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Abstract
Subset selection that selects a few variables from
a large set is a fundamental problem in many ar-
eas. The recently emerged Pareto Optimization
for Subset Selection (POSS) method is a power-
ful approximation solver for this problem. How-
ever, POSS is not readily parallelizable, restricting
its large-scale applications on modern computing
architectures. In this paper, we propose PPOSS, a
parallel version of POSS. Our theoretical analysis
shows that PPOSS has good properties for paral-
lelization while preserving the approximation qual-
ity: when the number of processors is limited (less
than the total number of variables), the running
time of PPOSS can be reduced almost linearly with
respect to the number of processors; with increas-
ing number of processors, the running time can be
further reduced, eventually to a constant. Empiri-
cal studies verify the effectiveness of PPOSS, and
moreover suggest that the asynchronous implemen-
tation is more efficient with little quality loss.

1 Introduction
Given a total set of n variables, the subset selection problem is
to select a subset of size at most k for optimizing some given
objective. One origin of this problem is the column subset
selection problem [Gu and Eisenstat, 1996], which aims at
selecting a few columns from a matrix that capture as much of
the matrix as possible. Since then, subset selection has been
significantly extended and numerous applications of it have
emerged, e.g., feature selection, sparse learning, compressed
sensing, etc.

Subset selection is NP-hard in general [Davis et al., 1997].
Much effort has been put into developing polynomial-time
approximation algorithms. These algorithms can be mainly
categorized into two branches, greedy algorithms and con-
vex relaxation methods. Greedy algorithms iteratively add
or remove one variable that makes the given objective cur-
rently optimized [Gilbert et al., 2003; Tropp, 2004]. Albeit
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widely used in practice, the performance of these algorithms
is limited due to their greedy nature. Convex relaxation meth-
ods relax the original problem by replacing the set size con-
straint (i.e., the `0-norm constraint) with convex constraints,
e.g., the `1-norm constraint [Tibshirani, 1996] and the elastic
net penalty [Zou and Hastie, 2005]. However, the optimal so-
lutions of the relaxed problem could be distant to that of the
original problem.

Recently, Pareto optimization has been shown to be very
powerful for the subset selection problem [Qian et al., 2015c].
The Pareto Optimization for Subset Selection (POSS) method
treats subset selection as a bi-objective optimization prob-
lem, which requires optimizing the given objective and min-
imizing the subset size simultaneously. Then, a bi-objective
evolutionary algorithm with theoretical guarantee [Yu et al.,
2012; Qian et al., 2015a; 2015b] is applied to solve it. Fi-
nally, the best solution satisfying the size constraint is picked
out from the solution set produced by POSS. POSS is proved
to achieve the best previous known polynomial-time approx-
imation guarantee [Das and Kempe, 2011] on the sparse re-
gression problem [Miller, 2002], a representative example of
subset selection. Particularly, it can also even find an optimal
solution on an important subclass of sparse regression [Das
and Kempe, 2008]. In addition to the theoretical guarantee,
POSS has also achieved significantly better empirical perfor-
mance than the greedy and the relaxation methods.

POSS requires calling 2ek2n (e ≈ 2.71828 is Euler’s num-
ber) number of objective function evaluations [Qian et al.,
2015c] to achieve a high quality solution, which could be un-
satisfactory from the practical viewpoint when k and n are
large. On the other hand, POSS is a sequential algorithm that
cannot be readily parallelized, which hinders the exploration
of modern computer facilities for applying POSS to large-
scale real-world problems.

In this paper, we propose a parallel version of POSS, called
PPOSS. Instead of generating one solution at a time (as in
POSS), PPOSS generates as many solutions as the number
of processors at a time, and can be easily parallelized. More
important, on subset selection with monotone objective func-
tions, we prove that, while preserving the solution quality,
(1) when the number of processors is limited (less than the
number n of variables), the running time of PPOSS can be
reduced almost linearly w.r.t. the number of processors;
(2) with increasing number of processors, the running time



can be continuously reduced, eventually to a constant.
We further show that the obtained approximation quality
reaches the best previous known approximation bound on
two well-known instances in the studied class: any submod-
ular objective function and sparse regression with a specific
non-submodular objective function. Experimental results on
sparse regression tasks verify our theoretical analysis, and
suggest that the asynchronous implementation of PPOSS is
more efficient, while introduces little loss in solution quality.

The rest of the paper is organized as follows. Section 2 in-
troduces the subset selection problem and the POSS method.
In Section 3, we propose the PPOSS method and give the
theoretical analysis. Section 4 presents the empirical studies.
Section 5 concludes this paper.

2 Subset Selection
The subset selection problem as presented in Definition 1 is
to select a subset S from a total set V of variables such that
a given objective f is minimized with the constraint |S| ≤
k, where | · | denotes the size of a set. It is generally NP-
hard [Natarajan, 1995; Davis et al., 1997]. Note that we only
consider minimization since maximizing f is equivalent to
minimizing −f .
Definition 1 (Subset Selection). Given all variables V =
{X1, . . . , Xn}, an objective f and a positive integer k, it is
to find a set of at most k variables minimizing f , i.e.,

arg minS⊆V f(S) s.t. |S| ≤ k. (1)
Sparse regression [Miller, 2002] as presented in Defini-

tion 2 is an example of subset selection. It is to find a sparse
solution to the linear regression problem. Note that we do not
distinguish between S and its index set IS = {i | Xi ∈ S}
for notational convenience, and we assume that all variables
are normalized to have expectation 0 and variance 1.
Definition 2 (Sparse Regression). Given all observation vari-
ables V = {X1, . . . , Xn}, a predictor variable Z and a
positive integer k, define the mean squared error of a subset
S ⊆ V as

MSEZ,S = minα∈R|S| E
[
(Z −

∑
i∈S

αiXi)
2
]
.

Sparse regression is to find a set of at most k variables mini-
mizing the mean squared error, i.e.,

arg minS⊆V MSEZ,S s.t. |S| ≤ k.
In the previous theoretical analysis for sparse regres-

sion [Das and Kempe, 2008; 2011; Qian et al., 2015c], an
equivalent form is often used

arg maxS⊆V R
2
Z,S s.t. |S| ≤ k, (2)

whereR2
Z,S = (V ar(Z)−MSEZ,S)/V ar(Z) is the squared

multiple correlation [Diekhoff, 1992; Johnson and Wich-
ern, 2007], and can be simplified to be 1 − MSEZ,S , be-
cause Z is assumed to be normalized to have variance 1 (i.e.,
V ar(Z) = 1). Das and Kempe [2011] proved that the greedy
algorithm achieves the best known approximation guarantee.
The greedy algorithm iteratively adds one variable with the
largest R2 improvement until k variables are selected. It can
produce a subset S with R2

Z,S ≥ (1 − e−γ) · OPT , where
OPT denotes the optimal function value of Eq. (2) and γ is
the submodularity ratio [Das and Kempe, 2011].

2.1 The POSS Method
Qian et al. [2015c] proposed a Pareto optimization method
for subset selection, called POSS. Let a binary vector s ∈
{0, 1}n represent a subset S of V , where si = 1 if the variable
Xi is in S and si = 0 otherwise. Note that s ∈ {0, 1}n and
its corresponding subset will not be distinguished for nota-
tional convenience. The POSS method reformulates the orig-
inal problem Eq. (1) as a bi-objective minimization problem

arg mins∈{0,1}n (f1(s), f2(s)),

where

f1(s) =

{
+∞, s = {0}n, or |s| ≥ 2k

f(s), otherwise
, f2(s) = |s|.

That is, POSS minimizes the original objective and the subset
size simultaneously. Note that setting f1 to +∞ is to exclude
trivial or overly bad solutions.

For comparing solutions in the bi-objective setting, both
the two objective values need to be compared. For two solu-
tions s and s′, s weakly dominates s′ (i.e., s is better than
s′, denoted as s � s′) if f1(s) ≤ f1(s′) ∧ f2(s) ≤ f2(s′)
(i.e., s has a smaller or equal value on both the objectives); s
dominates s′ (i.e., s is strictly better, denoted as s ≺ s′) if
s � s′ and either f1(s) < f1(s′) or f2(s) < f2(s′) (i.e., s
has a strictly smaller value on one objective, and meanwhile
has a smaller or equal value on the other objective). The dom-
ination relationship can be formally stated as follows:
• s � s′ if f1(s) ≤ f1(s′) ∧ f2(s) ≤ f2(s′),
• s ≺ s′ if s � s′ ∧ (f1(s) < f1(s′) ∨ f2(s) < f2(s′)).

But if both s is not better than s′ and s′ is not better than
s, they are incomparable. Note that an isolation function
I : {0, 1}n → R was further introduced in [Qian et al.,
2015c] to determine if two solutions are allowed to be com-
pared. However, I is set to be a constant function in this
paper, and it can be just ignored because every solution has
the same I value.

The procedure of POSS is described in Algorithm 1. It
starts from the solution representing an empty set (line 1) and
then iteratively tries to improve the solutions in the archive P
(lines 3-12). In each iteration, a new solution s′ is generated
by randomly flipping bits of an archived solution s selected
from the current P (lines 4-5); its two objective values are
then evaluated (line 6); if s′ is not strictly worse than any pre-
viously archived solution (line 7), it will be added into P , and
meanwhile those previously archived solutions worse than s′

will be removed from P (lines 8-9). After T iterations, the
best solution (i.e., having the smallest f1 value) satisfying the
size constraint in P is selected (line 13).

For sparse regression, POSS using E[T ] ≤ 2ek2n and a
constant isolation function is proved to find a solution with
|S| ≤ k andR2

Z,S ≥ (1−e−γ)·OPT [Qian et al., 2015c], the
best known polynomial-time approximation guarantee pre-
viously obtained by the greedy algorithm [Das and Kempe,
2011]. For a subclass of sparse regression called Exponen-
tial Decay [Das and Kempe, 2008], POSS with E[T ] =
O(k2(n− k)n log n) and a proper isolation function finds an
optimal solution while the greedy algorithm cannot. Here,
E[T ] denotes the expected number of iterations.



Algorithm 1 POSS
Input: all variables V = {X1, . . . , Xn}, a given objective f
and an integer parameter k ∈ [1, n]
Parameter: the number of iterations T
Output: a subset of V with at most k variables
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: Generate s′ by flipping each bit of s with prob. 1

n .
6: Evaluate f1(s′) and f2(s′).
7: if @z ∈ P such that z ≺ s′ then
8: Q = {z ∈ P | s′ � z}.
9: P = (P \Q) ∪ {s′}.

10: end if
11: t = t+ 1.
12: end while
13: return arg mins∈P,|s|≤k f1(s)

3 Parallel Pareto Optimization
The proposed Parallel POSS (PPOSS) is shown in Algo-
rithm 2, which simply modifies POSS to generate as many
solutions as the number of processors in an iteration.

In each iteration of PPOSS, it first randomly selects a so-
lution s from the current archive P (line 4), and then im-
plements lines 6-7 in parallel. On each processor, it inde-
pendently generates a new solution s′ from s (line 6), and
evaluates both the two objective values (line 7). Note that s′i
denotes s′ at the i-th processor. After the procedure of par-
allelization, those newly generated solutions are used to up-
date the archive P (lines 9-14), which makes P always main-
tain non-dominated solutions produced so far. Compared to
POSS, PPOSS generates multiple new solutions in parallel in
each iteration instead of generating only one new solution.
When the number of processors N is 1, it is easy to see that
PPOSS is just POSS.

In the following, we will theoretically analyze the perfor-
mance of PPOSS on a large subclass of subset selection, max-
imizing a monotone function under the set size constraint.
The studied class has the form

arg maxS⊆V f(S) s.t. |S| ≤ k, (3)

where f is monotone, i.e., f(S2) ≥ f(S1) for any S1 ⊆ S2.
Note that the monotonicity is often satisfied by the objective
function of subset selection, e.g., R2

Z,S in Eq. (2). With-
out loss of generality, we assume that f is normalized, i.e.,
f(∅) = 0. In the following analysis, we will use the submod-
ularity ratio as presented in Definition 3, which characterizes
how close a set function f is to submodularity. f is submod-
ular iff f(S2)− f(S1) ≤

∑
X∈S2\S1

(f(S1 ∪{X})− f(S1))

for any S1 ⊆ S2 [Nemhauser et al., 1978], which is equiva-
lent to that γU,k(f) ≥ 1 for any U and k. When f is clear, we
will use γU,k shortly.

Definition 3 (Submodularity Ratio [Das and Kempe, 2011]).
Let f be a non-negative set function. The submodularity ratio

Algorithm 2 Parallel POSS (PPOSS)
Input: all variables V = {X1, . . . , Xn}, a given objective f
and an integer parameter k ∈ [1, n]
Parameter: the number of iterations T and the number of
processors N
Output: a subset of V with at most k variables
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: begin parallel on N processors
6: Generate s′i by flipping each bit of s with prob. 1

n .
7: Evaluate f1(s′i) and f2(s′i).
8: end parallel
9: for each s′i

10: if @z ∈ P such that z ≺ s′i then
11: Q = {z ∈ P | s′i � z}.
12: P = (P \Q) ∪ {s′i}.
13: end if
14: end for
15: t = t+ 1.
16: end while
17: return arg mins∈P,|s|≤k f1(s)

of f with respect to a set U and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
X∈S(f(L ∪ {X})− f(L))

f(L ∪ S)− f(L)
.

3.1 Linear Speedup in the Number of Iterations
We prove the approximation bound of PPOSS in Theorem 1,
whereOPT denotes the optimal function value of Eq. (3) and
E[T ] denotes the expected number of iterations T . We can see
that for finding a solution with the multiplicative approxima-
tion guarantee 1 − e−γmin , PPOSS achieves linear speedup
in the number of iterations T when the number of processors
N is asymptotically smaller than the number of variables n;
the required T can reduce to be O(1) when N is sufficiently
large. The proof needs Lemma 1 that for any subset S ⊆ V ,
there always exists another variable, the inclusion of which
can improve f by at least a quantity proportional to the cur-
rent distance to the optimum. Our proof idea is inspired from
that of Theorem 1 in [Qian et al., 2015c].

Lemma 1. For any S ⊆ V , there exists one variable X̂ ∈
V \ S such that

f(S ∪ {X̂})− f(S) ≥ γS,k
k

(OPT − f(S)).

Proof. Let S∗ be an optimal solution of Eq. (3), i.e., f(S∗) =
OPT . From the definition of submodularity ratio (i.e., Defi-
nition 3), we can easily derive that∑
X∈S∗\S

(f(S ∪ {X})− f(S)) ≥ γS,k · (f(S ∪ S∗)− f(S)).

Note that |S∗ \ S| ≤ k and f(S ∪ S∗) ≥ f(S∗) = OPT by



monotonicity. Let X̂ = arg maxX∈S∗\S f(S ∪ {X}). Then,

f(S ∪ {X̂})− f(S) ≥ γS,k
|S∗ \ S|

(f(S ∪ S∗)− f(S))

≥ γS,k
k

(OPT − f(S)).

Theorem 1. For maximizing a monotone function under the
set size constraint (i.e., Eq. (3)), the expected number of iter-
ations until PPOSS finds a solution s with |s| ≤ k ∧ f(s) ≥
(1− e−γmin) ·OPT , where γmin = mins:|s|=k−1 γs,k, is

(1) if N = o(n), then E[T ] ≤ 2ek2n/N ;

(2) if N = Ω(ni) for 1 ≤ i ≤ k, then E[T ] = O(k2/i);

(3) if N = Ω(nmin{3k−1,n}), then E[T ] = O(1).

Proof. The theorem is proved by analyzing the increase of a
quantity Jmax, which is the maximum integer value of j ∈
[0, k] such that in the archive set P , there exists a solution s
with |s| ≤ j and f(s) ≥ (1 − (1 − γmin

k )j) · OPT . That
is, Jmax = max{j ∈ [0, k] | ∃s ∈ P, |s| ≤ j ∧ f(s) ≥
(1− (1− γmin

k )j) ·OPT}. As PPOSS starts from the solution
{0}n (line 1 of Algorithm 2), the initial value of Jmax is 0.
Note that Jmax = k implies that we have found a solution s
in P satisfying that |s| ≤ k and f(s) ≥ (1 − (1 − γmin

k )k) ·
OPT ≥ (1− e−γmin) ·OPT . Thus, we just need to analyze
the expected number of iterations until Jmax = k.

Assume that Jmax = i < k. Let s be a corresponding
solution with the value i, i.e., |s| ≤ i and

f(s) ≥ (1− (1− γmin

k
)i) ·OPT. (4)

We first show that Jmax cannot decrease. If s is kept in P ,
Jmax obviously will not decrease. If s is removed, there must
exist one newly generated solution s′i which weakly domi-
nates s, and s′i will be added into P (lines 11-12). Since
s′i � s, we have |s′i| ≤ |s| ≤ i ∧ f(s′i) ≥ f(s) ≥
(1 − (1 − γmin

k )i) · OPT . Thus, Jmax must be at least i,
i.e., Jmax does not decrease.

We then show that Jmax can always increase by at least
l ∈ [1, k − i] in one iteration with some probability. We
know from Lemma 1 that flipping one specific 0-bit of s (i.e.,
adding a specific variable into the corresponding subset) can
generate a new solution s′, which satisfies that

f(s′)− f(s) ≥ γs,k
k

(OPT − f(s)).

Then, we have

f(s′) ≥ (1− γs,k
k

)f(s) +
γs,k
k
·OPT

≥ (1− (1− γs,k
k

)(1− γmin

k
)i) ·OPT

≥ (1− (1− γmin

k
)i+1) ·OPT,

where the second ‘≥’ is by Eq. (4), and the last one is by
γs,k ≥ γmin, which can be easily derived from |s| < k and
γs,k decreasing with s. By sequentially implementing such a
step l times, we can get a solution s′ satisfying that

f(s′) ≥ (1− (1− γmin

k
)i+l) ·OPT.

This also implies that such a solution can be found by flipping
l specific 0-bits of s simultaneously in one iteration. Note that
|s′| = |s|+ l ≤ i+ l. Once such a solution s′ is generated, no
solution in the current P can dominate it; otherwise, Jmax has
already been larger than i, which contradicts with the assump-
tion Jmax = i. Thus, s′ will be included into P (line 12), and
then Jmax ≥ i+l. We then only need to analyze the probabil-
ity of generating s′ in one iteration. Note that it is sufficient to
select s in line 4 and then flip those l specific 0-bits in at least
one processor. Let Pmax denote the largest size of P during
the run of PPOSS. The probability of selecting s in line 4 is
least 1

Pmax
due to uniform selection. The probability of flip-

ping l specific bits of s and keeping other bits unchanged in
line 6 is 1

nl (1 − 1
n )n−l. Because line 6 is implemented inde-

pendently by each processor, the probability of generating s′

is at least
1

Pmax
· (1− (1− 1

nl
(1− 1

n
)n−l)N )

≥ 1

Pmax
· (1− (1− 1

enl
)N ) ≥ 1

Pmax
· (1− e−

N

enl ),

where the first ‘≥’ is by (1 − 1
n )n−l ≥ 1

e for l ≥ 1 and the
second one is by (1− 1

enl )en
l ≤ 1

e .
Thus, we have shown that (1) Jmax cannot decrease; (2)

Jmax can increase by at least l in one iteration with probabil-
ity at least 1

Pmax
· (1− e−

N

enl ). According to these two points,
the expected number of iterations to increase Jmax by at least
l (called one successful step) is at most Pmax/(1 − e−

N

enl ).
Because dk/le successful steps are sufficient to make Jmax =
k, the total expected number of iterations is

E[T ] ≤ dk/le · Pmax/(1− e−
N

enl ).

We then show that Pmax ≤ 2k. From lines 9-14 of Algo-
rithm 2, it is easy to see that any two solutions in the archive
P must be incomparable. This implies that each value of one
objective can correspond to at most one solution in P . Note
that the second objective |s| ∈ {0, 1, . . . , 2k − 1}, because
any solution with |s| ≥ 2k has +∞ value on the first objec-
tive and must be excluded from P . Thus, Pmax ≤ 2k, and

E[T ] ≤ 2kdk/le/(1− e−
N

enl ),

where 1 ≤ l ≤ k. If N = o(n), let l = 1 and then e−
N
en =

1 − N
en + O((Nn )2) ≈ 1 − N

en . Thus, E[T ] ≤ 2ek2n/N . If

N = Ω(ni) for 1 ≤ i ≤ k, let l = i and then 1 − e−
N

eni =
Θ(1). Thus, we have E[T ] = O(k2/i).

We finally prove claim (3) by analyzing the probability
Popt of generating an optimal solution in one iteration. As
analyzed above, any solution s in P has |s| ≤ 2k − 1. Note
that an optimal solution contains at most k number of 1-bits.
Thus, the Hamming distance between any solution in P and
an optimal solution is at most HD = min{3k − 1, n}. Re-
gardless of the selected solution in line 4, the probability of
generating an optimal solution in one iteration at each proces-
sor is at least 1

nHD (1− 1
n )n−HD ≥ 1

enHD . Because it is suffi-
cient to generate an optimal solution in at least one processor,
the probability Popt is at least 1 − (1 − 1

enHD )N = Θ(1),
since N = Ω(nHD). Thus, E[T ] ≤ 1/Popt = O(1).



3.2 The Approximation Guarantee is Good
We have shown that PPOSS achieves linear speedup in the
number of iterations T for finding a solution with the mul-
tiplicative approximation guarantee 1 − e−γmin . A natural
question is then how good this approximation bound can be.
In the following, we will show that it reaches the best pre-
vious known guarantee on two well-known instances of our
studied problem class Eq. (3): f being any submodular func-
tion; the sparse regression problem Eq. (2) where f = R2 is
a specific non-submodular function.

When f in Eq. (3) is submodular, γs,k ≥ 1 for any s and
k. Thus, the obtained bound in Theorem 1 becomes f(s) ≥
(1− 1

e ) ·OPT , which is optimal in general [Nemhauser and
Wolsey, 1978], and is optimal even for the special case maxi-
mum coverage unless P = NP [Feige, 1998].

For sparse regression, a special case with f being non-
submodular, Das and Kempe [2011] proved that the greedy
algorithm produces a subset S with R2

Z,S ≥ (1 − e−γS,k) ·
OPT , which is the best currently known approximation guar-
antee. Thus, the obtained bound in Theorem 1 indicates that
PPOSS achieves nearly this best known one.

3.3 Almost Linear Speedup in the Running Time
In the above two subsections, we have shown that PPOSS
with the number of iterations T decreasing linearly in the
number of processors N can achieve a good approximation
guarantee. Let tposs and tpposs denote the running time of
each iteration for POSS and PPOSS, respectively. If tposs =
tpposs, we can conclude that PPOSS achieves linear speedup
in the running time. In the following, we will show that tposs
and tpposs are close in expectation.

Let ts, tg , te and tu denote the running time of selecting
an archived solution s (line 4 of Algorithm 2), generating a
new solution s′ (line 6), evaluating the objective values of
s′ (line 7) and updating the archive P (lines 10-13), respec-
tively. We first make some assumptions. Note that te usually
depends on the number of 1-bits of s′ (i.e., the number of se-
lected variables), denoted by v. For the ease of analysis, we
assume the linear dependence, i.e., te = c · v, where c is a
constant. We will not consider the extra parallel overhead in
the analysis.
Theorem 2. The expected difference between the running
time of each iteration for POSS and PPOSS is

E[tpposs − tposs] ≤ (N − 1) · tu + c/2.

Proof. From the procedure of Algorithms 1 and 2, we have

tposs = ts + tg + te + tu;

tpposs = ts + max{tig + tie | 1 ≤ i ≤ N}+N · tu,

where tig and tie denote tg and te at the i-th processor, re-
spectively. It is easy to see that tg is fixed. Thus, tpposs =
ts + tg + max{tie | 1 ≤ i ≤ N}+N · tu. Then, we have

tpposs − tposs = max{tie | 1 ≤ i ≤ N} − te + (N − 1)tu

= c ·max{vipp | 1 ≤ i ≤ N} − c · vp + (N − 1)tu,

where vp and vpp denote the number of 1-bits of the newly
generated solution s′ for POSS and PPOSS, respectively.

We then analyze the expectation of max{vipp | 1 ≤ i ≤ N}
and vp. Let up and upp denote the number of 1-bits of the se-
lected solution s in line 4 for POSS and PPOSS, respectively.
Note that s′ is generated by flipping each bit of s with prob-
ability 1/n. We can easily derive: E[vp] = up + 1 − 2up/n,
E[vipp] = upp+1−2upp/n, V ar(vp) = V ar(vipp) = 1−1/n.
Note that v1pp, v

2
pp, . . . , v

N
pp are i.i.d. since each processor

runs independently. By applying the upper bound of the
expected highest order statistic [Gumbel, 1954; Hartly and
David, 1954], we get

E[max{vipp|1≤ i≤N}] ≤ E[vipp]+
√
V ar(vipp) ·

N−1

2N−1
.

Because the archive P contains at most one solution for
each |s| = j < 2k (see the proof of Theorem 1) and s is
selected from P uniformly at random, the distributions of up
and upp have little difference. For the ease of analysis, we
assume that they are the same, denoted as p. We can then get

E[tpposs − tposs] = (N − 1) · tu + c ·
∑

j
p(j)·

(E[max{vipp | 1 ≤ i ≤ N} | upp = j]− E[vp | up = j])

≤ (N − 1) · tu + c ·
∑

j
p(j) ·

√
1− 1

n
· N − 1

2N − 1

≤ (N − 1) · tu + c/2.

From lines 10-13 of Algorithm 2, we can see that tu is
mainly the running time of comparing s′i with the solutions
in P . The total number of comparisons is at most 2k, because
the largest size of P is 2k. Note that comparing with the
objective function evaluation time te = c ·v, the time of com-
paring solutions is usually much smaller, and can even be ne-
glected. Thus, the difference (N −1)tu+ c/2 between tpposs
and tposs is small compared to tposs itself, and then PPOSS
can almost achieve linear speedup in the running time.

3.4 Further Acceleration
As analyzed in Theorem 2, PPOSS needs the extra (N −1)tu
running time (i.e., 2k(N − 1) comparisons) to update the
archive P . We then give an accelerating strategy. We put
lines 10-13 of PPOSS into the parallelization process, and
change Pi = (P \ Q) ∪ {s′i} to be Pi = P \ Q for each
processor. Let R = {s′i | @z ∈ P,z ≺ s′i} record the newly
generated solutions satisfying the condition of line 10. After
parallelization, we compute the largest non-dominated subset
of R, which contains the new solutions that should be kept,
and it needs at most |R|(|R|−1)/2 comparisons. By combin-
ing it with ∩Ni=1Pi (the previously archived solutions which
should be kept), we get the next archive P . Thus, this strat-
egy decreases the number of comparisons from 2k(N − 1) to
|R|(|R| − 1)/2. Note that |R| is usually much smaller than
N , because the solutions in P become better as the algorithm
runs and the newly generated solutions are easily dominated.
In our experiment, we use this accelerating strategy.

The extra running time of each iteration for PPOSS is ac-
tually due to the cost of synchronization. The term c/2 is be-
cause we need to wait until all the processors finish, and the
extra number of comparisons 2k(N − 1) (or |R|(|R| − 1)/2)
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Figure 1: On each data set, left: speedup, right: the average and standard deviation of the R2 value (the larger the better).

is because we need to make P maintain non-dominated solu-
tions produced so far. They can be avoided by running each
processor asynchronously. The asynchronous PPOSS (called
PPOSS-asy) performs lines 4-10 of Algorithm 1 at each pro-
cessor asynchronously and independently, but shares an itera-
tion counter. We will test its performance in the experiments,
but the theoretical analysis is left in the future.

4 Experiments
Experiments for sparse regression (Eq. (2)) are conducted on
6 data sets1 to investigate the performance of PPOSS. We set
the sparsity k = 8, and for PPOSS, we use the setting sug-
gested by Theorem 1: T = b2ek2n/Nc. We test the number
of cores N from 1 to 10. All of the experiments are coded
in Java and run on an identical configuration: a server with 4
Intel(R) Xeon(R) CPU E5-2640 v2 (8 real cores each, 20M
Cache, 2.00GHz, hyper-threading) and 32GB of RAM. The
kernel is Linux 2.6.18-194.el5.

We compare the speedup as well as the solution quality
measured by R2 values with different number of cores N .
The solution quality is also compared with that of the greedy
algorithm (forward regression), which is the previous algo-
rithm with the best known guarantee [Das and Kempe, 2011].

For PPOSS with each N value on each data set, we repeat
10 runs independently and report the average speedup andR2

values. The results are plotted in Figure 1. From the left plots
in the subfigure of each data set, we can observe that PPOSS
(blue line) achieves speedup around 7 when the number of

1The data sets are from http://archive.ics.uci.
edu/ml/ and http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/.

cores is 10. From the right plots in each subfigure, we can see
that the R2 values of PPOSS with different number of cores
are stable, and better than that of the greedy algorithm except
that they are the same on w5a data set. Note that on some data
sets (e.g., coil2000), the standard deviation of theR2 value by
PPOSS is 0, which is because PPOSS always converges to the
same good solutions in 10 runs.

We also test the performance of PPOSS-asy, as the red lines
shown in Figure 1. In the run of PPOSS-asy, all the cores
share an iteration counter, and terminate until the counter
reaches b2ek2nc (i.e., the number of iterations of POSS). As
expected, PPOSS-asy achieves better speedup than PPOSS,
because the extra cost of each iteration in the synchronous
setting is avoided. Meanwhile, the R2 values obtained by
PPOSS-asy are slightly worse than that of PPOSS because of
the miss-synchronization.

5 Conclusion
In this paper, we propose the parallel Pareto optimization
method for subset selection (PPOSS). Theoretically, we prove
that for a large subclass of subset selection, PPOSS has good
properties for parallelization while preserving the approxima-
tion quality: when the number of processors is limited, almost
linear speedups can be achieved; with increasing number of
processors, the running time can be further reduced, eventu-
ally to a constant. Note that parallel greedy methods can-
not enjoy many processors, since the number of greedy steps
cannot be parallelizable. This implies that, given sufficient
processors, PPOSS can be both faster and more accurate than
parallel greedy methods. Empirical results verify our theoret-
ical analysis, and also show that the asynchronous PPOSS can
further improve the speedup with little loss of performance.
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