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Abstract
An automatic machine learning (AutoML) task is to
select the best algorithm and its hyper-parameters
simultaneously. Previously, the hyper-parameters
of all algorithms are joint as a single search space,
which is not only huge but also redundant, because
many dimensions of hyper-parameters are irrele-
vant with the selected algorithms. In this paper,
we propose a cascaded approach for algorithm se-
lection and hyper-parameter optimization. While a
search procedure is employed at the level of hyper-
parameter optimization, a bandit strategy runs at
the level of algorithm selection to allocate the bud-
get based on the search feedbacks. Since the bandit
is required to select the algorithm with the maxi-
mum performance, instead of the average perfor-
mance, we thus propose the extreme-region up-
per confidence bound (ER-UCB) strategy, which
focuses on the extreme region of the underlying
feedback distribution. We show theoretically that
the ER-UCB has a regret upper bound O (K lnn)
with independent feedbacks, which is as efficient as
the classical UCB bandit. We also conduct exper-
iments on a synthetic problem as well as a set of
AutoML tasks. The results verify the effectiveness
of the proposed method.

1 Introduction
Algorithm selection and hyper-parameter optimization are
core parts of automatic machine learning (AutoML). Previ-
ously, AutoML approaches often define the search space as
the algorithm selection space [Brazdil et al., 2003; Adankon
and Cheriet, 2009; Biem, 2003], hyper-parameter space [Hu
et al., 2018; Hu et al., 2019], or the joint of the both spaces
(CASH problem) [Feurer et al., 2015; Thornton et al., 2013].
While the joint space allows a more thorough search that
could cover potentially better configurations, the huge space
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is actually a barrier to effective search in limited time. More-
over, the joint space can be quite redundant when consider-
ing only one of the algorithms, since the hyper-parameters of
the other algorithms are irrelevant. Therefore, the joint space
contains redundancy or even can be misleading.

The cascaded algorithm selection which includes two lev-
els is a possible way [Jamieson and Talwalkar, 2016]. The
first level is on the hyper-parameter optimization. It only
needs to focus on the selected algorithm, but not the hyper-
parameters of all algorithms. The second level is on the al-
gorithm selection. Meanwhile, the algorithm selection com-
pares algorithms with their best performance. However, pre-
vious methods in this kind commonly carry out a full hyper-
parameter optimization on the candidate algorithms, making
the slow and expensive algorithm evaluations.

In this paper, we propose a cascaded algorithm selection
approach without full hyper-parameter optimizations. The
hyper-parameter optimization employs some stepping search
methods, which can be hung up after every search step and
can also be resumed. The algorithm selection receives feed-
back and allocates the next search step to one of the algo-
rithms. Thus, the cascaded algorithm selection is a multi-
armed bandit problem [Auer et al., 2002]. However, the clas-
sical bandit focuses on the average feedbacks from arms. In
the AutoML, however, only the best feedback matters. A vari-
ant of the bandit, the extreme bandit [Carpentier and Valko,
2014], can model this situation, which tries to maximize (or
equivalently minimize) the feedback value. However, as the
extreme bandit follows the extreme distribution, considering
it is not only unstable but often require to known the distribu-
tion type, making the extreme bandit approach unpractical.

In this paper, we propose the extreme-region UCB bandit
(ER-UCB), which focuses on the extreme region of the feed-
back distributions. Unlike the extreme bandit, ER-UCB con-
siders a region instead of the extreme point, which can lead to
better mathematical conditions. Moreover, in machine learn-
ing where the test data is commonly different from the train
data, the extreme region can be more robust for generaliza-
tion. With K-arms and n trials, our analysis proves that ER-
UCB has the O (K lnn) regret upper bound, which has the
same order with the classical UCB strategy. The experiments
on synthetic and real AutoML tasks indicate that the ER-UCB
can find the best algorithm precisely, and exploit it with the
majority of the trial budget.



The rest sections present background & related works,
extreme-region UCB bandit, experiments and conclusion.

2 Background & Related Works
We consider the algorithm selection and hyper-parameter op-
timization on classification tasks. Let Dtrain and Dtest denote
the training and testing datasets. LetC = {C1, C2, . . . , CK}
denote the algorithm set with K candidates. For Ci ∈ C,
δi ∈ ∆i denotes a hyper-parameter setting, where ∆i is the
hyper-parameter space of Ci. Let f (·) denote a performance
criterion for a configuration Cδii , e.g., accuracy, AUC score,
etc. The AutoML problem can be formulated as follows:

C
δ∗i
i∗ = argmax

Ci∈C,δi∈∆i

1

k

k∑
j=1

f
(
Cδii ,D

train
j ,Dvalid

j

)
, (1)

where Dvalid
j ∈ Dtrain and Dtrain

j = Dtrain − Dvalid
j . It is

also concludes the CASH problem formulation [Feurer et al.,
2015].

Because of the non-convex, non-continuous and non-
differentiable properties, derivative-free optimization [Yu
et al., 2016; Hu et al., 2017] is usually applied to
solve it. For example, a tree-structure based Bayesian
optimization (SMAC) [Hutter et al., 2011] is em-
ployed on AutoWEKA [Thornton et al., 2013] and Au-
toSKLEARN [Feurer et al., 2015], the popular open-source
AutoML tools. Derivative-free optimization explores search
space by sampling and evaluating. But the high time-cost re-
strains the total number of evaluations on AutoML. With the
limited trials, the performance of derivative-free optimization
is very sensitive to search space. However, in above formu-
lation, the search space ∆ = ∆1 ×∆2,×, . . . ,×∆K . Obvi-
ously, ∆ is redundant, because the best configuration is only
relevant to the hyper-parameter space of the best algorithm.

Hence, we consider a easier formulation, i.e., optimizing
hyper-parameters of algorithms separately:

Cδ
∗

i∗ = argmax
Ci∈C
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f
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δ∗i
i ,Dtrain

j ,Dvalid
j

)
,

where, δ∗i = argmax
δi∈∆i

1

k

k∑
j=1

f
(
Cδii ,D

train
j ,Dvalid

j

)
. (2)

The hyper-parameter processes can be seen as arms. The al-
gorithm selection level is a multi-armed bandit problem. The
bandit is a classical formulation of the resource allocation
problem. In [Felı́cio et al., 2017], the authors formulated
the cold-start user recommendation as a multi-armed bandit
problem, which user information was unavailable at the be-
ginning. The feedbacks of users has to be obtained by trials.
In this situation, the bandit concerns more about the average
feedback of arms. In [Cicirello and Smith, 2005], the au-
thors proposed the max K-armed bandit, which focused on
the maximum feedback of trials. But it assumed that the re-
ward distribution was a Gaussian distribution, and it was de-
signed for the heuristic search, in which more than one arms
can be selected at a trial step.

In this paper, we customize the extreme-region UCB (ER-
UCB) bandit for AutoML problems.

3 Extreme-Region UCB Bandit
In this section, we present details of the ER-UCB: the ban-
dit formulation for AutoML, the deduction of the ER-UCB
strategy and the theoretical analysis on the ER-UCB strategy.

3.1 Bandit formulation for AutoML
In the classical multi-armed bandit, feedbacks of an arm obey
an underlying distribution. In this paper, we employ the ran-
dom search on the hyper-parameter optimization. A trial in
a model Ci is uniformly sampling hyper-parameters from
∆i, and its performance is the feedback of this trial. Thus,
Xi ∼ Di

(
µXi , σ

2
Xi

)
, where Xi denote a feedback of a trial

on Ci, and Di

(
µXi , σ

2
Xi

)
is the underlying performance dis-

tribution of Ci. Because of the random search, Di is fixed.
With K algorithm candidates, let D = {D1,D2, . . . ,DK}
denote the performance distribution set. The K-armed bandit
formulation for AutoML is: at the t-th trial, the CIt is se-
lected from K algorithm candidates, and get a feedback XIt
independently from DIt .

3.2 Deduction
In AutoML tasks, the selected algorithm is required to have
maximum performances. For this requirement, we present
the extreme-region target for the proposed bandit. Then, we
show the deduction details of extreme-region UCB strategy.

Extreme-region target
The target of the hyper-parameter optimization is to find
the hyper-parameters which have the maximum performance.
In the bandit, with a fixed ε, we want the probability
Pr [Xi ≥ µXi

+ ε] as large as possible. With the Chebyshev

inequality: Pr [Xi ≥ µXi + ε] ≤ σ2
Xi

ε2 , let
σ2
Xi

ε2 = θ,

Pr

[
Xi ≥ µXi

+

√
1

θ
σXi

]
≤ θ. (3)

In other words, with the same fixed probability upper bound
θ, the best arm selection is:

It = argmax
i∈{1,2,...,K}

µXi
+

√
1

θ
σXi

. (4)

With the given µXi
and σXi

, the ground-truth selection strat-
egy is (4). But, when facing the unknown distributions, we
have to estimate the expectation and variance based on the
observations. With the Markov inequality, it is easy to relate
the expectation µXi with its estimation. But for variance, it is
hard to find the relationship. With the variance definition:

E
[
X2
i

]
= σ2

Xi
+ µ2

Xi
. (5)

Because E
[
X2
i

]
is the expectation of the random variable

X2
i . The Markov inequality can be applied to it easily. And

E
[
X2
i

]
can partly represent σ2

Xi
according to (5). Thus, we

try to replace σXi with
√

E [X2
i ]:

It = argmax
i∈{1,2,...,K}

µXi
+

√
1

θ
E (X2

i ). (6)



Comparing with (4), (6) magnifies the effect of expectation
item on selection strategy. To tackle this issue, we introduce a
hyper-parameter β ≥ 0, and construct a new random variable
Yi = Xi−β. Furthermore, let µYi = E [Yi], Zi = (Xi − β)

2

and µZi = E [Zi]. Thus, the extreme-region target is:

It = argmax
i∈{1,2,...,K}

µYi
+

√
1

θ
µZi

. (7)

We prove that it can reduce the effect of expectation on algo-
rithm selection by introducing into β:

Proof. According to definitions of Xi, Yi and Zi,

µYi +

√
1

θ
µZi = µXi − β +

√
1

θ

(
σ2
Xi

+ (µXi − β)
2
)
.

(8)

Comparing with (4), because of β ≥ 0, the item of expec-
tation is reduced, but the item of variance stays the same. It
concludes the proof.

Extreme-region UCB strategy
We apply the upper confidence bound (UCB) strategy on the
extreme-region target. In this paper, we assume that the ran-
dom variables satisfy the following moment condition. There
exists a convex function ψ on the reals, for all λ ≤ 0,

lnE eλ|X−E[X]| ≥ ψ (λ) . (9)

If we let X ∈ [0, 1] and ψ (λ) = λ2

8 , (9) is known as Ho-
effding’s lemma. We apply this assumption to construct an
upper bound for the estimated expectations at some fixed con-
fidence level. Let ψ∗ denote the Legendre-Fenchel transform
of ψ. With s observations of Xi, let µ̂sYi

= 1
s

∑s
t=1 Yi,t and

µ̂sZi
= 1

s

∑s
t=1 Zi,t denote the estimated expectations of Yi

and Zi. Only for Yi with a fixed εYi , using the Markov in-
equality:

Pr
[
µYi
≥ µ̂sYi

+ εYi

]
≤ e−sψ

∗(εYi). (10)

The same deduction for Zi, and f (x) =
√
x is a monotoni-

cally increasing function:

Pr

[√
1

θ
µZi
≥
√

1

θ

(
µsZi

+ εZi

)]
≤ e−sψ

∗(εZi). (11)

Because
√
a+ b ≤

√
a +
√
b, and let εYi

= εZi
= ε. With

the union bound, we combine Yi and Zi as follows:

Pr

[
µYi

+

√
1

θ
µZi ≥ µ̂sYi

+

√
1

θ
µ̂sZi

+ ε+

√
1

θ
ε

]
≤ 2e−sψ

∗(ε). (12)

Let 2e−sψ
∗(ε) = δ. With the probability at least 1− δ,

µ̂sYi
+

√
1

θ
µ̂sZi

+ (ψ∗)
−1

(
1

s
ln

2

δ

)
+

√
1

θ
(ψ∗)
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(
1

s
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2

δ

)
> µYi

+

√
1

θ
µZi

. (13)

Algorithm 1 Extreme-region UCB Bandit
Input:
inp {C1, C2, . . . , CK}: K model candidates;
inp {∆1,∆2, . . . ,∆K}: hyper-parameter spaces of models;
inp γ, θ, β: hyper-parameters;
inp n: trial budget;
inp Dtrain: train dataset of task;
inp SampleU : uniform sample sub-procedure;
inp Evaluate: evaluation sub-procedure.
Procedure:

1: for t = 1 to K do
2: Xt = Evaluate

(
Ct,SampleU (∆t) ,Dtrain

)
3: µ̂Yt

= Xt − β, µ̂Zt
= (Xt − β)

2
, Tt = 1

4: end for
5: for t = K + 1 to n do
6: get index It according to (17)
7: XIt = Evaluate

(
CIt ,SampleU (∆It) ,Dtrain

)
8: µ̂YIt

=
TIt (t)µ̂YIt

+XIt−β
TIt (t)+1

9: µ̂ZIt
=

TIt (t)µ̂ZIt
+(XIt−β)

2

TIt (t)+1

10: TIt = TIt + 1
11: end for
12: return the hyper-parameters with the best X .

Within total s trials, let Ti (s) =
∑s
t=1 1It=i denote the num-

ber that the i-th arm is selected, and 2
δ = tα. (α,ψ)-ER-UCB

strategy is:

It = argmax
i∈{1,2,...,K}

Ωi (Yi, Zi, Ti (t)) + Ψi (Ti (t) , t) ,where,

Ωi = µ̂
Ti(t)
Yi

+

√
1

θ
µ̂
Ti(t)
Zi

,

Ψi = (ψ∗)
−1

(
α ln t

Ti (t)

)
+

√
1

θ
(ψ∗)

−1

(
α ln t

Ti (t)

)
.

(14)

Ωi and Ψi are the exploitation and exploration items. With
Hoeffding’s lemma, taking ψ (λ) = λ2

8 , then, ψ∗ (ε) = 2ε2.
And let α = 4. The exploration can be re-written as:

Ψ
′

i =

√
2 ln t

Ti (t)
+

√√√√1

θ

√
2 ln t

Ti (t)
. (15)

Thus, the Hoeffding’s ER-UCB strategy is:

It = argmax
i∈{1,2,...,K}

Ωi (Yi, Zi, Ti (t)) + Ψ
′

i (Ti (t) , t) . (16)

Because Xi ∈ [0, 1] on AutoML, the exploitation item is of-
ten much smaller than the exploration item. To further ex-
ploration and exploitation trade-off, we introduce a hyper-
parameter γ. The practical Hoeffding’s ER-UCB strategy is:

It = argmax
i∈{1,2,...,K}

γΩi (Yi, Zi, Ti (t)) + Ψ
′

i (Ti (t) , t) . (17)



The cascaded algorithm selection and hyper-parameter op-
timization with ER-UCB bandit is presented at Algorithm 1.
Line 2 and 7 are the procedures of uniformly sampling hyper-
parameters for the selected algorithm and obtaining the feed-
backs. Line 1 to 4 are the initialization steps. In the main
loop (line 5 to 10), the algorithm is selected by the ER-UCB
strategy (line 6). Line 7 to 9 are the procedures for updating
the exploitation item for the selected algorithm.

We have to discuss the hyper-parameters, i.e., θ, γ and β
for the ER-UCB bandit. θ is employed to control the space
size of the extreme region. It is usually a small real number,
e.g., 0.1 or 0.01. γ is the exploration and exploitation trade-
off hyper-parameter. In AutoML tasks, γ is used to magnify
the exploitation item. Thus, it is usually a big number such
as 10 or 20. β is applied to reduce the impact of expectation
item in the selection strategy. It should be tuned according to
tasks. In experiments, we will investigate them empirically.

3.3 Theoretical Analysis
We present the analysis of the upper bound for (α,ψ)-
ER-UCB strategy (14) and the Hoeffding’s ER-UCB strat-
egy (15) on the extreme-region regret. For the arbitrary
arm i and a fixed ρ, we define Pr [Xi ≥ ρ] = pi. Thus,
p∗ = argmaxi∈{1,2,...,K} pi. According to (7), let i∗ =

argmaxi∈{1,2,...,K} µYi
+
√

1
θµZi

, thus µ∗Y +
√

1
θµ
∗
Z =

µYi∗ +
√

1
θµZi∗ , and Γi = µ∗Y +

√
1
θµ
∗
Z−µYi−

√
1
θµZi . We

assume p∗ = pi∗ by choosing an appropriate β. The extreme-
region regret is the Definition 1.
Definition 1 (Extreme-region regret). At n-th trial, event A is
the number of times that Xi∗ ≥ ρ occurs, and event B is the
number of times that XIt ≥ ρ occurs with a given strategy.
The extreme-region regret is:

Rn = np∗ − E
n∑
t=1

pIt .

Introducing Ti (s) and Θi = p∗ − pi, The extreme-region
regret can be re-written as:

Rn =

(
K∑
i=1

ETi (n)

)
p∗ − E

K∑
i=1

Ti (n) pi

=

K∑
i=1

ΘiETi (n) . (18)

We can prove the following simple upper regret bound for
(α,ψ)-ER-UCB strategy:
Theorem 1 (Regret of (α,ψ)-ER-UCB). Assume the feed-
back distribution of arbitrary arm satisfy (9). With α > 2,
(α,ψ)-ER-UCB satisfies:

Rn ≤
∑
i:Γi>0

Θi

 α lnn

ψ∗
(

Γ2
i /
[
4 (1 + θ−1)

2
]) +

α+ 2

α− 2

 .

Due to the limitation of paper length, we present the proof
details in our supplementary material. Based on Theorem 1,
we can easily prove the extreme-region regret of the Hoeffd-
ing’s ER-UCB strategy:

Corollary 1 (Regret of Hoeffding’s ER-UCB). Assume the
feedback distribution of arbitrary arm satisfy (9). With α > 2,
Hoeffding’s ER-UCB satisfies:

Rn ≤
∑
i:Γi>0

Θi

(
8α lnn

Γ4
i / (1− θ−1)

4 +
α+ 2

α− 2

)
.

According to the theoretical analysis, the ER-UCB bandit
has O (K lnn) upper bound on the extreme-region regret.

4 Experiments
In the experiment section, we empirically investigate the ef-
fectiveness of the ER-UCB bandit on some synthetic and real-
world AutoML tasks. Some state-of-the-art bandit strategies
are selected as the compared methods, including the classi-
cal UCB (C-UCB) [Bubeck et al., 2012], ε-greedy [Sutton
and Barto, 2018], softmax strategy [Tokic and Palm, 2011]
and random strategy which allocates the budget by selecting
arms randomly. In addition, we apply the random search on
the joint hyper-parameter spaces of all algorithms (Joint) to
compare with the cascaded hyper-parameter optimization.

4.1 Synthetic problem
We construct a 7-armed bandit problem in this section. The
feedbacks obey Gaussian distributions with different expec-
tations and variances: G1

(
0.84, 0.072

)
, G2

(
0.84, 0.012

)
,

G3

(
0.85, 0.042

)
, G4

(
0.85, 0.022

)
, G5

(
0.88, 0.012

)
,

G6

(
0.88, 0.022

)
, G7

(
0.89, 0.012

)
}. The best arm is not

only related with the expectation, but also influenced by
the variance. Obviously, it is more likely to obtain the best
feedback by exploiting in G1, in other words, i∗ = 1. We
study on the three hyper-parameters of ER-UCB firstly, and
then compare the ER-UCB with other methods.

Hyper-parameter study
We investigate the θ, γ and β for the ER-UCB. With fixed two
of them, we study another one: with fixed γ = 20, β = 0.85,
we study θ ∈ [0.0001, 0.5]; with fixed β = 0.85, θ = 0.01,
we study γ ∈ [0, 50]; with fixed θ = 0.01, γ = 20, we study
β ∈ [0, 1.5]. For every hyper-parameter, we evenly sample
1000 settings from the setting region. The core problem we
care about is how the methods allocate budget to arms. Let
Rexi
i = Ti(n)

n define the exploitation rate for arm i. LargeRexi
i

means the large number of trials that the arm i is selected. The
trial budget is set as 1000. The experiment for every hyper-
parameter setting is repeated for 3 times independently, and
the average results are presented.

Figure 1:a.1, 2 and 3 show the study results of θ, γ and β.
The arm 1 is the best selection. Thus, the larger Rexi

1 the bet-
ter. For θ (Figure 1:a.1), the green line (Rexi

1 ) is approaching
1 when θ nears by 0. In practice, θ should be set as a small
value. For γ (Figure 1:a.2), when γ is small, the exploitation
rates of arms are similar. And the green line is increasing
during γ is increasing. It means that the small γ encourages
exploration and the large γ encourages exploitation accord-
ing to the observations. For β (Figure 1:a.3), the exploitation
rates are sensitive to β when β is around the expectations of
reward distributions. Thus, β should be carefully tuned ac-
cording to different tasks.
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Figure 1: Illustrations of the results for the synthetic experiment. Figure a.1, a.2, a.3 are the results of the ER-UCB hyper-parameter studies,
which illustrate the exploitation rates under the different hyper-parameter settings. The green line of those three figures is the result of arm
1 which is the best arm. The red line is the result of arm 7 which has the largest feedback expectation. Figure b shows the results that the
number of eventX > 1.0 occurs changes with the number of trials increases. The red dash line is the expectation of the ground-truth strategy.
The green line is the proposed ER-UCB strategy.

Table 1: The performance summary of compared bandit strategies
on the synthetic problem. X̄∗ is the average best feedback for three
independent runnings. iX∗ is the arm index that the best feedback is
from in each of runnings. maxiR

exi
i is the arm index that the strat-

egy allocates the most budget to in each of runnings. The number in
bold means the best performance.

Methods X̄∗ iX∗ maxiR
exi
i Rexi

1

ER-UCB 1.06±0.02 1,1,1 1,1,1 0.90±0.01
C-UCB 0.94±0.01 1,7,6 7,7,7 0.01±0.01
ε-Greedy 0.98±0.04 6,1,1 6,1,6 0.31±0.42
Softmax 1.01±0.01 1,1,1 7,7,1 0.18±0.01
Random 1.00±0.05 1,1,1 4,1,6 0.15±0.01

Investigation with compared methods
According to the hyper-parameter study results of the ER-
UCB, we set θ = 0.01, γ = 20, β = 0.85, and compare it
with the C-UCB, ε-greedy (ε = 0.1), Softmax strategy (τ =
0.1) and random selection strategy. The trial budget is 1000.
Every experiment is repeated for 3 times independently. The
average performances are presented in Table 1.

Table 1 shows that the ER-UCB outperforms the com-
pared methods. Furthermore, the ER-UCB can find the best
arm (arm 1) and allocate most of budget to it (maxRexi

i =
{1, 1, 1} and average Rexi

1 is 0.9). Because the C-UCB de-
pends only on mean observations to make decisions. It
wrongly allocates budget to arm 7 (maxRexi

i = {7, 7, 7}).
TheRexi

1 of ε-greedy is very unstable. It means ε-greedy can’t
find the best arm effectively. In general, the ER-UCB can ef-
fectively discover the best-arm and reasonably allocate bud-
get to exploration and exploitation in this synthetic problem.

4.2 Real-word AutoML tasks
We apply the ER-UCB to solve the real-world classification
tasks. We select 10 frequently-used algorithms as the can-
didates from SKLEARN [Pedregosa et al., 2011], including
DecisionTree (DT), AdaBoost (Ada), QuadraticDiscriminan-
tAnalysis (QDA), GaussianNB (GNB), BernoulliNB (BNB),
K-Neighbors (KN), ExtraTree (ET), PassiveAggressive (PA),
RandomForest (RF) and SGD. And 12 classification datasets

from UCI are selected as AutoML tasks. The evaluation cri-
terion of each configuration is the accuracy score. The com-
pared methods are C-UCB, ε-greedy (ε = 0.1), Softmax strat-
egy (τ = 0.1), random strategy and Joint. The trial budget is
1000. We set θ = 0.01, γ = 20 for the ER-UCB on all
datasets. The β is set according to the tasks, and showed
in Table 2. For each method and each dataset, we run ex-
periment for 3 times independently, and the average perfor-
mances of out experiment is presented. In addition, we apply
random search with 1000 trials to explore on every algorithm
candidate. According to (2), we can find out the best ground-
truth algorithm for the datasets.

The average performances of the compared methods on all
12 datasets are presented in Table 2. From Table 2, we can
get the following empirical conclusions:

• “No free lunch” has been proved again in those exper-
iments. The best performance algorithms are different
in different datasets. Particularly, tree-based ensemble
algorithms, e.g., AdaBoost, RandomForest, etc, show
the outstanding performance in most of datasets. It indi-
cates that the algorithm selection is necessary for mak-
ing search hyper-parameters easier.

• The cascaded algorithm selection and hyper-parameter
optimization is necessary for making the search prob-
lem easier to solve. Comparing the random strategy with
the Joint, the random strategy beats the Joint on most of
datasets (8/12). It indicates that the large search space
provides more difficult for optimization.

• It will mislead the strategy to select wrong algorithms
only according to the average performance. In Ta-
ble 2, the random strategy is not always bad in datasets.
The strategies, such as C-UCB, ε-greedy and Softmax,
which focus on the average performance are easy to se-
lect wrong algorithms which average performances are
good.

• The proposed ER-UCB bandit strategy can effectively
find out the best performance algorithm (B. Alg. is the
ground-truth algorithm on 9/12 datasets), and reason-
ably allocate the trial budget to the best algorithm (ER-
UCB gets the highest Rexi

i∗ on 12/12 datasets).



Table 2: The average performances on AutoML tasks including the best validation accuracy (V-Eval), the exploitation rate on the ground-
truth best algorithm (Rexi

i∗ ), the best-selected algorithm (B. Alg.) and the test accuracy (T-Eval). The items under the dataset name are the
ground-truth algorithm and the β setting for the ER-UCB. The number in bold means the best performance in compared methods.

Dataset Methods V-Eval Rexi
i∗ B. Alg. T-Eval Dataset Methods V-Eval Rexi

i∗ B. Alg. T-Eval

Balance
(SGD)
β = 0.5

ER-UCB .9025 .5677 SGD .9074

Car
(ET)

β = 0.6

ER-UCB .8729 .9800 ET .6937
C-UCB .8924 .1067 PA .8339 C-UCB .8690 .1173 RF .6416
ε-Greedy .8931 .0693 SGD .8227 ε-Greedy .8630 .0277 RF .6657
Softmax .9004 .1287 SGD .8809 Softmax .8620 .1163 DT .6551
Random .8978 .1097 SGD .8597 Random .8628 .1053 RF .6839

Joint .8978 - SGD .8994 Joint .8619 - RF .8604

Chess
(Ada)
β = 0.5

ER-UCB .9557 .6137 Ada .8515

Cylinder
(ET)

β = 0.5

ER-UCB .7356 .6043 ET .6117
C-UCB .9414 .1693 Ada .8860 C-UCB .7172 .1117 ET .5534
ε-Greedy .9492 .3593 Ada .7510 ε-Greedy .6528 .0443 ET .5006
Softmax .9414 .1290 PA .8229 Softmax .6866 .0977 ET .5749
Random .9464 .1070 PA .6999 Random .6977 .0990 ET .5534

Joint .9457 - SGD .8479 Joint .6531 - QDA .5687

Ecoli
(RF)

β = 0.5

ER-UCB .8763 .7013 RF .8904

Glass
(DT)
β = 0.4

ER-UCB .7540 .9716 RF .6740
C-UCB .8745 .2440 RF .8333 C-UCB .7265 .1520 RF .6370
ε-Greedy .8129 .3023 RF .8809 ε-Greedy .7163 .0017 RF .6148
Softmax .8728 .1630 RF .8809 Softmax .7197 .1180 RF .6148
Random .8695 .1037 RF .8762 Random .7247 .1027 RF .6666

Joint .8549 - RF .8714 Joint .7087 - RF .6444

Messider
(SGD)
β = 0.5

ER-UCB .7431 .5203 SGD .7330

Nursery
(Ada)
β = 0.5

ER-UCB .8200 .7640 Ada .6909
C-UCB .7297 .1133 SGD .7272 C-UCB .7871 .1370 RF .6688
ε-Greedy .7362 .0157 SGD .7272 ε-Greedy .7201 .0607 Ada .6457
Softmax .7402 .1163 SGD .7604 Softmax .8010 .1150 Ada .6238
Random .7406 .1027 SGD .7330 Random .8039 .1100 Ada .6631

Joint .7399 - SGD .7316 Joint .7884 - Ada .6304

Spambase
(Ada)
β = 0.7

ER-UCB .9328 .9853 Ada .9449

Statlog
(Ada)
β = 0.6

ER-UCB .9804 .9763 RF .9711
C-UCB .9298 .1757 Ada .9457 C-UCB .9779 .1950 RF .9696
ε-Greedy .9311 .7333 Ada .9741 ε-Greedy .9790 .8047 RF .9703
Softmax .9298 .1253 Ada .9471 Softmax .9768 .1397 RF .9660
Random .9306 .1057 Ada .9500 Random .9776 .1203 RF .9696

Joint .9290 - RF .9428 Joint .9793 - RF .9464

WDBC
(Ada)
β = 0.6

ER-UCB .9823 .9506 Ada .9681

Wilt
(Ada)
β = 0.8

ER-UCB .9827 .6206 RF .9433
C-UCB .9808 .1397 Ada .9710 C-UCB .9820 .1200 RF .9320
ε-Greedy .9816 .8757 Ada .9681 ε-Greedy .9813 .3567 Ada .9427
Softmax .9794 .1207 Ada .9739 Softmax .9819 .1097 RF .9267
Random .9794 .1060 Ada .9739 Random .9821 .1103 RF .9347

Joint .9794 - Ada .9594 Joint .9821 - DT .9320

5 Conclusion

This paper proposes the extreme-region upper confidence
bound (ER-UCB) bandit for the cascaded algorithm selec-
tion and hyper-parameter optimization. we employ the ran-
dom search in the hyper-parameter optimization level. The
level of algorithm selection is formulated as a multi-armed
bandit problem. The bandit strategies are applied to allocate
the limited search budget to the hyper-parameter optimization
processes on algorithm candidates. However, the algorithm
selection focuses on the algorithm with the maximum perfor-

mance but not the average performance. To tackle this, we
propose the extreme-region UCB (ER-UCB) strategy, which
selects the arm with the largest extreme region of the un-
derlying distribution. The theoretical study shows that the
ER-UCB has O (K lnn) extreme-region regret upper bound,
which has the same order with the classical UCB strategy.
The experiments on synthetic and real-world AutoML prob-
lems empirically verify that the ER-UCB can precisely dis-
cover the algorithm with the best performance, and reason-
ably allocate the trial budget to the algorithm candidates.
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