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Abstract
Subset selection is a fundamental problem in many
areas, which aims to select the best subset of size
at most k from a universe. Greedy algorithms are
widely used for subset selection, and have shown
good approximation performances in deterministic
situations. However, their behaviors are stochas-
tic in many realistic situations (e.g., large-scale
and noisy). For general stochastic greedy algo-
rithms, bounded approximation guarantees were
obtained only for subset selection with monotone
submodular objective functions, while real-world
applications often involve non-monotone or non-
submodular objective functions and can be subject
to a more general constraint than a size constraint.
This work proves their approximation guarantees in
these cases, and thus largely extends the applicabil-
ity of stochastic greedy algorithms.

1 Introduction
The subset selection problem is to select a subset of size at
most k from a ground set of n items for maximizing some
given objective function f . It arises in many applications,
such as maximum coverage [Feige, 1998], sparse regres-
sion [Miller, 2002], influence maximization [Kempe et al.,
2003], and sensor placement [Krause et al., 2008], to name
a few. For this general NP-hard problem, greedy algorithms
were shown to be powerful. For example, when the objec-
tive function f satisfies the monotone and submodular prop-
erty, the standard greedy algorithm, which iteratively adds
one item with the largest marginal gain on f , achieves the
optimal approximation guarantee of (1−1/e) [Nemhauser et
al., 1978; Nemhauser and Wolsey, 1978].

However, greedy algorithms can only be performed
stochastically in many realistic situations. For example,
when the ground set is very large or the objective func-
tion evaluation is noisy, the standard greedy algorithm can
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only select an item whose marginal gain is approximately
optimal in expectation at each greedy step. For large-scale
applications, the random sampling technique is often em-
ployed to improve the scalability [Mirzasoleiman et al., 2015;
Ohsaka and Yoshida, 2015], which makes that the best item
from a random subset (instead of the whole set) of remaining
items is selected in each iteration. For noisy applications, the
noise in the objective function evaluation makes that the item
with the largest noisy marginal gain (instead of the largest
true marginal gain) is selected in each iteration [Singla et al.,
2016; Qian et al., 2017b].

To the best of our knowledge, general stochastic greedy
algorithms for subset selection were not studied until re-
cently. Hassidim and Singer [2017] considered a general
framework for stochastic variants of the standard greedy al-
gorithm, called STOCHASTIC-STANDARD-GREEDY. In each
iteration, a value ξ is randomly sampled from a distribution
D, and then the algorithm selects one item whose marginal
gain is a ξ-approximation of the largest marginal gain (i.e.,
at least the largest marginal gain times a factor of ξ). They
proved that when f is monotone submodular, STOCHASTIC-
STANDARD-GREEDY achieves a (1 − e−µ)-approximation
guarantee, where µ is the expectation of ξ ∼ D.

Note that real-world applications of subset selection of-
ten involve non-submodular or non-monotone objective func-
tions, and can be subject to a more general constraint than a
size constraint. In this paper, we thus theoretically study the
approximation performance of the stochastic version of the
corresponding greedy algorithms in these cases. Our analy-
sis uses some quantities γ, λ and α, which characterize how
close an arbitrary function f is to submodularity from differ-
ent aspects [Das and Kempe, 2011; Zhou and Spanos, 2016;
Zhang and Vorobeychik, 2016]. The main contributions are:

• For subset selection with a monotone (not necessarily
submodular) objective function and a size constraint, the
STOCHASTIC-STANDARD-GREEDY algorithm obtains an
approximation guarantee of (1− e−µγ) (Theorem 1).

• For subset selection with a non-monotone (not necessar-
ily submodular) objective function and a size constraint,
the STOCHASTIC-RANDOM-GREEDY algorithm obtains
an approximation guarantee of µ

e plus a term depending
on λ (Theorem 2).

• For subset selection with a monotone (not necessarily sub-



modular) objective function and a p-system constraint, the
STOCHASTIC-GENERAL-GREEDY algorithm obtains an
approximation guarantee of α2µ

p+α2µ (Theorem 3).

We also show how to bound the quantities γ, λ and α in sev-
eral real-world applications, implying the practical applica-
bility of our derived approximation guarantees.

2 Preliminaries
Let R and R+ denote the set of reals and non-negative reals,
respectively. Given a ground set V = {v1, v2, . . . , vn}, we
study the functions f : 2V → R over subsets of V . A set
function f is monotone if for any S ⊆ T , f(S) ≤ f(T ).
Without loss of generality, we assume that monotone func-
tions are normalized, i.e., f(∅) = 0. Let fS(T ) denote the
marginal value f(S∪T )−f(S). A set function f : 2V → R is
submodular [Nemhauser et al., 1978] if for any S ⊆ T ⊆ V ,

f(T )− f(S) ≤
∑

v∈T\S
fS(v), (1)

or equivalently, for any S ⊆ T ⊆ V and v /∈ T ,
fS(v) ≥ fT (v). (2)

Note that we represent a singleton set {v} by v for simplicity.
We then give three notions of “approximate submodularity”,
which measure to what extent a general set function f has the
submodular property. The γ-submodularity ratio and the λ-
submodularity index are defined based on Eq. (1), while the
α-submodularity ratio is defined based on Eq. (2). It is easy
to verify that γS,k(f) ≤ 1, λS,k(f) ≤ 0 and αf ≤ 1. When
f is clear, we will use γS,k, λS,k and α for short.
Definition 1 (γ-Submodularity Ratio [Das and Kempe,
2011]). The submodularity ratio of a set function f : 2V →
R with respect to a set S and a parameter k ≥ 1 is

γS,k(f) = min
L⊆S,T :|T |≤k,T∩L=∅

∑
v∈T fL(v)

fL(T )
.

Definition 2 (λ-Submodularity Index [Zhou and Spanos,
2016]). The submodularity index of a set function f : 2V →
R with respect to a set S and a parameter k ≥ 1 is

λS,k(f) = min
L⊆S,T :|T |≤k,T∩L=∅

∑
v∈T

fL(v)− fL(T ).

Definition 3 (α-Submodularity Ratio [Zhang and Vorobey-
chik, 2016; Qian et al., 2017a]). The submodularity ratio of
a set function f : 2V → R is

αf = min
S⊆T,v/∈T

fS(v)

fT (v)
.

Remark 1. For a general set function f , f is submodular iff
λS,k(f) = 0 for any S and k. For a monotone set function
f , it holds that (1) f is submodular iff γS,k(f) = 1 for any
S and k; (2) f is submodular iff αf = 1; (3) αf ≤ γS,k(f)
for any S and k, since fL(T ) in Definition 1 can be upper
bounded by

fL(T )=

|T |∑
i=1

fL∪{v∗1 ,...,v∗i−1}(v
∗
i )≤

|T |∑
i=1

fL(v∗i )

αf
=

∑
v∈T

fL(v)

αf
,

where the items in T are denoted as {v∗1 , . . . , v∗|T |} and | · |
denotes the size of a set.

Algorithm 1 STOCHASTIC-STANDARD-GREEDY Algorithm
Input: a budget k and a distribution D
Output: a subset of V with k items
Process:

1: Let S = ∅.
2: repeat
3: ξ ← randomly sampled from D.
4: v∗ ← an arbitrary item from V \ S s.t.

fS(v∗) ≥ ξ ·maxv∈V \S fS(v).
5: S ← S ∪ v∗.
6: until |S| = k
7: return S

An independence system is a pair (V, I), where V is a
ground set and I ⊆ 2V , satisfying that ∅ ∈ I and ∀S ⊆
T ∈ I : S ∈ I. Any set S ∈ I is called an independent set.
For any S ⊆ V , a maximal independent subset of S is called
a basis of S. The general subset selection problem is pre-
sented in Definition 4, which is to find an independent subset
of V maximizing a given objective function f . Without loss
of generality, we assume that f is non-negative.

Definition 4 (Subset Selection). Given all items V =
{v1, v2, . . . , vn}, an objective function f : 2V → R+ and
an independence system (V, I), the goal is to find a subset
S ⊆ V maximizing f(S) such that S ∈ I, i.e.,

arg maxS⊆V f(S) s.t. S ∈ I.

In this paper, we will study the subset selection problem
with two specific independence systems, a uniform matroid
and a p-system. An independence system (V, I) is a matroid
if it satisfies the additional property: ∀S, T ∈ I, |S| > |T | :
∃v ∈ S \T, T ∪v ∈ I. A uniform matroid is (V, I) with I =
{S ⊆ V | |S| ≤ k}, which is actually a size constraint |S| ≤
k. An independence system (V, I) is a p-system [Jenkyns,
1976; Korte and Hausmann, 1978], if for any S ⊆ V ,

maxL:L is a basis of S |L|
minL:L is a basis of S |L|

≤ p. (3)

Note that a p-system is much more general than a uniform
matroid, and even covers the intersection of p matroids (i.e.,
(V,∩pi=1Ii), where each (V, Ii) is a matroid) [Calinescu et
al., 2011].

3 Non-submodular Functions
For the subset selection problem with a monotone submodu-
lar objective function f and a size constraint |S| ≤ k, it was
proved that STOCHASTIC-STANDARD-GREEDY finds a sub-
set S of V with E[f(S)] ≥ (1 − e−µ) · OPT [Hassidim
and Singer, 2017]. Note that E[·] denotes the expectation
of a random variable, and OPT denotes the optimal func-
tion value. As presented in Algorithm 1, instead of selecting
one item with the largest marginal gain, the stochastic algo-
rithm selects one item whose marginal gain is at least a factor
of ξ from the largest marginal gain in each iteration, where
ξ ∈ (0, 1] is drawn i.i.d. from some distribution D. Let µ
denote the expectation of ξ ∼ D.



In this section, we consider a more general situation, where
f is not necessarily submodular. The approximation guaran-
tee is shown in Theorem 1. The proof relies on Lemma 1,
which gives the expected improvement on f in one iteration.
Lemma 1. Let Si denote the subset S after i iterations of
STOCHASTIC-STANDARD-GREEDY. Then, we have

E[f(Si+1)− f(Si) | Si] ≥
µγSi,k

k
· (OPT − f(Si)).

Proof. Let S∗ be an optimal subset, i.e., f(S∗) = OPT , and
let ξi denote the value of ξ in the i-th iteration of Algorithm 1.
Then, for any given Si, we have

f(Si+1)−f(Si)≥ξi+1 max
v∈V \Si

fSi
(v)≥ ξi+1

k

∑
v∈S∗\Si

fSi
(v)

≥ ξi+1γSi,k

k
fSi(S

∗ \ Si) ≥
ξi+1γSi,k

k
(OPT − f(Si)),

where the first inequality is by lines 3-5 of Algorithm 1, the
second is by |S∗ \Si| ≤ k, the third is by Definition 1 and the
monotonicity of f , and the last is by f(S∗ ∪ Si) ≥ f(S∗) =
OPT . Taking the expectation over both sides, the lemma
holds, since E[ξi+1 | ξi+1 ∼ D] = µ.

Theorem 1. For subset selection with a monotone objective
function and a size constraint, STOCHASTIC-STANDARD-
GREEDY finds a subset S ⊆ V with |S| = k and

E[f(S)] ≥ (1− e−µγmin) ·OPT,
where γmin = minS:|S|=k−1 γS,k.

Proof. Taking the expectation over Si, we know from
Lemma 1 that for 0 ≤ i ≤ k − 1,

E[f(Si+1)]− E[f(Si)] ≥
µγmin

k
· (OPT − E[f(Si)]).

Note that γSi,k ≥ γmin since |Si| ≤ k− 1 and γS,k decreases
with S. By a simple transformation, we can equivalently get

E[f(Si+1)] ≥
(

1− µγmin

k

)
E[f(Si)] +

µγmin

k
OPT.

Based on this inequality, an inductive proof can show that, for
0 ≤ i ≤ k,

E[f(Si)] ≥
(

1−
(

1− µγmin

k

)i)
·OPT.

Thus, for the returned subset Sk, we get

E[f(Sk)] ≥
(

1−
(

1− µγmin

k

)k)
·OPT

≥ (1− e−µγmin) ·OPT.

Note that our derived approximation guarantee in Theo-
rem 1 is consistent with known results in specific cases.
Remark 2. When f is submodular (where γmin = 1), it re-
covers the approximation ratio 1−e−µ [Hassidim and Singer,
2017]; when the stochastic behavior is due to random sam-
pling (where µ ≥ 1− δ), it recovers the approximation ratio
1 − e−(1−δ)γmin [Khanna et al., 2017]; when the algorithm
performs exactly (where µ = 1), it recovers the approxima-
tion ratio 1− e−γS,k [Das and Kempe, 2011], where S is the
returned subset.

Algorithm 2 STOCHASTIC-RANDOM-GREEDY Algorithm
Input: a budget k and a distribution D
Output: a subset of V with k items
Process:

1: Let S = ∅.
2: repeat
3: ξ ← randomly sampled from D.
4: U∗ ← an arbitrary subset of V \ S with size k s.t.∑

v∈U∗ fS(v) ≥ ξ ·maxU⊆V \S,|U |=k
∑
v∈U fS(v).

5: v ← uniformly chosen from U∗ at random.
6: S ← S ∪ v.
7: until |S| = k
8: return S

4 Non-monotone Functions
In this section, we consider the subset selection problem with
a non-monotone (not necessarily submodular) objective func-
tion f and a size constraint. It was known that when f
is submodular, the standard greedy algorithm fails to pro-
vide any constant guarantee, while the random greedy algo-
rithm can achieve a (1/e)-approximation guarantee [Buch-
binder et al., 2014]. Instead of selecting the best item
in each iteration, the random greedy algorithm selects one
from the best k items uniformly at random. We thus ana-
lyze the stochastic version of the random greedy algorithm,
called STOCHASTIC-RANDOM-GREEDY as presented in Al-
gorithm 2. As in [Buchbinder et al., 2014], we also assume
that there are 2k “dummy” items in V whose marginal gain to
any set is 0. We prove the approximation guarantee in Theo-
rem 2 by utilizing the recursive inequality shown in Lemma 3.
Note that the submodularity index λ is used here instead of
the submodularity ratio γ, since γ can be negative for a non-
monotone function f .
Lemma 2. [Zhou and Spanos, 2016] Given a set function
f : 2V → R+, let S(p) be a random subset of S ⊆ V , where
each item of S appears in S(p) with probability at most p.
Then, we have

E[f(S(p))] ≥ (1− p)f(∅) +
|S|(|S| − 1)

2
λS,2.

Lemma 3. Let Si denote the subset S after i iterations of
STOCHASTIC-RANDOM-GREEDY, and let S∗ denote an op-
timal subset. Then, we have

E[f(Si+1)− f(Si) | Si] ≥
µ

k
(f(Si ∪ S∗)− f(Si) + λSi,k).

Proof. According to lines 3-6 of Algorithm 2 and E[ξ | ξ ∼
D] = µ, we have

E[f(Si+1)− f(Si) | Si] ≥
µ

k
max

U⊆V \Si,|U |=k

∑
v∈U

fSi(v)

≥ µ

k

∑
v∈S∗\Si

fSi(v) ≥ µ

k
(fSi(S

∗ \ Si) + λSi,k)

=
µ

k
(f(Si ∪ S∗)− f(Si) + λSi,k),

where the second inequality is by |S∗ \ Si| ≤ k and the exis-
tence of “dummy” items, and the last is by Definition 2.



Theorem 2. For subset selection with a non-monotone objec-
tive function and a size constraint, STOCHASTIC-RANDOM-
GREEDY finds a subset S ⊆ V with |S| = k and

E[f(S)] ≥ µ

e
·OPT + µ

(
n(n− 1)

2
λV,2 + λmin

)
,

where λmin = minS:|S|=k−1 λS,k.

Proof. Taking the expectation over Si, we know from
Lemma 3 that for 0 ≤ i ≤ k − 1,

E[f(Si+1)]− E[f(Si)]

≥ µ

k
· (E[f(Si ∪ S∗)]− E[f(Si)] + λmin).

Note that λSi,k ≥ λmin since |Si| ≤ k−1 and λS,k decreases
with S. We define a function g : 2V \S

∗ → R+ as for any
S ⊆ V \ S∗, g(S) = f(S ∪ S∗). Then,

E[f(Si ∪ S∗)] = E[g(Si \ S∗)].

It is easy to see that any item is selected with probability at
most 1/k in each iteration of Algorithm 2. Thus, any item of
V \ S∗ appears in Si \ S∗ with probability at most 1 − (1 −
1/k)i. Note that Si \ S∗ is a random subset of V \ S∗. By
applying Lemma 2 to the function g, we get

E[g(Si \ S∗)]

≥
(

1− 1

k

)i
g(∅) +

|V \ S∗|(|V \ S∗| − 1)

2
λV \S∗,2(g)

≥
(

1− 1

k

)i
OPT +

n(n− 1)

2
λV \S∗,2(g),

where the last inequality is by g(∅) = f(S∗) = OPT , |V \
S∗| ≤ n and λV \S∗,2(g) ≤ 0. Based on Definition 2, we get

λV \S∗,2(g) = min
L⊆V \S∗,T :|T |≤2,T∩L=∅

∑
v∈T

gL(v)− gL(T )

= min
L⊆V \S∗,T :|T |≤2,T∩L=∅

∑
v∈T

fL∪S∗(v)− fL∪S∗(T )

≥ min
L⊆V,T :|T |≤2,T∩L=∅

∑
v∈T

fL(v)− fL(T ) = λV,2(f).

Thus, we get

E[f(Si+1)]−
(

1− µ

k

)
E[f(Si)]

≥ µ

k
·

((
1− 1

k

)i
OPT +

n(n− 1)

2
λV,2 + λmin

)
.

Based on this recursive inequality, an inductive proof can
show that for 0 ≤ i ≤ k, if µ < 1,

E[f(Si)] ≥

((
1− µ

k

)i
−
(

1− 1

k

)i)
µ

1− µ
·OPT

+

(
1−

(
1− µ

k

)i)(n(n− 1)

2
λV,2 + λmin

)
;

if µ = 1,

E[f(Si)] ≥
i

k

(
1− 1

k

)i−1
·OPT

+

(
1−

(
1− 1

k

)i)(
n(n− 1)

2
λV,2 + λmin

)
.

Thus, for the returned subset Sk, we get, if µ < 1,

E[f(Sk)] ≥

((
1− µ

k

)k
−
(

1− 1

k

)k)
µ

1− µ
·OPT

+

(
1−

(
1− µ

k

)k)(n(n− 1)

2
λV,2 + λmin

)
=

(
1− 1

k

)k((
1 +

1− µ
k − 1

)k
− 1

)
µ

1−µ
·OPT

+

(
1−

(
1− µ

k

)k)(n(n− 1)

2
λV,2 + λmin

)
≥ µ

e
·OPT + µ

(
n(n− 1)

2
λV,2 + λmin

)
,

where the last inequality is derived by (1 + 1−µ
k−1 )k ≥ 1 +

(1−µ)k
k−1 , (1− 1

k )k−1 ≥ 1
e , (1− µ

k )k ≥ 1−µ and λS,k ≤ 0 for
any S ⊆ V and k ≥ 1. If µ = 1, we have

E[f(Sk)] ≥ k

k

(
1− 1

k

)k−1
·OPT

+

(
1−

(
1− 1

k

)k)(
n(n− 1)

2
λV,2 + λmin

)
≥ 1

e
·OPT +

n(n− 1)

2
λV,2 + λmin.

Thus, we can get a unified lower bound on E[f(Sk)] for any
µ ∈ (0, 1], i.e.,

E[f(Sk)] ≥ µ

e
·OPT + µ

(
n(n− 1)

2
λV,2 + λmin

)
.

Note that our derived approximation guarantee in Theo-
rem 2 is consistent with known results for the random greedy
algorithm.

Remark 3. When the algorithm performs exactly (where
µ = 1), it recovers the approximation bound 1

e · OPT +
n(n−1)

2 λV,2 + λmin [Zhou and Spanos, 2016], which further
recovers the approximation ratio 1

e for submodular f (where
λS,k = 0 for any S ⊆ V and k ≥ 1) [Buchbinder et al.,
2014].

5 General Constraints
In this section, we consider a more general constraint, i.e.,
a subset S belongs to a p-system. Note that a p-system
covers an intersection of p matroids, and of course covers
a uniform matroid (i.e., a size constraint |S| ≤ k). That
is, we study the subset selection problem with a monotone



Algorithm 3 STOCHASTIC-GENERAL-GREEDY Algorithm
Input: an independence system (V, I) and a distribution D
Output: a basis of V
Process:

1: Let S = ∅ and U = V .
2: repeat
3: U ← {v ∈ U | S ∪ v ∈ I}
4: if U 6= ∅ then
5: ξ ← randomly sampled from D.
6: v∗ ← an arbitrary item from U s.t.

fS(v∗) ≥ ξ ·maxv∈U fS(v).
7: S ← S ∪ v∗ and U ← U \ v∗.
8: end if
9: until U = ∅

10: return S

(not necessarily submodular) objective function f and a p-
system constraint. It was known that when f is submodu-
lar, the general greedy algorithm, which iteratively adds one
item with the largest marginal gain among those items that
keep the set independent, can achieve a tight approximation
guarantee of 1/(p + 1) [Calinescu et al., 2011]. We thus an-
alyze the stochastic version of the general greedy algorithm,
called STOCHASTIC-GENERAL-GREEDY as presented in Al-
gorithm 3. We prove the approximation guarantee in Theo-
rem 3. Note that the submodularity ratio α is used here, since
we need a weak version of the diminishing return property
(i.e., Eq. (2)) in the proof.
Lemma 4. [Fisher et al., 1978] For δi, ρi ≥ 0 with 0 ≤ i ≤
k − 1, if it satisfies that

∑t−1
i=0 δi ≤ t for 1 ≤ t ≤ k and

ρi−1 ≥ ρi for 1 ≤ i ≤ k − 1, then
∑k−1
i=0 δiρi ≤

∑k−1
i=0 ρi.

Theorem 3. For subset selection with a monotone ob-
jective function and a p-system constraint, STOCHASTIC-
GENERAL-GREEDY finds a basis S of V with

E[f(S)] ≥ α2µ

p+ α2µ
·OPT.

Proof. Let S∗ denote an optimal subset, i.e., f(S∗) = OPT .
Assume that the returned basis by STOCHASTIC-GENERAL-
GREEDY (i.e., Algorithm 3) contains k items. Let Si (0 ≤
i ≤ k) denote the subset S after i iterations of Algorithm 3,
where S0 = ∅ and Sk is the returned basis. By Definition 1
and the monotonicity of f , we have∑

v∈S∗\Sk

fSk
(v) ≥ γSk,|S∗\Sk| · (f(Sk ∪ S∗)−f(Sk)) (4)

≥ γSk,|S∗\Sk| · (OPT − f(Sk)).

For 0 ≤ i ≤ k, let Xi = Si ∪ {v ∈ V | Si ∪ v /∈ I}.
Then, in the (i + 1)-th iteration of Algorithm 3, the set U
in line 3 is actually V \ Xi, which is the set of items whose
inclusion into Si keep the set independent. It is easy to verify
that Xi ⊆ Xi+1 and Xk = V since Sk is a basis (i.e., a
maximal independent subset of V ). By the definition of a
p-system (i.e., Eq. (3)), we get, for 0 ≤ i ≤ k,

|Xi ∩ S∗| ≤ p · |Si| = ip, (5)

since Si is a basis ofXi andXi∩S∗ is an independent subset
of Xi. For 0 ≤ i ≤ k − 1, let S∗i = (Xi+1 \Xi) ∩ S∗. Since
Xi ⊆ Xi+1 andXk = V , we have S∗i ∩S∗j = ∅ for any i 6= j

and ∪k−1i=0 S
∗
i = (Xk \X0)∩S∗ = (V \X0)∩S∗ = S∗. Note

that X0 ∩ S∗ = ∅. That is, {S∗0 , S∗1 , . . . , S∗k−1} is a partition
of S∗. Then, we have∑

v∈S∗\Sk

fSk
(v) =

∑
v∈S∗

fSk
(v) =

k−1∑
i=0

∑
v∈S∗

i

fSk
(v).

Let u∗i ∈ arg maxv∈V \Xi
fSk

(v). Since S∗i ⊆ V \ Xi, we
have, for any v ∈ S∗i , fSk

(v) ≤ fSk
(u∗i ). Thus, we get∑

v∈S∗\Sk

fSk
(v) ≤

k−1∑
i=0

∑
v∈S∗

i

fSk
(u∗i )=

k−1∑
i=0

|S∗i |fSk
(u∗i ). (6)

Since Xi ⊆ Xi+1, we have fSk
(u∗i ) ≥ fSk

(u∗i+1). For any
1 ≤ t ≤ k, it holds that∑t−1

i=0
|S∗i |/p = |Xt ∩ S∗|/p ≤ t,

where the inequality is by Eq. (5). Thus, by Lemma 4, we get∑k−1

i=0
(|S∗i |/p) · fSk

(u∗i ) ≤
∑k−1

i=0
fSk

(u∗i ). (7)

Since Si ⊆ Sk for any i < k, by Definition 3 and the mono-
tonicity of f , we can get∑k−1

i=0
fSk

(u∗i ) ≤
∑k−1

i=0
fSi

(u∗i )/α. (8)

Let v∗i ∈ arg maxv∈V \Xi
fSi

(v). Since u∗i ∈ V \Xi, it holds

fSi
(u∗i ) ≤ fSi

(v∗i ). (9)
By applying Eqs. (7), (8) and (9) to Eq. (6), we get∑

v∈S∗\Sk

fSk
(v) ≤ p

α

k−1∑
i=0

fSi
(v∗i ). (10)

By the procedure of Algorithm 3, we have
E[f(Si+1)− f(Si) | Si] ≥ µ max

v∈V \Xi

fSi
(v) = µfSi

(v∗i ).

Note that V \Xi is the set of items whose inclusion into Si can
keep the set independent, and v∗i is the item with the largest
marginal gain among V \Xi. Taking the expectation over Si,

E[f(Si+1)− f(Si)] ≥ µ · E[fSi
(v∗i )].

Then, we have

E[f(Sk)] =

k−1∑
i=0

E[f(Si+1)− f(Si)] ≥ µ ·
k−1∑
i=0

E[fSi(v
∗
i )].

(11)
By combining Eq. (4) with Eq. (10), taking the expectation
over both sides, and using γSk,|S∗\Sk| ≥ α (see Remark 1),
we get

α(OPT−E[f(Sk)]) ≤ p

α

k−1∑
i=0

E[fSi
(v∗i )] ≤ p

αµ
E[f(Sk)],

where the last inequality is by Eq. (11). Thus, for the returned
subset Sk, we have

E[f(Sk)] ≥ α2µ

p+ α2µ
·OPT.



Note that our derived approximation guarantee in Theo-
rem 3 is consistent with known results for the problem with
submodular f and matroid constraints.
Remark 4. When f is submodular (where α = 1) and a
p-system is specialized as an intersection of p-matroids, it re-
covers the approximation ratio µ

p+µ
[Hassidim and Singer,

2017], which further recovers the approximation ratio 1
p+1 of

the exact algorithm (where µ = 1) [Fisher et al., 1978].

6 Applications of Approximation Guarantees
To understand the derived approximation guarantees of
stochastic greedy algorithms in real-world applications, we
need to provide lower bounds on γ, λ or α for the cor-
responding objective functions. Note that, lower bounds
on γ were derived for some monotone non-submodular ap-
plications [Das and Kempe, 2011; Elenberg et al., 2016;
Bian et al., 2017], and that on λwere also derived for the non-
monotone non-submodular application of causal covariate se-
lection [Zhou and Spanos, 2016]. In this paper, we thus only
analyze the submodularity ratio α, which was never touched
before. We give lower bounds on α in Lemmas 5 and 6 for the
monotone non-submodular objective functions in the appli-
cations of Bayesian experimental design and non-parametric
learning. The proofs are inspired from that of Propositions 1
and 2 in [Bian et al., 2017], which prove lower bounds on γ.

In Bayesian experimental design, the goal is to select ob-
servations to maximize the quality of parameter estimation.
Krause et al. [2008] considered the Bayesian A-optimality
objective function, which is to maximally reduce the variance
of the posterior distribution over parameters in linear models.
Let X = [x1,x2, . . . ,xn] ∈ Rd×n denote the observation
matrix, where xi ∈ Rd. Assume that each xi is normalized,
i.e., ‖xi‖ = 1. Let XS ∈ Rd×|S| denote the submatrix of X
with its columns indexed by S ⊆ {1, 2, . . . , n}. Let tr(·) de-
note the trace of a matrix and let σi(·) denote the i-th largest
singular value of a matrix. The linear model is described
as yS = XT

S θ + w, where θ ∼ N (0,Λ−1), Λ = β2Id,
w ∼ N (0, δ2I|S|), and Ij denotes the identity matrix of size
j. Then, the A-optimality objective function is defined as

f(S) = tr(Λ−1)− tr((Λ + δ−2XSX
T
S )−1), (12)

which is monotone non-submodular [Krause et al., 2008].
Lemma 5. For the A-optimality objective function (i.e.,
Eq. (12)) in Bayesian experimental design, the submodularity
ratio α can be lower bounded as

α ≥ 1

(1 + δ−2σ2
1(X)/β2)2

.

Proof. For any column index set S ⊆ {1, . . . , n} and v /∈ S,

fS(v) = f(S ∪ v)− f(S)

= tr((Λ+δ−2XSX
T
S )−1)− tr((Λ+δ−2XS∪vX

T
S∪v)

−1)

=
∑d

i=1

1

β2+δ−2σ2
i (XS)

−
∑d

i=1

1

β2+δ−2σ2
i (XS∪v)

=
∑d

i=1

δ−2(σ2
i (XS∪v)− σ2

i (XS))

(β2 + δ−2σ2
i (XS))(β2 + δ−2σ2

i (XS∪v))

≥
∑d

i=1

δ−2(σ2
i (XS∪v)− σ2

i (XS))

(β2 + δ−2σ2
1(X))2

=
δ−2(tr(XS∪vX

T
S∪v)− tr(XSX

T
S ))

(β2 + δ−2σ2
1(X))2

=
δ−2tr(XvX

T
v )

(β2 + δ−2σ2
1(X))2

=
δ−2

(β2 + δ−2σ2
1(X))2

,

where the third and the fifth equalities are by the definition of
the trace of a matrix, the inequality is by Cauchy interlacing
inequality of singular values [Strang, 2006], the sixth equality
is by the linearity of the trace and the last is by tr(XvX

T
v ) =

‖Xv‖2 = 1. We can similarly derive that
fS(v) ≤ δ−2/β4.

According to Definition 3, the lemma thus holds.

In non-parametric learning (e.g., sparse Gaussian pro-
cesses), the goal is to select a set of representative data
points. Let C ∈ Rn×n be the covariance matrix parameter-
ized by a positive definite kernel. Let CS ∈ R|S|×|S| denote
the submatrix of C with its rows and columns indexed by
S ⊆ {1, 2, . . . , n}. The determinantal function

f(S) = det(I|S| + δ−2CS), (13)
is often involved in the objective functions of non-parametric
learning, e.g., [Lawrence et al., 2003; Kulesza and Taskar,
2012]. Although the logarithm of f is monotone submodu-
lar [Krause and Guestrin, 2005], the determinantal function
f itself is not submodular in general. Let λi(·) denote the i-
th largest eigenvalue value of a squire matrix. For notational
convenience, we will use A and AS to denote In + δ−2C and
I|S| + δ−2CS , respectively.
Lemma 6. For the determinantal function (i.e., Eq. (13)) in
non-parametric learning, the submodularity ratio α can be
lower bounded as

α ≥ λn(A)− 1

(λ1(A)− 1)
∏n−1
i=1 λi(A)

.

Proof. For any index set S ⊆ {1, . . . , n} and v /∈ S, we have
fS(v) = det(AS∪v)− det(AS)

=
∏|S∪v|

i=1
λi(AS∪v)−

∏|S|

i=1
λi(AS)

≥ (λ|S∪v|(AS∪v)− 1) ·
∏|S|

i=1
λi(AS)

where the inequality is derived by Cauchy interlacing in-
equality. We can similarly derive that

fS(v) ≤ (λ1(AS∪v)− 1) ·
∏|S|

i=1
λi(AS).

Thus, for any S ⊆ T and v /∈ T , we have

fS(v)

fT (v)
≥

(λ|S∪v|(AS∪v)− 1) ·
∏|S|
i=1 λi(AS)

(λ1(AT∪v)− 1) ·
∏|T |
i=1 λi(AT )

≥
λ|S∪v|(AS∪v)− 1

(λ1(AT∪v)− 1) ·
∏|T |−|S|
i=1 λi(AT )

≥ λn(A)− 1

(λ1(A)− 1)
∏n−1
i=1 λi(A)

,

where the last two inequalities are derived by Cauchy inter-
lacing inequality. Thus, the lemma holds.



7 Conclusion
In this paper, we prove the approximation guarantees of gen-
eral stochastic greedy algorithms for subset selection with
non-monotone or non-submodular objective functions and
also with a general constraint. This largely extends previous
studies, which mainly focused on subset selection with mono-
tone submodular objective functions and a size constraint.
Moreover, we show that the derived approximation guaran-
tees are applicable to real-world subset selection tasks.
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