𝑦), the
expected gap between 𝑓n(𝑥) and 𝑓n(𝑦) is positive, which im-
plies that a larger sample size is better since it will decrease
P(𝑓(𝑥) ≤ 𝑓(𝑦)). However, when 𝑥 = 1𝑛 and 𝑦 is close to
the optimum 1𝑛, the expectation of 𝑓n(1𝑛) − 𝑓n(𝑦) can be
negative, which implies that a larger sample size is worse
since it will increase P(𝑓(1𝑛) ≤ 𝑓(𝑦)). Thus, neither a small
sample size nor a large sample size is effective. The sample
size of 𝑚 = 4𝑛4 log𝑛/15 just makes a good tradeoff, which
can lead to a not too large probability of 𝑓(1𝑛) ≤ 𝑓(𝑦) and a
sufficiently small probability of 𝑓(𝑥) ≤ 𝑓(𝑦) for two solutions
𝑥 and 𝑦 with 𝑓(𝑥) > 𝑓(𝑦) and E(𝑓n(𝑥)− 𝑓n(𝑦)) > 0.

THEOREM 3.3. For the (1+1)-EA solving LeadingOnes un-
der one-bit noise with 𝑝 = 1, the expected running time is
exponential [18]; if using sampling with 𝑚 = 4𝑛4 log𝑛/15,
the expected running time is polynomial [18]; if using sam-
pling with 𝑚 ≥ 𝑛5, the expected running time is exponential.
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PROOF. We only need to prove the case 𝑚 ≥ 𝑛5. Our main
idea is to show that before reaching the optimal solution 1𝑛,
the algorithm will first find the solution 1𝑛−10 or 1𝑛−201 with
a probability of at least (1− 1

2𝑛−2 ) · 1
𝑛+1

; while the probability
of leaving 1𝑛−10 or 1𝑛−201 is exponentially small. Combining
these two points, the theorem holds.

Let a Markov chain {𝜉𝑡}+∞
𝑡=0 model the analyzed evolution-

ary process. Let LO(𝑥) denote the true number of leading 1-
bits of a solution 𝑥. For any 𝑡 ≥ 1, let 𝐶𝑡 denote the event that
at time 𝑡, the (1+1)-EA finds a solution with at least 𝑛−2 lead-
ing 1-bits for the first time, i.e., LO(𝜉𝑡) ≥ 𝑛− 2 and ∀𝑡′ < 𝑡 :
LO(𝜉𝑡′) < 𝑛−2; let 𝐴𝑡 and 𝐵𝑡 denote the subsets of 𝐶𝑡, which
require that 𝜉𝑡 ∈ {1𝑛−10, 1𝑛−201} and 𝜉𝑡 ∈ {1𝑛, 1𝑛−202}, re-
spectively. Thus, before reaching the optimal solution 1𝑛, the
(1+1)-EA can find a solution in {1𝑛−10, 1𝑛−201} with proba-
bility at least

∑︀∞
𝑡=1 P(𝐴𝑡 | 𝐶𝑡) · P(𝐶𝑡).

We then show that P(𝐴𝑡 | 𝐶𝑡) ≥ 1/(𝑛 + 1). Assume that
𝜉𝑡−1 = 𝑥, where LO(𝑥) < 𝑛 − 2. Let Pmut(𝑥, 𝑦) denote the
probability that 𝑥 is mutated to 𝑦 by bit-wise mutation. Then,

P(𝐴𝑡 | 𝐶𝑡) =
(︀
Pmut(𝑥, 1

𝑛−10) · P(𝑓(1𝑛−10) ≥ 𝑓(𝑥)) (1)

+ Pmut(𝑥, 1
𝑛−201) · P(𝑓(1𝑛−201) ≥ 𝑓(𝑥))

)︀
/P(𝐶𝑡).

For P(𝑓(1𝑛−10) ≥ 𝑓(𝑥)) and P(𝑓(1𝑛−201) ≥ 𝑓(𝑥)), we apply
Hoeffding’s inequality to get a lower bound 1− 𝑒−𝑛/2. By the
definition of one-bit noise, we get, for any 0 ≤ 𝑘 ≤ 𝑛− 1,

E(𝑓n(1𝑘01𝑛−𝑘−1)) =
𝑘∑︀

𝑗=1

1

𝑛
· (𝑗−1) +

1

𝑛
· 𝑛+

𝑛−𝑘−1

𝑛
· 𝑘.

Then, we have, for any 1 ≤ 𝑘 ≤ 𝑛− 1,

E(𝑓n(1𝑘01𝑛−𝑘−1))−E(𝑓n(1𝑘−101𝑛−𝑘))=(𝑛−𝑘−1)/𝑛. (2)

Thus, for any 𝑘 ≤ 𝑛−3, E(𝑓n(1𝑛−10))−E(𝑓n(1𝑘01𝑛−𝑘−1)) ≥
E(𝑓n(1𝑛−201))−E(𝑓n(1𝑛−3012)) = 1/𝑛. Since LO(𝑥)≤𝑛−3

and E(𝑓n(𝑥))≤E(𝑓n(1LO(𝑥)01𝑛−LO(𝑥)−1)), we have

E(𝑓n(1𝑛−10))− E(𝑓n(𝑥)) ≥ 1/𝑛.

Let 𝑟 = E(𝑓(𝑥)− 𝑓(1𝑛−10)). Since the 𝑓 value by sampling is
the average of 𝑚 independent evaluations, 𝑟 = E(𝑓n(𝑥)) −
E(𝑓n(1𝑛−10)) ≤ −1/𝑛. Then, we have

P(𝑓(𝑥) ≥ 𝑓(1𝑛−10)) = P(𝑓(𝑥)− 𝑓(1𝑛−10)− 𝑟 ≥ −𝑟)

≤ exp
(︀
−2𝑚2𝑟2/(𝑚(2𝑛)2)

)︀
≤ 𝑒−𝑛/2,

(3)

where the first inequality is by Hoeffding’s inequality and
−𝑛 ≤ 𝑓n(𝑥)−𝑓n(1𝑛−10) ≤ 𝑛, and the last is by 𝑟 ≤ −1/𝑛 and
𝑚 ≥ 𝑛5. It is easy to see from Eq. (2) that E(𝑓n(1𝑛−201)) =
E(𝑓n(1𝑛−10)). Thus, we can similarly get

P(𝑓(𝑥) ≥ 𝑓(1𝑛−201)) ≤ 𝑒−𝑛/2. (4)

By applying Eqs. (3) and (4) to Eq. (1), we get

P(𝐴𝑡|𝐶𝑡)≥(1−𝑒−𝑛/2)
Pmut(𝑥, 1

𝑛−10)+Pmut(𝑥, 1
𝑛−201)

P(𝐶𝑡)
.

Since P(𝐵𝑡 | 𝐶𝑡) ≤ (Pmut(𝑥, 1
𝑛) + Pmut(𝑥, 1

𝑛−202))/P(𝐶𝑡),

P(𝐴𝑡|𝐶𝑡)

P(𝐵𝑡|𝐶𝑡)
≥(1−𝑒−𝑛/2)

Pmut(𝑥, 1
𝑛−10)+Pmut(𝑥, 1

𝑛−201)

Pmut(𝑥, 1𝑛)+Pmut(𝑥, 1𝑛−202)
.

If 𝑥𝑛−1 = 𝑥𝑛 = 0 or 𝑥𝑛−1 = 𝑥𝑛 = 1,

P(𝐴𝑡 | 𝐶𝑡)

P(𝐵𝑡 | 𝐶𝑡)
≥ (1− 𝑒−𝑛/2)

1
𝑛
(1− 1

𝑛
) + 1

𝑛
(1− 1

𝑛
)

1
𝑛2 + (1− 1

𝑛
)2

≥ 1

𝑛
.

If 𝑥𝑛−1+𝑥𝑛 = 1, we can similarly derive that P(𝐴𝑡|𝐶𝑡)
P(𝐵𝑡|𝐶𝑡)

≥ 1
𝑛

.
Since P(𝐴𝑡 | 𝐶𝑡) + P(𝐵𝑡 | 𝐶𝑡) = 1, our claim that P(𝐴𝑡 |
𝐶𝑡) ≥ 1/(𝑛+ 1) holds.

Thus, the probability that the (1+1)-EA first finds a solution
in {1𝑛−10, 1𝑛−201} before reaching 1𝑛 is at least∑︀∞

𝑡=1P(𝐴𝑡 | 𝐶𝑡) · P(𝐶𝑡) ≥ (1/(𝑛+ 1)) ·
∑︀∞

𝑡=1P(𝐶𝑡)

= (1/(𝑛+1))P(LO(𝜉0)<𝑛−2) = (1/(𝑛+1))
(︀
1−1/2𝑛−2)︀ ,

where the first equality is because the union of the events 𝐶𝑡

with 𝑡 ≥ 1 implies that the time of finding a solution with at
least 𝑛− 2 leading 1-bits is at least 1, which is equivalent to
that the initial solution 𝜉0 has less than 𝑛− 2 leading 1-bits ;
and the last equality is due to the uniform initial distribution.

We then show that after finding 1𝑛−10 or 1𝑛−201, the prob-
ability of the (1+1)-EA leaving this state in each iteration is
exponentially small. From Eqs. (3) and (4), we know that for
any 𝑥 with LO(𝑥)<𝑛− 2 and 𝑦∈{1𝑛−10, 1𝑛−201}, P(𝑓(𝑥)≥
𝑓(𝑦))≤𝑒−𝑛/2. For 𝑥∈{1𝑛−202, 1𝑛} and 𝑦 ∈ {1𝑛−10, 1𝑛−201},
it is easy to verify that E(𝑓n(𝑦)− 𝑓n(𝑥)) =

∑︀𝑛−1
𝑗=1

1
𝑛
(𝑗 − 1) +

1
𝑛
· 𝑛 −

∑︀𝑛
𝑗=1

1
𝑛
(𝑗 − 1) = 1

𝑛
. Using the same analysis as

Eq. (3), we get, for 𝑥 ∈ {1𝑛−202, 1𝑛} and 𝑦 ∈ {1𝑛−10, 1𝑛−201},
P(𝑓(𝑥) ≥ 𝑓(𝑦)) ≤ 𝑒−𝑛/2. Combining the above two cases,
we get, for 𝑥 /∈ {1𝑛−10, 1𝑛−201} and 𝑦 ∈ {1𝑛−10, 1𝑛−201},
P(𝑓(𝑥)≥𝑓(𝑦))≤𝑒−𝑛/2. Thus, our claim that the probability
of leaving {1𝑛−10, 1𝑛−201} is exponentially small holds. �

4 PARENT POPULATIONS CAN WORK ON
SOME TASKS WHERE SAMPLING FAILS

Previous studies [12, 18, 19] have shown that both using par-
ent populations and sampling can bring robustness to noise.
For example, for the OneMax problem under one-bit noise
with 𝑝 = 𝜔(log𝑛/𝑛), the (1+1)-EA needs exponential time to
find the optimum [8], while both using a parent population
size 𝜇 ≥ 12 log(15𝑛)/𝑝 [12] and a sample size 𝑚 = 4𝑛3 [18]
can reduce the running time to polynomial. Then, a natural
question is that whether there exist cases where only one
of these two strategies is effective. This question has been
partially solved. For the OneMax problem under additive
Gaussian noise with large variances, it was shown that the
(𝜇+1)-EA with 𝜇 = 𝜔(1) needs super-polynomial time to find
the optimum [11], while the (1+1)-EA using sampling can
find the optimum in polynomial time [19]. In this section, we
solve the other part of this question. That is, we prove that
using parent populations can be better than using sampling.

Particularly, we compare the (1+1)-EA using sampling with
the (𝜇+1)-EA for solving OneMax under symmetric noise. The
OneMax problem as presented in Definition 4.1 is to maxi-
mize the number of 1-bits, and the optimal solution is 1𝑛. As
presented in Definition 4.2, symmetric noise returns a false
fitness 2𝑛 − 𝑓(𝑥) with probability 1/2. It is easy to see that
under this noise model, the distribution of 𝑓n(𝑥) for any 𝑥 is
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symmetric about 𝑛. We prove in Theorems 4.3 and 4.4 that
the expected running time of the (1+1)-EA using sampling
with any sample size 𝑚 is exponential, while the (𝜇+1)-EA
with 𝜇 = 3 log𝑛 can find the optimum in 𝑂(𝑛 log3 𝑛) time.

Definition 4.1 (OneMax). The OneMax Problem of size 𝑛
is to find a binary string 𝑥* that maximises

𝑓(𝑥) =
∑︀𝑛

𝑖=1𝑥𝑖.

Definition 4.2 (Symmetric Noise). Let 𝑓n(𝑥) and 𝑓(𝑥) de-
note the noisy and true fitness of a solution 𝑥 ∈ {0, 1}𝑛,
respectively, then

𝑓n(𝑥) =

{︃
𝑓(𝑥) with prob. 1/2,

2𝑛− 𝑓(𝑥) with prob. 1/2.

From the following analyses, we can find the reason why
using sampling fails while using parent populations can work
in this case. Under symmetric noise, the distribution of 𝑓n(𝑥)
for any 𝑥 is symmetric about 𝑛. Thus, for any two solutions 𝑥
and 𝑦, the distribution of 𝑓n(𝑥)− 𝑓n(𝑦) is symmetric about 0.
By using sampling, the distribution of 𝑓(𝑥)− 𝑓(𝑦) is still sym-
metric about 0, which implies that the offspring solution will
always be accepted with probability at least 1/2 in each itera-
tion of the (1+1)-EA. Such a behavior is analogous to random
walk, and thus the optimization is inefficient. The reason for
the effectiveness of using parent populations is that the true
best solution will be discarded only if it appears worse than
all the other solutions in the population, the probability of
which can be very small by using a logarithmic population
size. Note that this finding is consistent with that in [12].

THEOREM 4.3. For the (1+1)-EA solving OneMax under
symmetric noise, if using sampling, the expected running time
is exponential.

PROOF. We use Lemma 2.3 to prove it. Let 𝑋𝑡 = |𝑥|0 be
the number of 0-bits of the solution 𝑥 after 𝑡 iterations of the
(1+1)-EA. We consider the interval [0, 𝑛/10], i.e., the parame-
ters 𝑎 = 0 (i.e., the optimum) and 𝑏 = 𝑛/10 in Lemma 2.3.

Then, we analyze the drift E(𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑖) for
1 ≤ 𝑖 < 𝑛/10. We divide the drift into two parts: positive E+

and negative E−. That is,

E(𝑋𝑡 −𝑋𝑡+1 | 𝑋𝑡 = 𝑖) = E+ − E−, where

E+ =
∑︀

𝑥′:|𝑥′|0<𝑖Pmut(𝑥, 𝑥
′) · P(𝑓(𝑥′) ≥ 𝑓(𝑥)) · (𝑖− |𝑥′|0),

E− =
∑︀

𝑥′:|𝑥′|0>𝑖Pmut(𝑥, 𝑥
′) · P(𝑓(𝑥′) ≥ 𝑓(𝑥)) · (|𝑥′|0 − 𝑖).

For the positive drift, we use a trivial upper bound 1 for
P(𝑓(𝑥′) ≥ 𝑓(𝑥)). Then, we have

E+ ≤
∑︀

𝑥′:|𝑥′|0<𝑖Pmut(𝑥, 𝑥
′)(𝑖− |𝑥′|0) ≤ 𝑖/𝑛,

where the second inequality is directly from the proof of
Theorem 5 in [18].
For the negative drift, we need to consider that the number
of 0-bits is increased. We analyze the 𝑛− 𝑖 cases where only
one 1-bit is flipped (i.e., |𝑥′|0 = 𝑖+ 1), which happens with
probability 1

𝑛
(1− 1

𝑛
)𝑛−1 ≥ 1

𝑒𝑛
. Let 𝑌 = 𝑓n(𝑥)−𝑓n(𝑥′). By the

definition of symmetric noise, the value of 𝑌 can be −2𝑖 −
1, −1, 1 and 2𝑖 + 1, each with probability 1/4. It is easy to

see that the distribution of 𝑌 is symmetric about 0, i.e., 𝑌
has the same distribution as −𝑌 . Since 𝑓(𝑥) − 𝑓(𝑥′) is the
average of 𝑚 independent random variables, which have the
same distribution as 𝑌 , the distribution of 𝑓(𝑥)−𝑓(𝑥′) is also
symmetric about 0, and thus P(𝑓(𝑥′) ≥ 𝑓(𝑥)) ≥ 1/2. Then,

E− ≥ (𝑛− 𝑖)/(𝑒𝑛) · (1/2) · (𝑖+ 1− 𝑖) = (𝑛− 𝑖)/(2𝑒𝑛).

By subtracting E− from E+, we get

E(𝑋𝑡 −𝑋𝑡+1 | 𝑋𝑡 = 𝑖) ≤ 𝑖/𝑛− (𝑛− 𝑖)/(2𝑒𝑛) ≤ −0.05,

where the last inequality is by 𝑖 < 𝑛/10. That is, condition (1)
of Lemma 2.3 holds with 𝜖 = 0.05.

To make |𝑋𝑡+1 − 𝑋𝑡| ≥ 𝑗, it is necessary to flip at least 𝑗
bits of 𝑥. Thus, we have

P(|𝑋𝑡+1 −𝑋𝑡| ≥ 𝑗 | 𝑋𝑡 ≥ 1) ≤

(︃
𝑛

𝑗

)︃
1

𝑛𝑗
≤ 1

𝑗!
≤ 2 · 1

2𝑗
,

which implies that condition (2) of Lemma 2.3 holds with
𝛿 = 1 and 𝑟(𝑙) = 2. Note that 𝑙 = 𝑏 − 𝑎 = 𝑛/10. Thus, by
Lemma 2.3, the expected running time is exponential. �

THEOREM 4.4. For the (𝜇+1)-EA solving OneMax under
symmetric noise, if 𝜇 = 3 log𝑛, the expected running time is
𝑂(𝑛 log3 𝑛).

PROOF. We use Lemma 2.2 to prove it. Note that the state
of the corresponding Markov chain is currently a population,
i.e., a set of 𝜇 solutions. We first construct a distance function
𝑉 : for any population 𝑃 , 𝑉 (𝑃 )=min𝑥∈𝑃 |𝑥|0, i.e., the mini-
mum number of 0-bits of the solution in 𝑃 . It is easy to see
that 𝑉 (𝑃 )=0 iff 𝑃 ∈𝒳 *, i.e., 𝑃 contains the optimum 1𝑛.

Then, we investigate E(𝑉 (𝜉𝑡)−𝑉 (𝜉𝑡+1) | 𝜉𝑡 = 𝑃 ) for any 𝑃
with 𝑉 (𝑃 ) > 0 (i.e., 𝑃 /∈ 𝒳 *). Assume that currently 𝑉 (𝑃 ) =
𝑖, where 1 ≤ 𝑖 ≤ 𝑛. We also divide the drift into two parts:

E(𝑉 (𝜉𝑡)− 𝑉 (𝜉𝑡+1) | 𝜉𝑡 = 𝑃 ) = E+ − E−, where

E+ =
∑︀

𝑃 ′:𝑉 (𝑃 ′)<𝑖 P(𝜉𝑡+1 = 𝑃 ′ | 𝜉𝑡 = 𝑃 ) · (𝑖− 𝑉 (𝑃 ′)),

E− =
∑︀

𝑃 ′:𝑉 (𝑃 ′)>𝑖 P(𝜉𝑡+1 = 𝑃 ′ | 𝜉𝑡 = 𝑃 ) · (𝑉 (𝑃 ′)− 𝑖).

For E+, we need to consider that the best solution in 𝑃 is
improved. Let 𝑥* ∈ argmin𝑥∈𝑃 |𝑥|0, then |𝑥*|0 = 𝑖. In one
iteration of the (𝜇+1)-EA, a solution 𝑥′ with |𝑥′|0 = 𝑖 − 1
can be generated by selecting 𝑥* and flipping only one 0-bit
in mutation, whose probability is 1

𝜇
· 𝑖

𝑛
(1 − 1

𝑛
)𝑛−1 ≥ 𝑖

𝑒𝜇𝑛
.

If 𝑥′ is not added into 𝑃 , it must hold that 𝑓n(𝑥′) < 𝑓n(𝑥)
for any 𝑥 ∈ 𝑃 , which happens with probability 1/2𝜇 since
𝑓n(𝑥′) < 𝑓n(𝑥) iff 𝑓n(𝑥) = 2𝑛 − 𝑓(𝑥). Thus, the probability
that 𝑥′ is added into 𝑃 (which implies that 𝑉 (𝑃 ′) = 𝑖− 1) is
1− 1/2𝜇. We then get

E+ ≥ 𝑖

𝑒𝜇𝑛
·
(︂
1− 1

2𝜇

)︂
· (𝑖− (𝑖− 1)) =

𝑖

𝑒𝜇𝑛

(︂
1− 1

2𝜇

)︂
.

For E−, if there are at least two solutions 𝑥, 𝑦 in 𝑃 such that
|𝑥|0 = |𝑦|0 = 𝑖, it obviously holds that E− = 0. Otherwise,
𝑉 (𝑃 ′) > 𝑉 (𝑃 ) = 𝑖 implies that for the unique best solution
𝑥* in 𝑃 and any 𝑥 ∈ 𝑃 ∖{𝑥*}, 𝑓n(𝑥*) ≤ 𝑓n(𝑥), which happens
with probability 1/2𝜇−1 since 𝑓n(𝑥*) ≤ 𝑓n(𝑥) iff 𝑓n(𝑥) =
2𝑛−𝑓(𝑥). Thus, P(𝑉 (𝑃 ′) > 𝑖) ≤ 1/2𝜇−1. Furthermore, 𝑉 (𝑃 ′)
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can increase by at most 𝑛 − 𝑖. Thus, E− ≤ (𝑛 − 𝑖)/2𝜇−1. By
subtracting E− from E+, we get

E(𝑉 (𝜉𝑡)−𝑉 (𝜉𝑡+1) | 𝜉𝑡)≥
𝑖

𝑒𝜇𝑛
− 𝑖

𝑒𝜇𝑛2𝜇
− 𝑛−𝑖

2𝜇−1
≥ 𝑖

10𝑛 log𝑛
,

where the last inequality holds with sufficiently large 𝑛. Note
that 𝜇 = 3 log𝑛. Thus, by Lemma 2.2,

E(𝜏 | 𝜉0) ≤ 10𝑛 log𝑛(1 + log𝑛) = 𝑂(𝑛 log2 𝑛),

which implies that the expected running time is 𝑂(𝑛 log3 𝑛),
since the algorithm needs to evaluate the offspring solution
and reevaluate the 𝜇 parent solutions in each iteration. �

5 ADAPTIVE SAMPLING CAN WORK ON
SOME TASKS WHERE BOTH SAMPLING
AND PARENT POPULATIONS FAIL

In this section, we first theoretically investigate whether there
exist cases where using neither parent populations nor sam-
pling is effective. We give a positive answer by considering
OneMax under segmented noise. Then, we prove that in such
a situation, using adaptive sampling can be effective, which
provides some theoretical justification for the good empirical
performance of adaptive sampling in practice [22, 26].

As presented in Definition 5.1, the OneMax problem is
divided into four segments. In one segment, the fitness is
evaluated correctly, while in the other three segments, the
fitness is disturbed by different noises. We prove in Theo-
rem 5.2 that the expected running time of the (1+1)-EA us-
ing sampling with any sample size 𝑚 is exponential. From
the proof, we can find the reason for the ineffectiveness of
sampling. For two solutions 𝑥 and 𝑥′ with |𝑥′|0 = |𝑥|0 + 1
(i.e., 𝑓(𝑥) = 𝑓(𝑥′) + 1), the expected gaps between 𝑓n(𝑥) and
𝑓n(𝑥′) are positive and negative, respectively, in the segments
of 𝑛

100
< |𝑥|0 ≤ 𝑛

50
and 𝑛

200
< |𝑥|0 ≤ 𝑛

100
. Thus, in the former

segment, a larger sample size is better since it will decrease
P(𝑓(𝑥) ≤ 𝑓(𝑥′)), while in the latter segment, a larger sample
size is worse since it will increase P(𝑓(𝑥) ≤ 𝑓(𝑥′)). Further-
more, there is no moderate sample size which can make a
good tradeoff. Thus, sampling fails in this case.

Definition 5.1 (OneMax under Segmented Noise). For any
𝑥 ∈ {0, 1}𝑛, the noisy fitness value 𝑓n(𝑥) is calculated as:
(1) if |𝑥|0 > 𝑛

50
, 𝑓n(𝑥) = 𝑛− |𝑥|0;

(2) if 𝑛
100

< |𝑥|0 ≤ 𝑛
50

,

𝑓n(𝑥) =

{︃
𝑛− |𝑥|0 with prob. 1

2
+ 1

𝑛
,

3𝑛+ |𝑥|0 with prob. 1
2
− 1

𝑛
;

(3) if 𝑛
200

< |𝑥|0 ≤ 𝑛
100

,

𝑓n(𝑥) =

{︃
4𝑛(𝑛− |𝑥|0) with prob. 1− 1

𝑛
,

(2𝑛+ |𝑥|0)3 with prob. 1
𝑛
;

(4) if |𝑥|0 ≤ 𝑛
200

,

𝑓n(𝑥) =

{︃
𝑛4(𝑛− |𝑥|0) with prob. 1

5
,

−𝑛4 − 𝛿 with prob. 4
5
,

where 𝛿 is randomly drawn from a continuous uniform dis-
tribution 𝒰 [0, 1], and 𝑛/200 ∈ N+.

THEOREM 5.2. For the (1+1)-EA solving OneMax under
segmented noise, if using sampling, the expected running time
is exponential.

PROOF. We divide the proof into two parts according to the
range of 𝑚. Let 𝑋𝑡 = |𝑥|0 denote the number of 0-bits of the
solution 𝑥 after 𝑡 iterations of the (1+1)-EA. When 𝑚 ≤ 𝑛4

400
,

we use Lemma 2.3 to prove that starting from 𝑋0 ≥ 𝑛
50

, the
expected number of iterations until 𝑋𝑡 ≤ 𝑛

100
is exponential.

When 𝑚 > 𝑛4

400
, we use Lemma 2.3 to prove that starting from

𝑋0 ≥ 𝑛
100

, the expected number of iterations until 𝑋𝑡 ≤ 𝑛
200

is exponential. Due to the uniform initial distribution, both
𝑋0 ≥ 𝑛

50
and 𝑋0 ≥ 𝑛

100
hold with a high probability. Thus, for

any 𝑚, the expected running time until finding the optimum
is exponential. For the proof of each part, condition (2) of
Lemma 2.3 trivially holds, and we only need to show that
E(𝑋𝑡 −𝑋𝑡+1 | 𝑋𝑡) is upper bounded by a negative constant.

[Part I: 𝑚 ≤ 𝑛4

400
] We consider the interval [ 𝑛

100
, 𝑛
50
]. As in

the proof of Theorem 4.3, we compute the drift E(𝑋𝑡−𝑋𝑡+1 |
𝑋𝑡= 𝑖) (where 𝑛

100
<𝑖< 𝑛

50
) by E+−E−. For E−, we consider

the 𝑛−𝑖 cases where only one 1-bit of 𝑥 is flipped in mutation.
That is, |𝑥′|0= 𝑖+1. We then show that the offspring solution
𝑥′ is accepted with probability at least 0.07 (i.e., P(𝑓(𝑥′) ≥
𝑓(𝑥))≥0.07) by considering two subcases for 𝑚.
(1) 𝑚 ≥ 4. For any 𝑛

100
< 𝑘 ≤ 𝑛

50
, let 𝑥𝑘 denote a solution

with 𝑘 number of 0-bits. According to Definition 5.1, we have

E(𝑓n(𝑥𝑘)) = (1/2 + 1/𝑛) (𝑛− 𝑘)

+ (1/2− 1/𝑛) (3𝑛+ 𝑘) = 2𝑛− 2− 2𝑘/𝑛;

Var(𝑓n(𝑥𝑘)) = (1/2 + 1/𝑛) (𝑛− 𝑘)2

+ (1/2− 1/𝑛) (3𝑛+ 𝑘)2 − (2𝑛− 2− 2𝑘/𝑛)2

≥ (1/2− 1/𝑛) · (10𝑛2 + 2𝑘2 + 4𝑘𝑛)− 4𝑛2 ≥ 𝑛2.

(5)

Let 𝑌 = 𝑓n(𝑥) − 𝑓n(𝑥′). Note that |𝑥|0 = 𝑖 ∈ ( 𝑛
100

, 𝑛
50
) and

|𝑥′|0 = 𝑖 + 1. Then, we can easily get that 𝜇 := E(𝑌 ) = 2/𝑛
and 𝜎2 := Var(𝑌 ) ≥ 2𝑛2. Let 𝑍 = 𝑌 − 𝜇. Then, we have
E(𝑍) = 0, Var(𝑍) = 𝜎2 ≥ 2𝑛2 and

𝜌 := E(|𝑍|3) ≤ 2
(︀
1/4− 1/𝑛2)︀ · (2𝑛+ 2𝑖+ 1 + 2/𝑛)3

+
(︀
(1/2− 1/𝑛)2 + (1/2 + 1/𝑛)2

)︀
· (1 + 2/𝑛)3 ≤ 9𝑛3/2,

where the last inequality holds with sufficiently large 𝑛. Note
that 𝑓(𝑥)−𝑓(𝑥′)−𝜇 is the average of 𝑚 independent random
variables, which have the same distribution as 𝑍. By Berry-
Esseen inequality [23], we have

P
(︁
(𝑓(𝑥)−𝑓(𝑥′)−𝜇)

√
𝑚/𝜎 ≤ 𝑥

)︁
− Φ(𝑥) ≥ −𝜌/(2𝜎3√𝑚),

where Φ(𝑥) is the cumulative distribution function of the
standard normal distribution. Thus, we have

P(𝑓(𝑥)− 𝑓(𝑥′) ≤ 0)) = P(𝑓(𝑥)− 𝑓(𝑥′)− 𝜇 ≤ −𝜇)

= P
(︁
(𝑓(𝑥)− 𝑓(𝑥′)− 𝜇)

√
𝑚/𝜎 ≤ −𝜇

√
𝑚/𝜎

)︁
≥ Φ

(︀
−𝜇

√
𝑚/𝜎

)︀
− 𝜌/(2𝜎3√𝑚) ≥ 0.07,

where the second inequality is by 𝜇 = 2
𝑛

, 4 ≤ 𝑚 ≤ 𝑛4

400
,

𝜎 ≥
√
2𝑛 and 𝜌 ≤ 9

2
𝑛3.
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(2) 𝑚 ≤ 3. It holds that P(𝑓(𝑥′) ≥ 𝑓(𝑥)) ≥ ( 1
2
− 1

𝑛
)3 ≥ 0.1,

since it is sufficient that 𝑓n(𝑥′) is always evaluated to 3𝑛+𝑖+1
in 𝑚 independent evaluations.
Combining the above two cases, our claim that P(𝑓(𝑥′) ≥
𝑓(𝑥)) ≥ 0.07 holds. Note that 𝑖 < 𝑛/50. Thus,

E− ≥ ((𝑛− 𝑖)/𝑛) (1− 1/𝑛)𝑛−1 · 0.07 ≥ 1.2/50.

For the positive drift, we can similarly get E+ ≤ 𝑖
𝑛
≤ 1

50
as

in the proof of Theorem 4.3, since we optimistically assume
that 𝑥′ is always accepted. Thus, the drift satisfies that

E(𝑋𝑡 −𝑋𝑡+1 | 𝑋𝑡 = 𝑖) = E+ − E− ≤ −0.2/50.

[Part II: 𝑚 > 𝑛4

400
] We consider the interval [ 𝑛

200
, 𝑛
100

], and
compute the drift E(𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑖) (where 𝑛

200
<

𝑖 < 𝑛
100

) by E+ − E−. For the negative drift, we show that
the probability of accepting the offspring solution 𝑥′ with
|𝑥′|0 = 𝑖+ 1 is at least 0.9. For any 𝑛

200
< 𝑘 < 𝑛

100
,

E(𝑓n(𝑥𝑘)− 𝑓n(𝑥𝑘+1)) = (1− 1/𝑛) · 4𝑛

− (1/𝑛) · (3(2𝑛+ 𝑘)2 + 3(2𝑛+ 𝑘) + 1) ≤ −8𝑛;

and for any 𝑛
200

< 𝑘 ≤ 𝑛
100

,

Var(𝑓n(𝑥𝑘)) = (2𝑛+ 𝑘)6/𝑛+ (1− 1/𝑛) (4𝑛(𝑛− 𝑘))2

− (E(𝑓n(𝑥𝑘)))2 ≤ (1/𝑛) · 66𝑛6 + 16𝑛4 ≤ 82𝑛5.

Then, 𝜇 :=E(𝑓(𝑥)−𝑓(𝑥′))≤−8𝑛 and 𝜎2 :=Var(𝑓(𝑥)−𝑓(𝑥′)) ≤
2
𝑚

· 82𝑛5. By Chebyshev’s inequality and 𝑚 > 𝑛4

400
, we have

P(𝑓(𝑥)≥𝑓(𝑥′))≤P(|𝑓(𝑥)−𝑓(𝑥′)−𝜇|≥−𝜇)≤𝜎2/𝜇2≤0.1,

where the last inequality holds with sufficiently large 𝑛. Thus,
E− ≥ 𝑛−𝑖

𝑛

(︀
1− 1

𝑛

)︀𝑛−1 ·0.9 ≥ 99
100𝑒

·0.9 ≥ 0.29. For the positive
drift, we still have E+≤ 𝑖

𝑛
≤0.01. Thus, the drift satisfies that

E(𝑋𝑡 −𝑋𝑡+1 | 𝑋𝑡 = 𝑖) = E+ − E− ≤ −0.28. �

To prove the ineffectiveness of using parent populations,
we derive a sufficient condition for the exponential running
time of the (𝜇+1)-EA required to solve OneMax under noise,
which is inspired from Theorem 4 in [11]. We generalize their
result from additive noise to arbitrary noise. The proof is pro-
vided in the appendix due to space limitations. As presented
in Lemma 5.3, the condition intuitively means that when the
solution is close to the optimum, the probability of discard-
ing it from the population decreases linearly w.r.t. the popu-
lation size 𝜇, which is, however, not small enough to make
an efficient optimization. Note that for the case where using
parent populations works in the last section, the probability
of discarding the best solution from the population decreases
exponentially w.r.t. 𝜇. By verifying this condition, we prove
in Theorem 5.4 that the (𝜇+1)-EA with 𝜇 ∈ 𝑝𝑜𝑙𝑦(𝑛) needs ex-
ponential time for solving OneMax under segmented noise.
Let 𝑝𝑜𝑙𝑦(𝑛) indicate any polynomial of 𝑛.

LEMMA 5.3. For the (𝜇+1)-EA (where 𝜇 ∈ 𝑝𝑜𝑙𝑦(𝑛)) solving
OneMax under noise, if for any 𝑦 with |𝑦|1 > 599𝑛

600
and any set

of 𝜇 solutions 𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝜇},

P(𝑓n(𝑦) < min𝑥𝑖∈𝑄 𝑓n(𝑥𝑖)) ≥ 3/(5(𝜇+ 1)), (6)

then the expected running time is exponential.

THEOREM 5.4. For the (𝜇+1)-EA (where 𝜇 ∈ 𝑝𝑜𝑙𝑦(𝑛)) solv-
ing OneMax under segmented noise, the expected running
time is exponential.

PROOF. We use Lemma 5.3 to prove it. For any solution
𝑦 with |𝑦|0 ≤ 𝑛/200 and 𝑄 = {𝑥1, . . . , 𝑥𝜇}, let 𝐴 denote the
event that 𝑓n(𝑦) < min𝑥𝑖∈𝑄 𝑓n(𝑥𝑖). We will show that P(𝐴) ≥

4
5(𝜇+1)

, which implies that the condition Eq. (6) holds since
|𝑦|0 ≤ 𝑛/200 covers the required range of |𝑦|1 > 599𝑛/600.

Let 𝐵𝑙 (0 ≤ 𝑙 ≤ 𝜇) denote the event that 𝑙 solutions in
𝑄 are evaluated to have negative noisy fitness values. Note
that for any 𝑥, 𝑓n(𝑥) < 0 implies that |𝑥|0 ≤ 𝑛/200, and
𝑓n(𝑥) = −𝑛4 − 𝛿 where 𝛿 ∼ 𝒰 [0, 1]. For any 0 ≤ 𝑙 ≤ 𝜇,

P(𝐴 | 𝐵𝑙) ≥ P(𝑓n(𝑦) < 0 | 𝐵𝑙) · P(𝐴 | 𝑓n(𝑦) < 0, 𝐵𝑙).

Under the conditions 𝑓n(𝑦) < 0 and 𝐵𝑙, the noisy fitness
values of 𝑦 and the corresponding 𝑙 solutions in 𝑄 satisfy the
same continuous distribution −𝑛4−𝛿 where 𝛿 ∼ 𝒰 [0, 1], thus

P(𝐴 | 𝑓n(𝑦) < 0, 𝐵𝑙) ≥ 1/(𝑙 + 1) ≥ 1/(𝜇+ 1).

Then, we get P(𝐴 | 𝐵𝑙) ≥ 4
5
· 1

𝜇+1
and P(𝐴) =

∑︀𝜇
𝑙=0 P(𝐴 |

𝐵𝑙) · P(𝐵𝑙) ≥ 4
5(𝜇+1)

. By Lemma 5.3, the theorem holds. �

We prove in Theorem 5.6 that the (1+1)-EA using adaptive
sampling can solve OneMax under segmented noise in poly-
nomial time. The employed adaptive sampling strategy is:
[Adaptive Sampling] For comparing two solutions 𝑥 and 𝑦,
it first evaluates their noisy fitness once independently. If
3𝑛 ≤ |𝑓n(𝑥)− 𝑓n(𝑦)| < 𝑛4, this comparison result is directly
used; otherwise, each solution will be evaluated 𝑛5 times
independently and the comparison will be based on the av-
erage value of these 𝑛5 fitness evaluations.
Intuitively, when the noisy fitness gap of two solutions is too
small or too large, we need to increase the sample size to
make a more confident comparison.

To prove Theorem 5.6, we apply the upper bound on the
number of iterations of the (1+1)-EA solving noisy OneMax
in [12]. Let 𝑥𝑗 denote any solution with 𝑗 0-bits. Lemma 5.5
intuitively means that if the probability of recognizing the
true better solution in the comparison is large, the running
time can be upper bounded. From the proof, we can find
why adaptive sampling is effective in this case. In the 2nd
segment (or the 4th segment) of the problem, E(𝑓n(𝑥)−𝑓n(𝑦))
is positive for two solutions 𝑥 and 𝑦 with 𝑓(𝑥)>𝑓(𝑦), while
in the 3rd segment, it is negative. Thus, a large sample size is
better in the 2nd and 4th segments, while a small one is better
in the 3rd segment. According to the range of the noisy fitness
gap of two solutions in each segment, the adaptive sampling
strategy happens to allocate 𝑛5 evaluations for comparing
two solutions in the 2nd segment (or the 4th segment), while
allocate only one evaluation in the 3rd segment; thus it works.

LEMMA 5.5. [12] Suppose there is a positive constant 𝑐 ≤
1/15 and some 2 < 𝑙 ≤ 𝑛/2 such that

∀0 < 𝑖 ≤ 𝑗 : P(𝑓(𝑥𝑗) < 𝑓(𝑥𝑖−1)) ≥ 1− 𝑙/𝑛;

∀𝑙 < 𝑖 ≤ 𝑗 : P(𝑓(𝑥𝑗) < 𝑓(𝑥𝑖−1)) ≥ 1− 𝑐𝑖/𝑛,
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then the (1+1)-EA optimizes noisy OneMax in expectation in
𝑂(𝑛 log𝑛) + 𝑛2𝑂(𝑙) iterations.

THEOREM 5.6. For the (1+1)-EA solving OneMax under
segmented noise, if using adaptive sampling, the expected
running time is polynomial.

PROOF. We use Lemma 5.5 to prove it. By considering four
cases for 𝑖, we analyze P(𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1)), where 0 < 𝑖 ≤ 𝑗.
(1) 𝑖 > 𝑛

50
. It holds that ∀𝑗 ≥ 𝑖, P(𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1)) = 0, since

𝑓n(𝑥𝑗) is evaluated exactly and 𝑓n(𝑥𝑖−1) must be larger.
(2) 𝑛

100
+1<𝑖≤ 𝑛

50
. If 𝑗 > 𝑛

50
, we easily verify that P(𝑓(𝑥𝑗) ≥

𝑓(𝑥𝑖−1)) = 0. If 𝑗≤ 𝑛
50

, |𝑓n(𝑥𝑗)−𝑓n(𝑥𝑖−1)|<3𝑛, thus both 𝑥𝑗

and 𝑥𝑖−1 will be evaluated 𝑛5 times according to the adaptive
sampling strategy. Let 𝑌 =𝑓n(𝑥𝑖−1)−𝑓n(𝑥𝑗). Based on Eq. (5),
we easily get 𝜇 := E(𝑌 ) ≥ 2

𝑛
, and for any 𝑛

100
< 𝑘 ≤ 𝑛

50
,

Var(𝑓n(𝑥𝑘))≤ ( 1
2
+ 1

𝑛
) · 𝑛2 + ( 1

2
− 1

𝑛
) · 10𝑛2 ≤ 6𝑛2, thus 𝜎2 :=

Var(𝑌 )≤ 12𝑛2. By Chebyshev’s inequality and 𝑚 = 𝑛5, we
get P(𝑓(𝑥𝑗)≥𝑓(𝑥𝑖−1))≤P(|𝑓(𝑥𝑖−1)−𝑓(𝑥𝑗)−𝜇|≥𝜇)≤ 𝜎2

𝑚𝜇2 ≤ 3
𝑛

.

(3) 𝑛
200

+1 < 𝑖 ≤ 𝑛
100

+1. If 𝑗 ≥ 𝑛
100

+1, it holds that P(𝑓(𝑥𝑗) ≥
𝑓(𝑥𝑖−1)) = 0, since the noisy fitness in the 3rd segment of
Definition 5.1 is always larger than that in the 2nd segment. If
𝑗 ≤ 𝑛

100
, 3𝑛 ≤ |𝑓n(𝑥𝑗)−𝑓n(𝑥𝑖−1)| < 𝑛4, thus both 𝑥𝑗 and 𝑥𝑖−1

are just evaluated once. Then, we get P(𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1)) =

1/𝑛, since 𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1) iff 𝑓(𝑥𝑗) = (2𝑛+ 𝑗)3. Note that 𝑓
is just 𝑓n here, since it only performs one evaluation.
(4) 0 < 𝑖 ≤ 𝑛

200
+ 1. If 𝑗 > 𝑛

200
, 0 ≤ 𝑓n(𝑥𝑗) ≤ 𝑛4. Note that

𝑓n(𝑥𝑖−1) = 𝑛4(𝑛− 𝑖+1) or 𝑓n(𝑥𝑖−1) ≤ −𝑛4. Thus, |𝑓n(𝑥𝑗)−
𝑓n(𝑥𝑖−1)| ≥ 𝑛4. If 𝑗 ≤ 𝑛

200
, we can easily derive that |𝑓n(𝑥𝑗)−

𝑓n(𝑥𝑖−1)| < 𝑛 or ≥ 𝑛4. Thus, for any 𝑗 ≥ 𝑖, both 𝑥𝑗 and 𝑥𝑖−1

will be evaluated 𝑛5 times. Let 𝑌 = 𝑓n(𝑥𝑖−1) − 𝑓n(𝑥𝑗). It is
easy to verify 𝜇 := E(𝑌 ) ≥ 𝑛4/5 and 𝜎2 := Var(𝑌 ) ≤ 2𝑛10.
By Chebyshev’s inequality, P(𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1)) ≤ 𝜎2

𝑚𝜇2 ≤ 50
𝑛3 .

Thus, we have shown ∀0 < 𝑖 ≤ 𝑗 : P(𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖−1)) ≤
log𝑛/(15𝑛) for sufficiently large 𝑛. Let 𝑙 = log 𝑛 and 𝑐 = 1/15.
The condition of Lemma 5.5 is satisfied and the expected
number of iterations is thus 𝑂(𝑛 log𝑛) + 𝑛2𝑂(log𝑛), i.e. poly-
nomial. Since in each iteration, a solution is evaluated by at
most 𝑛5 times, the expected running time is polynomial. �

6 CONCLUSION
In this paper, we analyze the effectiveness of sampling in
noisy evolutionary optimization via running time analysis.
Our analysis on noisy LeadingOnes shows that as the sample
size increases, the running time of the (1+1)-EA first reduces
from exponential to polynomial, but then returns to expo-
nential. This discloses the importance of selecting a proper
sample size. We also construct two artificial noisy problems
to show that when sampling with any fixed sample size fails,
using parent populations and adaptive sampling can work.
Real noisy problems will be studied in the future.
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7 APPENDIX
Proof of Lemma 5.3. Let 𝑋𝑡

𝑖 denote the number of solutions
with 𝑖 1-bits in 𝜉𝑡 (i.e., the population after 𝑡 iterations). Let
𝑎 = 599𝑛

600
and 𝑏 = 20. We first use an inductive proof to show

that
∀𝑡 ≥ 0, 𝑖 > 𝑎 : E(𝑋𝑡

𝑖 ) ≤ 𝜇𝑏𝑎−𝑖. (7)

For 𝑡 = 0, due to the uniform initial distribution, we easily
have E(𝑋0

𝑖 ) = 𝜇 ·(
(︀
𝑛
𝑖

)︀
/2𝑛). Note that for 𝑘 ≥ 2𝑛

3
,
(︀

𝑛
𝑘+1

)︀
/
(︀
𝑛
𝑘

)︀
=

𝑛−𝑘
𝑘+1

≤ 𝑛/3
2𝑛/3+1

≤ 1
2

. Thus,
(︀
𝑛
𝑖

)︀
/2𝑛 ≤

(︀
𝑛
3𝑛
4

)︀
/
(︀

𝑛
2𝑛
3

)︀
≤ ( 1

2
)𝑛/12 ≤

𝑏𝑎−𝑛, which implies that ∀𝑖 > 𝑎,E(𝑋0
𝑖 ) ≤ 𝜇𝑏𝑎−𝑖. We then

assume that ∀0 ≤ 𝑘 ≤ 𝑡, 𝑖 > 𝑎 : E(𝑋𝑘
𝑖 ) ≤ 𝜇𝑏𝑎−𝑖, and

analyze E(𝑋𝑡+1
𝑖 ) for any 𝑖 > 𝑎. Let 𝑋𝑡 = (𝑋𝑡

0, 𝑋
𝑡
1, ..., 𝑋

𝑡
𝑛),

𝑙 = (𝑙0, 𝑙1, ..., 𝑙𝑛), |𝑙|1 =
∑︀𝑛

𝑖=0 𝑙𝑖 and 𝑝 = 3
5(𝜇+1)

. Let 𝑥′ denote
the offspring solution generated in the (𝑡 + 1)-th iteration,
and let 𝑥𝑖 denote a solution with 𝑖 1-bits. Then, we have

E(𝑋𝑡+1
𝑖 −𝑋𝑡

𝑖 ) = E(E(𝑋𝑡+1
𝑖 −𝑋𝑡

𝑖 | 𝑋𝑡))

=
∑︀

|𝑙|1=𝜇P(𝑋
𝑡 = 𝑙)·(︀

P(|𝑥′|1 = 𝑖, 𝑥′ and any 𝑥𝑖 in 𝜉𝑡 are not deleted | 𝑋𝑡 = 𝑙)

− P(|𝑥′|1 ̸= 𝑖,one 𝑥𝑖 in 𝜉𝑡 is deleted | 𝑋𝑡 = 𝑙)
)︀

≤
∑︀

|𝑙|1=𝜇P(𝑋
𝑡 = 𝑙) ·

(︀
P(|𝑥′|1 = 𝑖 | 𝑋𝑡 = 𝑙) · (1− (𝑙𝑖+1)𝑝)

− (1− P(|𝑥′|1 = 𝑖 | 𝑋𝑡 = 𝑙)) · 𝑙𝑖𝑝
)︀

=
∑︀

|𝑙|1=𝜇P(𝑋
𝑡 = 𝑙) ·

(︀
P(|𝑥′|1 = 𝑖 | 𝑋𝑡 = 𝑙) · (1− 𝑝)− 𝑙𝑖𝑝

)︀
=
∑︀

|𝑙|1=𝜇P(𝑋
𝑡 = 𝑙) ·

(︁ 𝑛∑︀
𝑗=0

𝑙𝑗
𝜇

· P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) · (1− 𝑝)− 𝑙𝑖𝑝

)︁
=(1−𝑝)

𝑛∑︀
𝑗=0

P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) ·

∑︀
|𝑙|1=𝜇

P(𝑋𝑡= 𝑙)
𝑙𝑗
𝜇

−
∑︀

|𝑙|1=𝜇

P(𝑋𝑡= 𝑙)𝑙𝑖𝑝

=(1−𝑝)
𝑛∑︀

𝑗=0

P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) ·

𝜇∑︀
𝑙𝑗=0

P(𝑋𝑡
𝑗 = 𝑙𝑗)

𝑙𝑗
𝜇

−
𝜇∑︀

𝑙𝑖=0

P(𝑋𝑡
𝑖 = 𝑙𝑖)𝑙𝑖𝑝

=
1− 𝑝

𝜇
·

𝑛∑︀
𝑗=0

P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) · E(𝑋𝑡

𝑗)− 𝑝 · E(𝑋𝑡
𝑖 ),

where the second equality is because 𝑋𝑡+1
𝑖 − 𝑋𝑡

𝑖 = 1 iff
|𝑥′| = 𝑖 and 𝑥′ is added into the population meanwhile the
solutions with 𝑖 1-bits in 𝜉𝑡 are not deleted; 𝑋𝑡+1

𝑖 −𝑋𝑡
𝑖 = −1

iff |𝑥′| ̸= 𝑖 and one solution with 𝑖 1-bits in 𝜉𝑡 is deleted, the
first inequality is because any solution with 𝑖 1-bits is deleted
with probability at least 𝑝 = 3

5(𝜇+1)
by the condition Eq. (6),

and the fourth equality is since a parent solution is uniformly
selected from 𝜉𝑡 for mutation. We further derive an upper
bound on 1

𝜇
· 𝑛∑︀
𝑗=0

P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) · E(𝑋𝑡

𝑗) as follows:

1

𝜇
·

𝑛∑︀
𝑗=0

P𝑚𝑢𝑡(𝑥
𝑗 , 𝑥𝑖) · E(𝑋𝑡

𝑗)

≤ P𝑚𝑢𝑡(𝑥
𝑎, 𝑥𝑖) +

𝑖−1∑︀
𝑗=𝑎+1

𝑏𝑎−𝑗 ·

(︃
𝑛− 𝑗

𝑖− 𝑗

)︃(︂
1

𝑛

)︂𝑖−𝑗

+ 𝑏𝑎−𝑖 ·

(︃(︂
1− 1

𝑛

)︂𝑛

+
𝑛−𝑖∑︀
𝑘=1

(︃
𝑛− 𝑖

𝑘

)︃(︂
1

𝑛

)︂𝑘
)︃

+
𝑛∑︀

𝑗=𝑖+1

𝑏𝑎−𝑗

≤

(︃
𝑛− 𝑎

𝑖− 𝑎

)︃(︂
1

𝑛

)︂𝑖−𝑎

+ 𝑏𝑎−𝑖
𝑖−1∑︀

𝑗=𝑎+1

𝑏𝑖−𝑗

(︂
𝑛− 𝑗

𝑛

)︂𝑖−𝑗

+ 𝑏𝑎−𝑖

(︃
1

𝑒
+

𝑛−𝑖∑︀
𝑘=1

(︂
𝑛− 𝑖

𝑛

)︂𝑘
)︃

+ 𝑏𝑎−𝑖
𝑛∑︀

𝑗=𝑖+1

𝑏𝑖−𝑗

≤
(︁𝑛− 𝑎

𝑛

)︁𝑖−𝑎

+ 𝑏𝑎−𝑖 ·

(︃
𝑖−1∑︀

𝑗=𝑎+1

𝑏𝑖−𝑗
(︁𝑛− 𝑎

𝑛

)︁𝑖−𝑗

+
1

𝑒
+

𝑛−𝑖∑︀
𝑘=1

(︁𝑛− 𝑎

𝑛

)︁𝑘
+

𝑛∑︀
𝑗=𝑖+1

𝑏𝑖−𝑗

)︃

≤𝑏𝑎−𝑖

(︃(︂
1

𝑏
· 𝑛

𝑛−𝑎

)︂𝑎−𝑖

+
1

𝑛
𝑏(𝑛−𝑎)

−1
+
1

𝑒
+

1
𝑛

𝑛−𝑎
−1

+
1

𝑏−1

)︃
≤ 𝑏𝑎−𝑖/2,

where the first inequality is derived by applying ∀𝑗 ≤ 𝑎 :
P𝑚𝑢𝑡(𝑥

𝑗 , 𝑥𝑖) ≤ P𝑚𝑢𝑡(𝑥
𝑎, 𝑥𝑖),

∑︀𝑛
𝑗=0 E(𝑋

𝑡
𝑗) = 𝜇, ∀𝑗 > 𝑎 :

E(𝑋𝑡
𝑗) ≤ 𝜇𝑏𝑎−𝑗 and some simple upper bounds onP𝑚𝑢𝑡(𝑥

𝑗 , 𝑥𝑖)

for 𝑗 > 𝑎, the fourth inequality is by ∀0 < 𝑐 < 1 :
∑︀∞

𝑘=1 𝑐
𝑘 =

𝑐
1−𝑐

= 1
1/𝑐−1

, and the last is by 𝑎 = 599𝑛
600

, 𝑏 = 20 and 𝑖 > 𝑎.
Combining the above two formulas, we get

E(𝑋𝑡+1
𝑖 −𝑋𝑡

𝑖 ) ≤
1− 𝑝

2
· 𝑏𝑎−𝑖 − 𝑝 · E(𝑋𝑡

𝑖 ),

which implies that

E(𝑋𝑡+1
𝑖 ) ≤ 1− 𝑝

2
· 𝑏𝑎−𝑖 + (1− 𝑝) · E(𝑋𝑡

𝑖 )

≤
(︂

1

2𝜇
+ 1

)︂
· 5𝜇+ 2

5(𝜇+ 1)
· 𝜇𝑏𝑎−𝑖 ≤ 𝜇𝑏𝑎−𝑖,

where the second inequality is by 𝑝 = 3
5(𝜇+1)

and E(𝑋𝑡
𝑖 ) ≤

𝜇𝑏𝑎−𝑖, and the last inequality holds with 𝜇 ≥ 2. Thus, our
claim that ∀𝑡 ≥ 0, ∀𝑖 > 𝑎 : E(𝑋𝑡

𝑖 ) ≤ 𝜇𝑏𝑎−𝑖 holds.
Based on Eq. (7) and Markov’s inequality, we get, for any

𝑡 ≥ 0, P(𝑋𝑡
𝑛 ≥ 1) ≤ E(𝑋𝑡

𝑛) ≤ 𝜇𝑏𝑎−𝑛. Note that 𝑋𝑡
𝑛 is the

number of optimal solutions in the population after 𝑡 itera-
tions. Let 𝑇 = 𝑏(𝑛−𝑎)/2. Then, the probability of finding the
optimal solution 1𝑛 in 𝑇 iterations is

P(∃𝑡 ≤ 𝑇,𝑋𝑡
𝑛 ≥ 1) ≤

𝑇∑︀
𝑡=0

P(𝑋𝑡
𝑛 ≥ 1) ≤ 𝑇 ·𝜇𝑏𝑎−𝑛 = 𝜇·𝑏(𝑎−𝑛)/2,

which is exponentially small for 𝜇 ∈ 𝑝𝑜𝑙𝑦(𝑛). This implies
that the expected running time for finding the optimal solu-
tion is exponential. �
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