
Optimizing Ratio of Monotone Set Functions∗

Chao Qian1, Jing-Cheng Shi2, Yang Yu2, Ke Tang1, Zhi-Hua Zhou2

1UBRI, School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China

2National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
{chaoqian, ketang}@ustc.edu.cn, {shijc, yuy, zhouzh}@lamda.nju.edu.cn

Abstract
This paper considers the problem of minimizing the
ratio of two set functions, i.e., f/g. Previous work
assumed monotone and submodular of the two
functions, while we consider a more general situa-
tion where g is not necessarily submodular. We de-
rive that the greedy approach GreedRatio, as a fixed
time algorithm, achieves a |X∗|

(1+(|X∗|−1)(1−κf))γ(g) -
approximation ratio, which also improves the pre-
vious bound for submodular g. If more time can
be spent, we present the PORM algorithm, an any-
time randomized iterative approach minimizing f
and −g simultaneously. We show that PORM us-
ing reasonable time has the same general approx-
imation guarantee as GreedRatio, but can achieve
better solutions in cases and applications.

1 Introduction
Minimizing the ratio of two set functions, i.e., f/g, can be
found useful in many applications. For examples, in machine
learning tasks, optimizing F-measure [Rijsbergen and Joost,
1974], linear discriminant analysis [McLachlan, 2004], nor-
malized cut [Shi and Malik, 2000], etc., involve ratio opti-
mization. Recently, Bai et al. [2016] studied the ratio mini-
mization problem where the functions are monotone and sub-
modular. We will denote this problem as RS minimization.

In [Bai et al., 2016], several algorithms with bounded ap-
proximation guarantees were proposed for RS minimization.
The GreedRatio algorithm iteratively selects one element that
makes the ratio of the marginal gain by this element min-
imized. Other methods first connect RS minimization to
the problem of minimizing the difference between submod-
ular functions [Iyer and Bilmes, 2012] or connect it to the
problem of submodular optimization with submodular con-
straints [Iyer and Bilmes, 2013], and then apply the exist-
ing techniques of the related problems. GreedRatio was also

∗This work was supported by the NSFC (61333014, 61375061,
61603367, 61672478, U1605251, U1613216), the JiangsuSF
(BK20160066), the CCF-Tencent Open Research Fund, the Funda-
mental Research Funds for the Central Universities, and the Collab-
orative Innovation Center of Novel Software Technology and Indus-
trialization.

shown to obtain the best empirical performance in the appli-
cation of F-measure maximization.

In this paper, we consider a more general situation, i.e.,
the function g can be non-submodular. We first prove
that GreedRatio obtains a |X∗|

1+(|X∗|−1)(1−κ̂f (X∗)) ·
1

γ∅,|X∗|(g)
-

approximation guarantee (Theorem 1), where |X∗| is the
size of an optimal solution X∗, κ̂f (X∗) is the curvature
of f , and γ∅,|X∗|(g) is the submodularity ratio of g. Note
that when g is submodular, our derived bound becomes

|X∗|
1+(|X∗|−1)(1−κ̂f (X∗)) , which improves the previous known
bound 1

1−eκf−1 [Bai et al., 2016]. Particularly, the approxi-
mation bound is improved from ∞ to |X∗| for κf = 1, and
improved from e

e−1 to 1 for κf = 0.
Note that the greedy nature of GreedRatio results in an ef-

ficient fixed time algorithm, but meanwhile may limit its per-
formance. We then propose a Pareto optimization [Qian et al.,
2015b; 2016] method, PORM, which is an anytime algorithm
that can use more time to find better solutions. PORM first
reformulates the original problem f/g as a bi-objective opti-
mization problem that minimizes f and maximizes g simul-
taneously, then employs a randomized iterative algorithm to
solve it, and finally selects the solution with the smallest ratio
from the maintained set of solutions. Compared with single-
bit forward search by GreedRatio, PORM can perform back-
ward search, multi-path search and multi-bit search, which
may help alleviate the issue of getting trapped in local op-
tima. Our main theoretical results for PORM are that, within
reasonable time,

• PORM can achieve the same general approximation guar-
antee as GreedRatio (Theorem 2).

• In a case of F-measure maximization, PORM can escape
the local optimum by backward search, multi-path search
and multi-bit search to find an optimum, while GreedRatio
cannot (Theorem 3).

Experimental results on F-measure maximization exhibit the
superior performance of PORM.

2 Minimizing Ratio of Monotone Functions
Given a finite set V = {v1, v2, . . . , vn}, we study the func-
tions f : 2V → R defined on subsets of V . A set function
f : 2V → R is monotone if for any X ⊆ Y , f(X) ≤ f(Y).

Without loss of generality, we assume that monotone func-
tions are normalized, i.e., f(∅) = 0. A set function f : 2V →
R is submodular [Nemhauser et al., 1978] if for any X ⊆ Y ,

f(Y)− f(X) ≤
∑

v∈Y \X

(
f(X ∪ {v})− f(X)

)
. (1)

We then introduce two concepts, which will be used in our
analysis. The submodularity ratio as presented in Definition 1
characterizes how close a set function f is to submodular-
ity. It is easy to see from Eq. (1) that f is submodular iff
γX,k(f) = 1 for any X and k. The curvature as presented
in Definition 2 characterizes how close a monotone submod-
ular set function f is to modularity. It is easy to verify that
κ̂f (X) ≤ κf (X) ≤ κf . Note that f is modular iff κf = 0.
Definition 1 (Submodularity Ratio [Das and Kempe, 2011]).
Let f be a non-negative set function. The submodularity ratio
of f with respect to a set X and a parameter k ≥ 1 is

γX,k(f) = min
L⊆X,S:|S|≤k,S∩L=∅

∑
v∈S

(
f(L ∪ {v})− f(L)

)
f(L ∪ S)− f(L)

.

Definition 2 (Curvature [Conforti and Cornuéjols, 1984;
Vondrák, 2010; Iyer et al., 2013]). Let f be a monotone sub-
modular set function. The total curvature of f is

κf = 1− min
v∈V :f(v)>0

(
f(V)− f(V \ {v})

)/
f(v).

The curvature with respect to a set X ⊆ V is

κf (X) = 1− min
v∈X:f(v)>0

(
f(X)− f(X \ {v})

)/
f(v),

and an alternative notion is

κ̂f (X) = 1−
(∑
v∈X

(
f(X)− f(X \ {v})

))/(∑
v∈X

f(v)
)
.

We study the problem in Definition 3 that minimizes the
ratio of a monotone submodular function f and a monotone
function g. We can assume that ∀v ∈ V , f(v) > 0, because
for any v with f(v) = 0, we can simply add it into the final
subset, which will not increase the ratio. Note that we only
consider minimization since maximizing f/g is equivalent to
minimizing g/f .
Definition 3 (The General Problem). Given a monotone sub-
modular function f : 2V → R+ and a monotone function
g :2V →R+, the task is as follows:

arg min∅⊂X⊆V f(X)/g(X). (2)

Maximizing the F-measure in information retrieval is a
special instance of our studied problem with g being submod-
ular, which will also be studied in this paper. Given a bipartite
graph G(V,W,E), where V is a set of objects, W is a set of
words and each edge (v, w) ∈ E means that the object v con-
tains the word w, we define the function Γ : 2V → 2W as
for any X ⊆ V , Γ(X) = {w ∈ W | ∃v ∈ X, (v, w) ∈ E},
i.e., Γ(X) is the set of words contained by the objects in X .
Then, the information retrieval problem of finding a subset of
objects that exactly cover a target set of words O ⊆ W can
be formulated as maximizing the F-measure of the coverage
on O, as shown in Definition 4. It is easy to verify that both
|Γ(X)∩O| and |O|+ |Γ(X)| are monotone and submodular,
where | · | denotes the size of a set.

Algorithm 1 GreedRatio Algorithm
Input: monotone submodular functions f, g : 2V → R+

Output: a subset X ⊆ V
Process:

1: Let X0 = ∅, R = V and i = 0.
2: repeat
3: v ∈ arg minv∈R

f(Xi∪{v})−f(Xi)
g(Xi∪{v})−g(Xi) .

4: Xi+1 = Xi ∪ {v}.
5: R = {v | g(Xi+1 ∪ {v})− g(Xi+1) > 0}.
6: i = i+ 1.
7: until R = ∅
8: return Xi∗ with i∗ ∈ arg mini f(Xi)/g(Xi)

Definition 4 (F-measure Maximization). Given a bipartite
graph G(V,W,E) and a target subset O ⊆W , the task is as
follows:

arg max∅⊂X⊆V

(
F (X) =

2|Γ(X) ∩O|
|O|+ |Γ(X)|

)
.

3 The GreedRatio Method
Bai et al. [2016] have recently investigated the problem
of minimizing the ratio of monotone submodular functions,
i.e., the function g in Definition 3 is submodular. They
proved that the GreedRatio algorithm can obtain a 1

1−eκf−1 -
approximation guarantee, and also conducted experiments to
show that GreedRatio achieves the best performance on F-
measure maximization. As shown in Algorithm 1, GreedRa-
tio iteratively selects one element v such that the ratio of the
marginal gain on f and g by adding v is minimized.

We theoretically analyze the performance of GreedRatio
for our studied general problem, i.e., g is not necessarily sub-
modular. We prove its general approximation bound in The-
orem 1, where OPT denotes the optimal function value of
Eq. (2). Let X∗ be an optimal solution with the minimum
size, i.e., f(X∗)/g(X∗) = OPT and |X∗| = min{|X| |
f(X)/g(X) = OPT}. The proof idea is that the best
single element v∗ obtains the desired approximation bound
(as shown in Lemma 2), and the subset output by Gree-
dRatio (i.e., line 8 of Algorithm 1) obviously satisfies that
f(Xi∗)/g(Xi∗) ≤ f(v∗)/g(v∗).
Lemma 1. [Iyer et al., 2013] Given a monotone submodular
function f : 2V → R+, it holds that, for any X ⊆ V ,∑

v∈X
f(v) ≤ |X|

1 + (|X| − 1)(1− κ̂f (X))
f(X).

Lemma 2. For minimizing the ratio f/g where f is monotone
submodular and g is monotone, there exists v∗ ∈ V such that

f(v∗)

g(v∗)
≤ |X∗|

1 + (|X∗|−1)(1−κ̂f (X∗))

1

γ∅,|X∗|(g)
·OPT.

Proof. Let v∗ ∈ arg minv∈V f(v)/g(v). By the definition of
submodularity ratio (i.e., Definition 1), we get

g(X∗) ≤
∑
v∈X∗ g(v)

γ∅,|X∗|(g)
≤ 1

γ∅,|X∗|(g)

g(v∗)

f(v∗)

∑
v∈X∗

f(v)

≤ 1

γ∅,|X∗|(g)

g(v∗)

f(v∗)
· |X∗| · f(X∗)

1 + (|X∗| − 1)(1− κ̂f (X∗))
,

where the last inequality is derived by Lemma 1. Thus, the
lemma holds.

Theorem 1. For minimizing the ratio f/g where f is mono-
tone submodular and g is monotone, GreedRatio finds a sub-
set X ⊆ V with

f(X)

g(X)
≤ |X∗|

1 + (|X∗| − 1)(1− κ̂f (X∗))

1

γ∅,|X∗|(g)
·OPT.

For the special case of g being submodular, γX,k(g) = 1
for any X and k, and thus the obtained bound in Theorem 1
becomes |X∗|

1+(|X∗|−1)(1−κ̂f (X∗)) , as in Corollary 1. This im-
proves the previous bound 1

1−eκf−1 [Bai et al., 2016], since

|X∗|
1+(|X∗|−1)(1−κ̂f (X∗)) ≤

1
1−κ̂f (X∗) ≤

1
1−κf ≤

1

1−eκf−1 ,

where the first inequality is by κ̂f (X∗) ∈ [0, 1], the second
inequality is by κ̂f (X∗) ≤ κf (X∗) ≤ κf , and the third is
by κf = 1 − (1 − κf) ≤ eκf−1. Particularly, the previ-
ous known bound becomes vacuous when κf = 1, while our
derived bound has an upper limit |X∗|. Note that when f
is modular (i.e., κf = 0), our derived bound discloses that
GreedRatio finds an optimal solution, while the known bound
in [Bai et al., 2016] shows that GreedRatio only achieves a
e
e−1 -approximation guarantee.

Corollary 1. For minimizing the ratio f/g where both f and
g are monotone and submodular, GreedRatio finds a subset
X ⊆ V with f(X)

g(X) ≤
|X∗|

1+(|X∗|−1)(1−k̂f (X∗))
·OPT .

4 The PORM Method
The greedy nature of GreedRatio may limit its performance.
To alleviate the issue of getting trapped in local optima, we
propose a new approach PORM adopting the Pareto Opti-
mization [Qian et al., 2015a; 2015b] idea. Pareto optimiza-
tion is a recently emerged framework that uses bi-objective
optimization as an intermediate step to solve single-objective
optimization problems. It was previously applied for con-
strained optimization [Qian et al., 2015a; 2015b], where the
degree of constraint violation is optimized with the original
objective simultaneously. Differently, PORM is for uncon-
strained optimization, where two objectives are created by
dividing the original objective.

PORM reformulates the original problem Eq. (2) as a bi-
objective minimization problem

arg minx∈{0,1}n
(
f(x), −g(x)

)
.

That is, PORM minimizes f and maximizes g simultane-
ously. Note that we use a Boolean vector x ∈ {0, 1}n to
represent a subset X ⊆ V , where the i-th bit xi is a binary
indicator of the membership of vi in X . In this paper, we will
not distinguish x ∈ {0, 1}n and its corresponding subset X .

In the bi-objective setting, both the two objective values
have to be considered for comparing two solutions x and x′.
x weakly dominates x′ (i.e., x is better than x′, denoted as

Algorithm 2 PORM algorithm
Input: a monotone submodular function f : {0, 1}n → R+

and a monotone function g : {0, 1}n → R+

Parameter: the number T of iterations
Output: a solution x ∈ {0, 1}n
Process:

1: Select x from {0, 1}n uniformly at random.
2: Let P = {x} and t = 0.
3: while t < T do
4: Select x from P uniformly at random.
5: Generate x′ by flipping each bit of x with prob. 1/n.
6: if @z ∈ P such that z ≺ x′ then
7: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}.
8: Q = {z ∈ P | |z| = |x′|}.
9: z1 = arg minz∈Q f(z), z2 = arg maxz∈Q g(z),

z3 = arg minz∈Q f(z)/g(z).
10: P = (P \Q) ∪ {z1, z2, z3}.
11: end if
12: t = t+ 1.
13: end while
14: return arg minx∈P f(x)/g(x)

x � x′) if f(x) ≤ f(x′) ∧ g(x) ≥ g(x′); x dominates x′
(i.e., x is strictly better, denoted as x ≺ x′) if x � x′ and
either f(x) < f(x′) or g(x) > g(x′). But if neither x is
better than x′ nor x′ is better than x, they are incomparable.

The procedure of PORM is described in Algorithm 2. It
starts from a random solution (line 1) and then iteratively tries
to improve the solutions in the archive P (lines 3-13). In each
iteration, a new solution x′ is generated by randomly flipping
bits of an archived solution x selected from the current P
(lines 4-5); if x′ is not dominated by any previously archived
solution (line 6), it will be added into P and meanwhile those
previously archived solutions weakly dominated by x′ will be
removed from P (line 7).

Note that although the domination-based comparison
makes the archive P contain only incomparable solutions,
the size of P can be large, which may reduce the efficiency of
PORM. In order to control the size of P and meanwhile avoid
the loss of useful information, we keep three informative so-
lutions for each subset size |x| ∈ {0, 1, . . . , n} (lines 8-10):
z1 and z2 are two boundary solutions with the smallest f
value and the largest g value, respectively, and z3 is the solu-
tion with the smallest ratio. Note that z3 can be the same as
z1 or z2. Thus, it is easy to see that |P | is upper bounded by
1 + 3(n− 1) + 1 = 3n− 1.

PORM repeats for T iterations. The value of T affects the
quality of the produced solution, which will be analyzed in
the next section. After the iterations, the solution having the
smallest ratio in P is selected (line 14).

Compared with GreedRatio, PORM can escape local op-
tima by three different ways: (1) backward search that flips
one bit value from 1 to 0; (2) multi-path search that main-
tains several (incomparable) solutions in the archive P ; (3)
multi-bit search that flips more than one 0-bits to 1-bits si-
multaneously. These advantages of PORM over GreedRatio
will be theoretically shown in the next section.

5 Approximation Guarantee of PORM
We first prove the general approximation bound of PORM
in Theorem 2, where E[T] denotes the expected number of
iterations. We can see that PORM reaches the same ap-
proximation guarantee as GreedRatio. Note that E[T] de-
pends on the f value of the initial solution generated in line 1
of Algorithm 2 (denoted as finit) and the minimum f value
fmin = min{f(v) | v ∈ V }.
Theorem 2. For minimizing the ratio f/g where f is mono-
tone submodular and g is monotone, PORM with E[T] ≤
en(3n− 1)(1 + 1

1−κf (1 + log finit
fmin

)) finds a solution x with

f(x)

g(x)
≤ |X∗|

1 + (|X∗|−1)(1−κ̂f (X∗))

1

γ∅,|X∗|(g)
·OPT.

The proof idea is to follow the behavior of GreedRatio.
That is, the optimization process is divided into two phases:
(1) starts from an initial random solution and finishes until
finding the special solution {0}n (i.e., ∅); (2) starts after phase
(1) and finishes until finding a solution with the desired ap-
proximation guarantee. The expected number of iterations of
phase (1) as shown in Lemma 4 is derived by using Lemma 3,
a recently proposed approach for analyzing the hitting time of
a random process. Note that log here is the natural logarithm.

Lemma 3. [Doerr et al., 2012] Let S ⊆ R+ be a finite set
of positive numbers with minimum smin. Let {Xt}t∈N be a
sequence of random variables over S ∪ {0}. Let τ be the
random variable that denotes the first point in time t ∈ N for
which Xt = 0. Suppose that there exists δ > 0 such that
E[Xt −Xt+1 | Xt = s] ≥ δs holds for all s ∈ S. Then for
all s0 ∈ S, we have E[τ | X0 = s0] ≤

(
1 + log(s0/smin)

)
/δ.

Lemma 4. For minimizing the ratio f/g where f is mono-
tone submodular and g is monotone, the expected number
of iterations until PORM finds the solution {0}n is at most
en(3n−1)

1−κf (1 + log finit
fmin

).

Proof. We use Lemma 3 to prove it. Let Xt = min{f(x) |
x ∈ P} after t iterations of PORM. Note that Xt = 0 im-
plies that the solution {0}n is found, since f(x) > 0 for any
nonempty subset x. Thus, the variable τ in Lemma 3 is just
the number of iterations required by PORM for finding {0}n.

We investigate E[Xt−Xt+1|Xt]. Let x̂ be the correspond-
ing solution with f(x̂) = Xt. We first show that Xt cannot
increase, i.e., Xt+1 ≤ Xt. If x̂ is not deleted, Xt obviously
will not increase. Note that there are two possible cases for
removing x̂ from P . If x̂ is deleted in line 7 of Algorithm 2,
the newly included solution x′ must weakly dominate x̂, im-
plying f(x′) ≤ f(x̂). If x̂ is deleted in line 10, |x̂| = |x′|
and f(x′) must be smaller than f(x̂), since the solution in Q
with the smallest f value is kept. Thus, Xt will not increase.

We then show that Xt can decrease by flipping only one
1-bit of x̂. Let Pmax denote the largest size of P during the
optimization process. In the (t+ 1)-th iteration, we consider
that x̂ is selected in line 4 of Algorithm 2, which happens
with probability at least 1

Pmax
due to uniform selection; and

in line 5, only the i-th bit of x̂ (i.e., x̂i) is flipped, which
happens with probability 1

n (1 − 1
n)n−1 ≥ 1

en . If x̂i = 1, the

newly generated solution x′ = x̂\{vi}. By the monotonicity
of f , we have f(x′) = f(x̂ \ {vi}) ≤ f(x̂). If the inequality
strictly holds, x′ now has the smallest f value and will be
added into P , which leads to Xt+1 = f(x̂ \ {vi}) < Xt. If
f(x̂ \ {vi}) = f(x̂), obviously Xt+1 = Xt; but we can still
write Xt+1 = f(x̂ \ {vi}).

Thus, we have shown that Xt does not increase, and can
decrease by flipping only one 1-bit of x̂. We then get

E[Xt+1|Xt] ≤
∑

i:x̂i=1

f(x̂\{vi})
enPmax

+
(

1− |x̂|
enPmax

)
Xt,

which implies that
E[Xt −Xt+1 | Xt] = Xt − E[Xt+1 | Xt]

≥
∑
i:x̂i=1

Xt−f(x̂\{vi})
enPmax

=

∑
v∈x̂

(
f(x̂)−f(x̂\{v})

)
enPmax

.

By the definition of curvature (i.e., Definition 2), we have

1− κ̂f (x̂) =

∑
v∈x̂

(
f(x̂)−f(x̂\{v})

)
∑
v∈x̂ f(v)

≤
∑
v∈x̂

(
f(x̂)−f(x̂\{v})

)
f(x̂) ,

where the inequality is by Eq. (1), i.e., f(x̂) = f(x̂)−f(∅) ≤∑
v∈x̂(f(v)− f(∅)) =

∑
v∈x̂ f(v). Thus,

E[Xt −Xt+1|Xt] ≥ 1−κ̂f (x̂)
enPmax

f(x̂) ≥ 1−κf
en(3n−1)Xt,

where the last inequality is by Pmax ≤ 3n − 1, Xt = f(x̂),
and κ̂f (x̂) ≤ κf (x̂) ≤ κf . That is, the condition of
Lemma 3 holds with δ =

1−κf
en(3n−1) . Note that X0 = finit and

smin = fmin. By Lemma 3, we get

E[τ | X0 = finit] ≤ en(3n−1)
1−κf

(
1 + log finit

fmin

)
.

Proof of Theorem 2. We analyze phase (2) after finding
{0}n. Note that once {0}n is found, it will always be in
the archive P , because it has the smallest f value and no
other solutions can dominate it. By selecting {0}n in line 4
of Algorithm 2 and flipping only the bit corresponding
to the best single element v∗ ∈ arg minv∈V f(v)/g(v)
in line 5, which happens with probability at least

1
Pmax

· 1n (1− 1
n)n−1 ≥ 1

en(3n−1) , the new solution x′ = {v∗}
is generated. Then, x′ is used to update P (i.e., lines 6-11).
This will make P always contain a solution which either
weakly dominates x′ or is incomparable with x′ but has a
smaller ratio. That is, P will always contain a solution x with

f(x)
g(x) ≤

f(v∗)
g(v∗) ≤

|X∗|
1+(|X∗|−1)(1−κ̂f (X∗))

OPT
γ∅,|X∗|(g)

,

where the last inequality is by Lemma 2. Thus, phase (2)
needs at most en(3n− 1) expected number of iterations.

By combining the two phases, we get that the total
expected number of iterations for finding a solution with a

|X∗|
1+(|X∗|−1)(1−κ̂f (X∗))

1
γ∅,|X∗|(g)

-approximation ratio is

E[T] ≤ en(3n− 1)
(

1 + 1
1−κf

(
1 + log finit

fmin

))
.

�

By using an illustrative example of F-measure maximiza-
tion in information retrieval, we then prove in Theorem 3 that
GreedRatio will get trapped in a local optimal solution, while
PORM can avoid local optima by three different ways, and fi-
nally find a global optimal solution. As shown in Definition 5,

this example has a unique global optimal solution {1}n−10
(i.e., {v1, . . . , vn−1}). The proof idea is mainly that Gree-
dRatio will first select the object vn due to the greedy nature
and will be misled by it, while PORM can avoid vn by back-
ward search, multi-path search or multi-bit search, which will
be shown in the proof, respectively.

Definition 5 (An Example of F-measure Maximization). Let
V = {v1, v2 . . . , vn}. The function Γ and the target set O
satisfies that

(1) ∀1 ≤ i, j ≤ n− 1 : Γ(vi) ∩ Γ(vj) = ∅,
|Γ(vi)| = |Γ(vj)| = n2;

(2) ∀1 ≤ i ≤ n− 1 : |O ∩ Γ(vi)| = n2 − 1,

|O| = (n− 1)(n2 − 1);

(3) ∀1 ≤ i ≤ n− 1 : Γ(vn) ∩ Γ(vi) ⊆ O ∩ Γ(vi),

|Γ(vn) ∩ Γ(vi)|=n+2, |Γ(vn)|= |Γ(vn) ∩O|+1.

Theorem 3. For the F-measure maximization example as in
Definition 5, PORM with E[T] ≤ en(3n−1)(2+2 log n) finds
the optimal solution {1}n−10, while GreedRatio cannot.

Proof. By the definition of F (x) = (2|Γ(x) ∩ O|)/(|O| +
|Γ(x)|), we derive that, for any x with |x| = i ∧ xn = 0,
F (x) = 2(n2−1)i

n3−n2−n+1+n2i , which increases with i and reaches
the maximum 1 − 1

2n2−1 when i = n − 1; for any x with

|x| = i ∧ xn = 1, F (x) = 4n+2+2(n2−n−3)i
n3−n2+n+2+(n2−n−2)i , which

increases with i and reaches the maximum 1− 1
2n2−2n−1+2/n

when i = n. Thus, {1}n−10 is the unique optimal solution.
For GreedRatio, it first selects one object v with the best ra-

tio of the marginal gain, i.e., the largest (2|Γ(v)∩O|)/(|O|+
|Γ(v)| − |O|) value. For any 1 ≤ i ≤ n− 1, we have

2|Γ(vi)∩O|
|Γ(vi)|

=
2(n2−1)

n2
<

2(n2+n−2)

n2+n−1
=

2|Γ(vn)∩O|
|Γ(vn)|

.

Thus, GreedRatio will first select vn. From line 8 of Algo-
rithm 1, it is easy to see that the final output subset by Gree-
dRatio will always contain vn. Thus, GreedRatio cannot find
the optimal solution {v1, . . . , vn−1}.

For the PORM algorithm, the problem of F-measure max-
imization is implemented as minimizing f(x) = |O| +
|Γ(x)| and maximizing g(x) = |Γ(x) ∩ O| simultaneously.
We then prove that PORM can find the optimal solution
{v1, . . . , vn−1} by three different ways.

[Backward search] The idea is that PORM first efficiently
finds all the objects V , and then simply deleting vn from V
can produce the optimal solution.

Let Gt = max{g(x) | x ∈ P} after t iterations of Al-
gorithm 2. We first use Lemma 3 to derive the number of
iterations (denoted as T1) until Gt reaches the maximum |O|.
LetXt = |O|−Gt. Then, the random variable τ in Lemma 3
is just T1, because Xt = 0 is equivalent to Gt = |O|. Since
E[Xt −Xt+1|Xt] = E[Gt+1 − Gt|Gt], we only need to an-
alyze the change of Gt. Let x̂ be the corresponding solution
with g(x̂) = Gt. As in the proof of Lemma 4, we can sim-
ilarly show that Gt does not decrease, and can increase by

flipping only one 0-bit of x̂. We then get

E[Gt+1 −Gt | Gt] ≥
∑

i:x̂i=0

g(x̂ ∪ {vi})− g(x̂)

enPmax

=

∑
v∈V \x̂

(
g(x̂ ∪ {v})−g(x̂)

)
enPmax

≥ g(V)−g(x̂)

enPmax
≥ Xt

en(3n−1)
,

where the second inequality is by the submodularity of g, i.e.,
Eq. (1). That is, the condition of Lemma 3 holds with δ =

1
en(3n−1) . Note thatX0 = |O|−G0 ≤ |O| = (n−1)(n2−1)

and smin = n2 − 1− (n+ 2). By Lemma 3, we get

E[T1] = E[τ | X0] ≤ en(3n− 1) (1 + 2 log n) .

From Definition 5, we know that a solution x with g(x) =
|Γ(x)∩O| = |O|must contain v1, . . . , vn−1. Then, there are
two possible solutions: {1}n−10 and {1}n. To derive an up-
per bound on the number of iterations for finding the optimal
solution {1}n−10, we pessimistically assume that {1}n−10 is
not found. For the case that P contains {1}n, the optimal so-
lution {1}n−10 can be generated by selecting {1}n in line 4
and flipping the last 1-bit in line 5, which happens with prob-
ability at least 1

Pmax
· 1n (1 − 1

n)n−1 ≥ 1
en(3n−1) . Denote the

number of iterations in this phase as T2. We then have

E[T2] ≤ en(3n− 1).

Therefore, we get that the expected number of iterations
for PORM finding the optimal solution {1}n−10 is

E[T] ≤ E[T1] + E[T2] ≤ en(3n− 1)(2 + 2 log n).

[Multi-path search] Let xi (where 1 ≤ i ≤ n− 1) denote
any solution such that |xi| = i∧xin = 0, i.e., there are i 1s in
the first n−1 bits and the last bit is 0. The idea is that PORM
first efficiently finds the empty set {0}n, and then follows
the path x1 → x2 → · · · → xn−1 to produce the optimal
solution. Note that although x1 is worse than the solution
{0}n−11 (i.e., {vn}) on the original objective f/g, they are
incomparable in the bi-objective setting, and thus x1 will be
kept inP , which allows PORM to follow a path different from
that by GreedRatio to find the optimal solution.

Let T1 denote the number of iterations for finding the solu-
tion {0}n. Due to the fact that the f(x) value increases with
the number of 1-bits of x, we can derive a better upper bound
for E[T1] than Lemma 4. Let j denote the minimum num-
ber of 1-bits of the solutions in P . First, j cannot increase,
because the smallest f value of the solutions in P cannot in-
crease. Second, j can decrease by 1 in each iteration with
probability at least 1

Pmax
· jn (1 − 1

n)n−1 ≥ j
en(3n−1) , since

it is sufficient to select a solution with j 1s in line 4 and flip
only one of its j 1-bits in line 5. Thus, for reaching j = 0,

E[T1] ≤
∑n
j=1

en(3n−1)
j ≤ en(3n− 1)(1 + log n).

Starting from {0}n, let T2 denote the number of iterations
for following the path x1 → x2 → · · · → xn−1 (i.e., the
optimal solution). Note that for 1≤ i≤ n − 1, xi cannot be
weakly dominated by any other solution, and there are only
two different objective vectors for |x| = i. Thus, according to
the updating procedure of PORM (lines 6-11 of Algorithm 2),

we know that once xi is found, it will be always kept in P .
The probability of xi → xi+1 is at least 1

Pmax
· n−1−in (1 −

1
n)n−1 ≥ n−1−i

en(3n−1) , since it is sufficient to select xi in line 4
and then flip only one of its first n− 1− i 0-bits. Thus,

E[T2] ≤
∑n−2
i=0

en(3n−1)
n−1−i ≤ en(3n− 1)(1 + log n).

Combining the above two phases leads to the total expected
number of iterations for finding the optimal solution:

E[T] ≤ E[T1] + E[T2] ≤ en(3n− 1)(2 + 2 log n).

[Multi-bit search] The idea is that flipping two 0s in the
first n − 1 bits of {0}n simultaneously can find the solution
x2, which has a better f/g value than the solution x with
|x| = 2 ∧ xn = 1 found by GreedRatio; then following the
path x2 → x3 → · · · → xn−1 can find the optimal solution.

Using the same analysis as multi-path search, PORM can
first find the solution {0}n in at most en(3n− 1)(1 + log n)
expected number of iterations. After that, selecting {0}n
in line 4 and only flipping any two 0s in its first n − 1
bits can generate the solution x2 with probability at least

1
Pmax

· (n−1
2)
n2 (1 − 1

n)n−2 ≥ (n−1)(n−2)
2e(3n−1)n2 . Compared with the

solution x with |x| = 2 ∧ xn = 1, f(x
2)

g(x2) = (n+1)n2−n+1
2n2−2 <

(n+1)n2−n−2
2n2−5 = f(x)

g(x) . PORM then can easily follow the path
x2 → x3 → · · · → xn−1 to find the optimal solution. The
total expected number of iterations is at most

en(3n− 1)(1 + log n) + 2e(3n−1)n2

(n−1)(n−2) +
∑n−2
i=2

en(3n−1)
n−1−i

≤ en(3n− 1)(2 + 2 log n).

Taking the minimum of the expected number of iterations
for finding the optimal solution by backward search, multi-
path search and multi-bit search, the theorem holds.

6 Empirical Study
We conducted experiments on F-measure maximization to
investigate the actual performance of PORM. We compare
PORM only with GreedRatio, since it is the previous algo-
rithm achieving the best empirical performance [Bai et al.,
2016]. The generalized form of F-measure is used for evalua-
tion, i.e., Fp(X) = (|Γ(X)∩O|)/(p|O|+(1−p)|Γ(X)|). We
will test p = {0.2, . . . , 0.8}. Note that the F-measure in Defi-
nition 4 is just F0.5. For PORM, the number T of iterations is
set to b3en2(2+log |Γ(Xinit)|)c (whereXinit is the initial sub-
set generated by PORM), as suggested by Theorem 2. Note
that we have used the lower bound 1 for 1

1−κf .
We use synthetic (syn-100, syn-1000) as well as real-world

(ldc-100, ldc-1000) data sets. For syn-100, a bipartite graph
G(V,W,E) with |V |= |W |= 100 is randomly generated by
adding one edge between v ∈ V and w ∈W independently
with probability 0.05; the target set O with |O|= 20 is ran-
domly chosen from W . For syn-1000, |V | = |W | = 1000,
|O| = 100 and each edge is added with probability 0.01.
ldc-100 and ldc-1000 contain 100 and 1000 English sen-
tences, respectively, which are randomly sampled from the
LDC2002E18 text data (https://www.ldc.upenn.edu/).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

0%

1%

2%

3%

4%

Im
pr

ov
em

en
t R

at
io ldc100

ldc1000
syn100
syn1000

Figure 1: Ratio of improvement of PORM to GreedRatio.

0 10 20 30 40 50
Running time in n2

0.76

0.77

0.78

0.79

0.8

0.81

0.82

F-
M

ea
su

re

PORM GreedRatio

3n2 52n2

(a) on syn-100; p = 0.8

0 20 40 60
Running time in n2

0.24

0.26

0.28

0.3

F-
M

ea
su

re

PORM GreedRatio

2n2 69n2

(b) on ldc-100; p = 0.8

Figure 2: Performance v.s. running time of PORM.

Their target sets contain 1000 randomly chosen words. For
each data set, we generate ten random instances and report
the average results. Note that since PORM is a randomized
algorithm, its run is further repeated 10 times independently
for each data set instance. Figure 1 shows the percentages
of the solution quality that PORM improves from GreedRa-
tio, where we can observe that PORM is always better than
GreedRatio and can have more than 3% improvement.

Comparing the running time (in the number of function
calculations), GreedRatio takes the time in the order of n2;
PORM is set to use 3en2(2 + log |Γ(Xinit)|) time according
to the theoretical upper bound (i.e., a worst case) for PORM
being good. We empirically examine how effective PORM
is in practice. By selecting GreedRatio as the baseline, we
plot the curve of the F-measure over the running time for
PORM on syn-100 and ldc-100 with p = 0.8, as shown in
Figure 2. The x-axis is in n2, the running time of GreedRatio.
We can observe that PORM takes about only 6% (3/52) and
3% (2/69) of the worst-case running time to achieve a better
performance, respectively. This implies that PORM can be
efficient in practice.

7 Conclusion

In this paper, we study the problem of minimizing the ra-
tio f/g, where f is monotone submodular and g is mono-
tone. We prove the approximation bound of GreedRatio for
the problem, which even improves the previous result for g
being submodular. We then propose a new algorithm PORM,
and prove that PORM can achieve the same general approxi-
mation guarantee as GreedRatio, but can have a better ability
of avoiding local optima. The empirical results on the appli-
cation of F-measure maximization verify the superior perfor-
mance of PORM.

References
[Bai et al., 2016] W. Bai, R. Iyer, K. Wei, and J. Bilmes.

Algorithms for optimizing the ratio of submodular func-
tions. In Proceedings of the 33rd International Conference
on Machine Learning (ICML’16), pages 2751–2759, New
York, NY, 2016.

[Conforti and Cornuéjols, 1984] M. Conforti and
G. Cornuéjols. Submodular set functions, matroids
and the greedy algorithm: Tight worst-case bounds and
some generalizations of the Rado-Edmonds theorem.
Discrete Applied Mathematics, 7(3):251–274, 1984.

[Das and Kempe, 2011] A. Das and D. Kempe. Submodu-
lar meets spectral: Greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection. In
Proceedings of the 28th International Conference on Ma-
chine Learning (ICML’11), pages 1057–1064, Bellevue,
WA, 2011.

[Doerr et al., 2012] B. Doerr, D. Johannsen, and C. Winzen.
Multiplicative drift analysis. Algorithmica, 64(4):673–
697, 2012.

[Iyer and Bilmes, 2012] R. Iyer and J. Bilmes. Algorithms
for approximate minimization of the difference between
submodular functions, with applications. In Proceedings
of the 28th Conference on Uncertainty in Artificial Intel-
ligence (UAI’12), pages 407–417, Catalina Island, CA,
2012.

[Iyer and Bilmes, 2013] R. Iyer and J. Bilmes. Submodu-
lar optimization with submodular cover and submodular
knapsack constraints. In Advances in Neural Information
Processing Systems 26 (NIPS’13), pages 2436–2444, Lake
Tahoe, NV, 2013.

[Iyer et al., 2013] R. Iyer, S. Jegelka, and J. Bilmes. Curva-
ture and optimal algorithms for learning and minimizing
submodular functions. In Advances in Neural Information
Processing Systems 26 (NIPS’13), pages 2742–2750, Lake
Tahoe, NV, 2013.

[McLachlan, 2004] G. J. McLachlan. Discriminant Analysis
and Statistical Pattern Recognition. Wiley Interscience,
2004.

[Nemhauser et al., 1978] G. L. Nemhauser, L. A. Wolsey,
and M. L. Fisher. An analysis of approximations for max-
imizing submodular set functions – I. Mathematical Pro-
gramming, 14(1):265–294, 1978.

[Qian et al., 2015a] C. Qian, Y. Yu, and Z.-H. Zhou. On con-
strained Boolean Pareto optimization. In Proceedings of
the 24th International Joint Conference on Artificial In-
telligence (IJCAI’15), pages 389–395, Buenos Aires, Ar-
gentina, 2015.

[Qian et al., 2015b] C. Qian, Y. Yu, and Z.-H. Zhou. Sub-
set selection by Pareto optimization. In Advances in Neu-
ral Information Processing Systems 28 (NIPS’15), pages
1765–1773, Montreal, Canada, 2015.

[Qian et al., 2016] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and
Z.-H. Zhou. Parallel Pareto optimization for subset selec-
tion. In Proceedings of the 25th International Joint Con-

ference on Artificial Intelligence (IJCAI’16), pages 1939–
1945, New York, NY, 2016.

[Rijsbergen and Joost, 1974] V. Rijsbergen and C. Joost.
Foundation of evaluation. Journal of Documentation,
30(4):365–373, 1974.

[Shi and Malik, 2000] J. Shi and J. Malik. Normalized cuts
and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

[Vondrák, 2010] J. Vondrák. Submodularity and curvature:
The optimal algorithm. RIMS Kokyuroku Bessatsu B,
23:253–266, 2010.

