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Abstract

Perception and reasoning are two representative abilities of intelligence that are
integrated seamlessly during human problem-solving processes. In the area of
artificial intelligence (AlI), the two abilities are usually realised by machine learning
and logic programming, respectively. However, the two categories of techniques
were developed separately throughout most of the history of Al In this paper,
we present the abductive learning targeted at unifying the two Al paradigms in
a mutually beneficial way, where the machine learning model learns to perceive
primitive logic facts from data, while logical reasoning can exploit symbolic domain
knowledge and correct the wrongly perceived facts for improving the machine
learning models. Furthermore, we propose a novel approach to optimise the
machine learning model and the logical reasoning model jointly. We demonstrate
that by using abductive learning, machines can learn to recognise numbers and
resolve unknown mathematical operations simultaneously from images of simple
hand-written equations. Moreover, the learned models can be generalised to longer
equations and adapted to different tasks, which is beyond the capability of state-of-
the-art deep learning models.

1 Introduction

Human cognition [34] consists of two remarkable capabilities: perception and reasoning, where the
former one processes sensory information, and the latter one majorly works symbolically. These two
abilities function at the same time and affect each other, and they are often joined subconsciously by
humans, which is essential in many real-life learning and problem-solving procedures [34]].

Modern artificial intelligence (AI) systems exhibit both these abilities. Machine learning tech-
niques such as deep neural networks have achieved extraordinary performance in solving perception
tasks [19]; meanwhile, logic-based Al systems have succeeded in human-level reasoning abilities in
proving mathematical theorems [27] and in performing inductive reasoning concerning relations [25].

However, popular machine learning techniques can hardly exploit sophisticated domain knowledge
in symbolic forms, and perceived information is hard to include in reasoning systems. Even in recent
neural networks with the ability to focus on relations [31], enhanced memories and differentiable
knowledge representations [13], full logical reasoning ability is still missing—as an example, consider
the difficulties of understanding natural language [17]]. On the other hand, Probabilistic Logic Program
(PLP) [5] and Statistical Relational Learning (SRL) [[12] are aiming at integrating learning and logical
reasoning by preserving the symbolic representation. However, they usually require semantic-level
input, which involves pre-processing sub-symbolic data into logic facts [30].
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To leverage learning and reasoning more naturally, it is crucial to understand how perception and
reasoning affect each other in a single system. A possible answer is abduction [28]], or termed as
retro-production [33]]. It refers to the process of selectively inferring specific facts and hypotheses
that give the best explaination to observations based on background knowledge [23}14]], where the
“observations” are mostly sensory information, and “knowledge” is usually symbolic and structural.

An example of human abductive problem-solving is the decipher-

ment of Mayan hieroglyphs [[15], which reflects two remarkable

human intelligence capabilities: 1) visually perceiving individual CREATION DAY
numbers from hieroglyphs and 2) reasoning symbolically based on
the background knowledge about mathematics and calendars. Fig.[T]
shows a Mayan calendar discovered from the Palenque Temple of the
Cross Complex, it starts with the mythical creation date, followed
by a time period written in long count, and finished with a specific
date encoded by Tzolk’in and Haab’ calendars. Fig. 2] depicts the
records of breaking Fig. [T|by Charles P. Bowditch [2]]. He first iden-
tified some known numbers, and confirmed that the first and sixth
hieroglyphs are the same. Then, Bowditch tried substituting those
unknown hieroglyphs with visually similar numbers, as shown in
“Column 1” in Fig. E} Meanwhile, he calculated the Tzolk’in and
Haab’ values according to his conjectures and background knowl-
edge in Mayan calendars, as shown in “Column 2” in Fig. 2] Finally,
he got the correct answer “1.18.5.4.0, 1 Ahau 13 Mak” by observing
the consistency between his conjecture and calculation [2]. HAAB: 13 Mak
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Inspired by abductive problem-solving, we present the Abductive
Learning (ABL), a new approach towards bridging machine learning
and logical reasoning. In abductive learning, a machine learning
model is responsible for interpreting sub-symbolic data into primitive
logical facts, and a logical model can reason about the interpreted
facts based on some first-order logical background knowledge to obtain the final output. The primary
difficulty lies in the fact that the sub-symbolic and symbolic models can hardly be trained together.
More concretely: 1) it does not have any ground-truth of the primitive logic facts — e.g., the correct
numbers in Fig. [ — for training the machine learning model; 2) without accurate primitive logic
facts, the reasoning model can hardly deduce the correct output or learn the right logical theory.

Figure 1: A Mayan calendar.
The coloured boxes and “?” cor-
respond to unknown numbers.

Our presented Abductive Learning (ABL) tries to address these
challenges with logical abduction [[18,[7]] and consistency opti-
misation. Given a training sample associated with a final output,
logical abduction can conjecture about the missing information
— e.g., candidate primitive facts in the example, or logic clauses
that can complete the background knowledge — to establish
a consistent proof from the sample to its final output. The
abduced primitive facts and logic clauses are then used for
training the machine learning model and stored as symbolic
knowledge, respectively. Consistency optimisation is used for
maximising the consistency between the conjectures and the
background knowledge. To solve this highly complex problem,
we transform it into a task that searches for a function guessing
about possibly mistaken primitive facts.

Figure 2: Bowditch’s decipherment of

B f the difficulty of collecting M hieroglyph
Fig. [T](he wrote “Mak” as “Mac™) [2]. ecause of the difficulty of collecting Mayan hieroglyph data,

. . " we designed a similar task — the handwritten equation deci-
Numbers in the vertical boxes are h1§ herment les — f . ts. The task is o 1 .
guesses (Column 1) to the unknown hi- p >Nt puzzies — 1or experments. Fhe task 15 1o fearn image
eroglyphs in Fig. [T The dashed yellow ecognition (per.ceptlon) and. math.ematlcal operations fqr calcu-
box marks the consistent result accord- lating the equations (reasoning) simultaneously. Experimental
ing to his calculation (Column 2). results show that ABL generalise better than state-of-the-art
deep learning models and can leverage learning and reasoning
in a mutually beneficial way. Further experiments on a visual n-queens task shows that the ABL
framework is flexible and can improve the performance of machine learning by taking advantage of
classical symbolic Al systems such as Constraint Logic Programming [[16].



2 Related Work

As one of the holy grail problems in Al, combining machine learning and logical reasoning has
drawn much attention. Most existing methods try to combine the two different systems by making
one side to subsume the other. For example, Fuzzy logic [41], Probabilistic Logic Programming [5]]
and Statistical Relational Learning [[12] have been presented to empower traditional logic-based
methods to handle uncertainty; however, most of them still require human-defined symbols as
input [30]]. Probabilistic programming [35} 21} 20] is presented as an analogy to human cognition
to enable probabilistic reasoning with sub-symbolic primitives, yet the correspondence between
the sub-symbolic primitives and their symbolic representations used in programming is assumed to
already exist rather than assuming that it should be learned.

Another typical approach is to use deep neural networks or other differentiable functional calculations
to approximate symbolic calculi. Some of them try to translate logical programs into neural networks,
e.g. KBANN [38]] and Artur Garcez’s works on neural-symbolic learning [[10} [9]; others directly
replace symbolic computing with differentiable functions, e.g., differential programming methods
such as DNC and so on attempt to emulate symbolic computing using differentiable functional
calculations [13} 11} 1} 16]. However, few of them can make full-featured logical inferences, and they
usually require large amounts of training data.

Different from the previous works, ABL tries to bridge machine learning and logical reasoning in a
mutually beneficial way [42]. The two components perceive sub-symbolic information and make
symbolic reasoning separately but interactively. The logical abduction with consistency optimisation
enables ABL to improve the machine learning model and learn logical theory in a single framework.

3 Abductive Learning

In this section, we present the ABL approach. Notations and the problem formulation are firstly
introduced, followed by the detailed description and the presented optimisation approach.

3.1 Problem Setting

The task of abductive learning can be formalised as follows. The input of abductive learning consists
of a set of labelled training data D = {{(x1,y1),..., (€, ys)} about a target concept C' and a
domain knowledge base B, where x; € X is the input data, y; € {0, 1} is the label for x; of target
concept C, and B is a set of first-order logical clauses. The target concept C' is defined with unknown
relationships amongst a set of primitive concepts symbols P = {p1, ..., p,} in the domain, where
each p;, is a defined symbol in B. The target of abductive learning is to output a hypothesis model
H = pU Ag, in which:

e p: X — P isamapping from the feature space to primitive symbols, i.e., it is a perception
model formulated as a conventional machine learning model;

e A is a set of first-order logical clauses that define the target concept C' with B, which is
called knowledge model.

The hypothesis model should satisfy:
V{z,y) € D(BUA.Up(x) = y). (D)

Where “=" stands for logical entailment.

As we can observe from Eq.[T] the major challenge for abductive learning is that the perception model
p and the knowledge model A¢ are mutually dependent: 1) To learn A¢, the perception results
p(x) — the set of groundings of the primitive concepts in & — is required; 2) To obtain p, we need
to get the ground truth labels p(x) for training, which can only be logically derived from B U A
and y. When the machine learning model is under-trained, the perceived primitive symbols p(x) is
highly possible to be incorrect; therefore, we name them pseudo-groundings or pseudo-labels. As a
consequence, the inference of Ac based on Eq. [T would be inconsistent; when the knowledge model
A is inaccurate, the logically derived pseudo-labels p(x) might also be wrong, which harms the
training of p. In either way, they will interrupt the learning process.



Figure 3: The structure of ABL framework.
3.2 Framework

The ABL framework [42] tries to address these challenges by connecting machine learning with an
abductive logical reasoning module and bridging them with consistency optimisation. Fig. [3]shows
the outline of the framework.

Machine learning is used for learning the perception model p. Given an input instance x, p
can predict the pseudo-labels p(x) as groundings of possible primitive concepts in . When the
pseudo-labels contain mistakes, the perception model needs to be re-trained, where the labels are the
revised pseudo-labels r(x) returned from logical abduction.

Logical abduction is the logical formalisation of abductive reasoning. Given observed facts
and background knowledge expressed as first-order logical clauses, logical abduction can abduce
ground hypotheses as possible explanations to the observed facts. A declarative framework in Logic
Programming that formalises this process is Abductive Logic Programming (ALP) [[18]. Formally, an
abductive logic program can be defined as follows:

Definition 1 [18]] An abductive logic program is a triplet (B, A, IC), where B is background
knowledge, A is a set of abducible predicates, and IC' is the integrity constraints. Given some
observed facts O, the program outputs a set A, of ground abducibles of A, such that:

e BUAEO,
e BUAEIC,
o B U A is consistent.

Intuitively, the abductive explanation A serves as a hypothesis that explains how an observation O
could hold according to the background knowledge B and the constraint /C'.

Considering the formulation in Eq.[I] ABL takes the instance labels about the final concept as observed
facts, and takes the hypothesis model H = A U p as abducibles. Given a fixed Ac, ABL can
abduce p(X) according to B and Y'; when the perception model p has been determined, ALP is able
to abduce the knowledge model A¢ according to BUp(X)UY. Here we use p(X) = U, {p(z:)}
to represent the pseudo-labels of all the instances X = [J;_,{#;}, and Y = |J]_,{v;} are the
final concept labels corresponding to X . Therefore, we can denote the abduced knowledge model
conditioned by BU p(X) and Y as A¢(BUp(X),Y).

3.3 Optimisation

The objective of ABL is to learn a hypothesis consistent with background knowledge and training
examples. More concretely, ABL tries to maximise the consistency between the abduced hypotheses
H with training data D = {(x;, y;)}!, given background knowledge B:

max Con(H U D; B), (2)
H=pUA¢

where Con(H U D; B) stands for the size of subset D¢ C D which is consistent with H = pU Ag
given B. It can be defined as follows:

HUD;B) = D

Con(H U D; B) Jnax, | D, | 3)
s.t. Y{(xi,y:) € Do (BUAcUp(z;) = i) -

To solve Eq.[2] ABL tries to optimise A¢ and p alternatively.

During the ¢-th epoch, when the perception model p’ is under-trained, the pseudo-labels pt(X) could
be incorrect and make logical abduction fail to abduce any consistent A¢ satisfying Eq.[I] resulting
in Con(H U D; B) = 0.



Therefore, ABL needs to correct the wrongly perceived pseudo-labels to achieve consistent abductions,
such that AL, can be consistent with as many as possible examples in D. Here we denote the
pseudo-labels to be revised as §[p’(X)] C p'(X), where § is a heuristic function to estimate which
pseudo-labels are perceived incorrectly by current machine learning model p! — in analogy to
Bowditch’s power of identifying the misinterpreted hieroglyphs (see Fig. [2).

After removing the incorrect pseudo-labels marked by the § function, ABL can apply logical abduction
to abduce the candidate pseudo-labels to revise d[p’(X)] together with AL, by considering:

BUpt(X)—5[pt(X)}UA5[pt(X)]UAtC ':Y 4)

Where p'(X) — 6[p"(X)] are the remaining “correct” pseudo-labels determined by 6, and At (x))
are the abduced pseudo-labels for revising §[p*(X)].

Theoretically, § can simply mark all pseudo-labels as “wrong”, i.e., letting 6[p*(X)] = p'(X) and
ask logical abduction to do all the learning jobs. In this case, ABL can always abduce a consistent
Aspp(x) U Al satisfying Eq. 4] However, this means that the logical abduction have to learn the
knowledge model Ao without any influence from the perception model p and the raw data X. It
not only results in an exponentially larger search space for the abduction, but also breaks the link
between logical reasoning and actual data. Consequently, ABL chooses to restrict the revision to
be not too far away from the percieved results, by limiting | §[p*(X)] |< M, where M defines the
step-wise search space on the scale of the abduction and is sufficient to be set a small number.

Therefore, when pt is fixed, we can transform the optimisation problem of A into an optimisation
problem of function J, and reformulate Eq. [2|as follows:

max Con(Hs U D), 5)
st 8] |< M

where Hs = p'(X) — 0[p"(X)] U Asppe(x)) U Al is the abduced hypothesis defined by Eq.
Although this objective is still non-convex, optimising 0 instead of Ao allows ABL to revise and
improve the hypothesis even when p? is not optimal.

The heuristic function § could take any form as long as it can be easily learned. We present to solve
it with derivative-free optimisation [40], which is a flexible framework for optimising non-convex
objectives. As to the subset selection problem in Eq.[5] we present to solve it with greedy algorithms.

After obtained the § and A%,, ABL can directly apply logical abduction to obtain the revised pseudo-
labels 7(X) = p'(X) — d[p"(X)] U Asppe(x))» which is used for re-training the machine learning
model. This procedure can be formulated as follows:

p't1 = argmin Z Loss (p(x:), (i) , ©

p i=1

where Loss stands for the loss function for machine learning, r(x;) € 7(X) is the set of revised
pseudo-labels for instance x; € X.

In short, ABL works as follows: Given the training data, an initialised machine learning model is
used for obtaining the pseudo-labels, which are then treated as groundings of the primitive concepts
for logical reasoning to abduce A¢. If the abduction terminated due to inconsistency, the consistency
optimisation procedure in Eq. [§]is called to revise the pseudo-labels, which are then used for re-
training the machine learning model.

4 Implementation

To verify the effectiveness of the presented approach, we designed the handwritten equation decipher-
ment tasks, as shown in Fig.[d]and applied ABL to solve them.

The equations for the decipherment tasks consist of sequential pictures of characters. The equations
are constructed from images of symbols (“0”, “1”, “+” and “="), and they are generated with unknown
operation rules, each example is associated with a label that indicates whether the equation is correct.
A machine is tasked with learning from a training set of labelled equations, and the trained model is
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Figure 4: Handwritten equation decipherment puzzle: a computer should learn to recognise the symbols and
figure out the unknown operation rules (“xnor” in this example) simultaneously.

Figure 5: The structure of our ABL implementation.

expected to predict unseen equations correctly. Thus, this task demands the same ability as a human
jointly utilising perceptual and reasoning abilities in Fig.

Fig. 5] shows the architecture of our ABL implementation, which employs a convolutional neural
network (CNN) [22] as the perception machine learning model. The CNN takes image pixels as
input and is expected to output the symbols in the image. The symbol output forms the pseudo-labels.
The logical abduction is realised by an Abductive Logic Program implemented with Prolog. The
consistency optimisation problem in Eq.[5]is solved by a derivative-free optimisation tool RACOS[40].

Before training, the domain knowledge—written as a logic program—is provided to the ALP as
background knowledge B. In our implementation, B involves only the structure of the equations and
a recursive definition of bit-wise operations. The background knowledge about equation structures
is a set of definite clause grammar (DCG) rules recursively define that a digit is a sequence of “0”
and “1”, and each equation share the structure of X+Y=Z, although the length of X, Y and Z may be
varied. The knowledge about bit-wise operations is a recursive logic program that reversely calculate
X+Y, i.e., it operates on X and Y digit-by-digit and from the last digit to the first. The logic programs
defining this background knowledge are shown in the supplementary.

Remark Please notice that, the specific rules for calculating the operations are undefined in B,
i.e., results of “0+0”, “0O+1” and “1+1” could be “0”, “1”, “00”, “01” or even “10”. The missing
calculation rules form the knowledge model A, which are required to be learned from the data.

After training starts, the CNN will interpret the images to the symbolic equations constructed by
pseudo-labels “0”, “1”, “+” and “=". Because the CNN is untrained, the perceived symbols are
typically wrong. In this case, ALP cannot abduce any A that is consistent with the training data
according to the domain knowledge, i.e., no calculation rules can satisfy the perceived pseudo-labels
with the associated labels. To abduce the most consistent A, ABL learns the heuristic function ¢ for
marking possible incorrect pseudo-labels.

For example, in the beginning, the under-trained CNN is highly likely to interpret the images as
a pseudo-grounding eqp=[1,1,1,1,1], which is inconsistent with any binary operations since it
has no operator symbol. Observing that ALP cannot abduce a consistent hypothesis, RACOS will
learn a § that substituting the “possibly incorrect” pseudo-labels in eqq with blank Prolog variables,
e.g.,eqi=[1,_,1,_,1]. Then, ALP can abduce a consistent hypothesis involving the operation rule
op(1,1,[1]) and a list of revised pseudo-labels eq; ’=[1,+,1,=,1], where the latter one is used
for re-train the CNN, helping it distinguish images of “+” and “=" from other symbols.

The complexity of the optimisation objective in Eq.[3]is very high, which usually makes it infeasible
to evaluate the entire training set D during optimisation. Therefore, ABL performs abduction and
optimisation for 7' times, each time using a subsample D; C D for training. The locally consistent
reasoning model A% abduced in each iteration are kept as a relational feature.



equation instance label % § equation instance label
[OIH[O[=[O)] Posiive ?
< <
2 [O[H/[=[1] Postve 3 ?
[m] @)
L[+ O]=[0] Negave | | ?
equation instance label % § equation instance bl
x| z|¢|TT|e<| Positive 2
E || IN[TCIN| Positive E ?
IN[=[e<[TT[ox| Negaive | ?
(a) Training examples. (b) Test examples.
Figure 6: Data examples for the handwritten equations decipherment tasks.
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Figure 7: Experimental results of the DBA (left) and RBA (right) tasks.

After the CNN converged or the algorithm meets the iteration limit, all (x;, y;) € D are proposition-
alised to binary feature vectors by the relational features. For every input equation x;, its pseudo-labels
will be evaluated by all the relational features to produce a binary vector w; = [u;1, . . ., u;r|, where

'u,--—{l) BUA%Up(mi)#yi,
ij — .
0, BUAGUp(x;) b i

Therefore, the original dataset D = {(x;, y;)} can be transforms into a new dataset D' = {{u;, y;)},
from which a decision model is learned to handle the noises introduced by subsampling.

)

S Experiments

Dataset We constructed two image sets of symbols to build the equations shown in Fig.[6] The
Digital Binary Additive (DBA) equations were created with images from benchmark handwritten
character datasets [22}[36], while the Random Symbol Binary Additive (RBA) equations were con-
structed from randomly selected characters sets of the Omniglot dataset [21] and shared isomorphic
structure with the equations in the DBA tasks. In order to evaluate the perceptual generalisation
ability of the compared methods, the images for generating the training and test equations are dis-
joint. Each equation is input as a sequence of raw images of digits and operators. The training and
testing data contains equations with lengths from 5 to 26. For each length it contains 300 randomly
generated equations, in a total of 6,600 training examples. This task has 4! = 24 possible mappings
from the CNN outputs to the pseudo-label symbols, and 4% = 64 possible operation rule sets (with
commutative law), so the search space of logical abduction contains 1536 different possible Ac.
Furthermore, the abduction for revising pseudo-labels introduces 2 more candidates. Considering
the small amount of training data (especially for the ABL-short setting with only 1200 training
examples), this task is not trivial.

Compared methods

e ABL: The machine learning model of ABL consists of a two-layer CNN and a two-layer
multiple-layer perceptron (MLP) followed by a softmax layer; the logical abduction will
keep 50 calculation rule sets of bit-wise operations set as relational features; The decision
model is a two-layer MLP. Two different settings have been tried: the ABL-all that uses all
training data and the ABL-short that only uses training equations of lengths 5-8.

o Differentiable Neural Computer (DNC) [13]]: This is a deep neural network associated
with memory, and has shown its potential on symbolic computing tasks [[13]].
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Figure 8: Training accuracy and results of logical abductions.
10 Perception Transfer 10 Knowledge Transfer
09 09

0.8
0.8

0.7
0.7

Accuracy
Accuracy

0.6
0.6

0.5

ABL with Perception Transfer ABL with Knowledge Transfer
04 ABL without Perception Transfer 0.5 ABL without Knowledge Transfer
0.3 0.4

2 4 6 8 10 12 14 16 18 5 10 15 20 25 30 35
Iteration Iteration

Figure 9: Results of the cross-task transfer experiments.

o Transformer networks [39]]: This is a deep neural network enhanced with attention, and
has been verified to be effective on many natural language processing tasks.

e Bidirectional Long Short-Term Memory Network (BiLSTM) [32]: This is the most
widely used neural network for learning from sequential data.

To handle image inputs, the BILSTM, DNC and Transformer networks also use the same structured
CNN like the ABLs as their input layers. All the neural networks are tuned with a held-out validation
set randomly sampled from the training data. All the experiment are repeated for 10 times and
performed on a workstation with a 16 core Intel Xeon CPU @ 2.10GHz, 32 GB memory and a Nvidia
Titan Xp GPU.

We also carried out a human experiment. Forty volunteers were asked for classifying images of
equations sampled from the same datasets. Before taking the quiz, the domain knowledge about the
bit-wise operation was provided as hints, but specific calculation rules are not available — just like
the setting for ABL. Instead of using the precisely same setting as the machine learning experiments,
we gave the human volunteers a simplified version, which only contains 5 positive and 5 negative
equations with lengths ranging from 5-14.

Results Fig.[/|shows that on both tasks, the ABL-based approaches significantly outperform the
compared methods, and ABL correctly learned the symbolic rules defining the unknown operations.
All the methods performed better on the DBA tasks than RBA, because the symbol images in the
DBA task are more easily distinguished. The performance of ABL-all and ABL-short have no
significant difference, and the performance of the compared approaches degenerates quickly toward
the random-guess line as the length of the testing equations grows, while the ABL-based approaches
extrapolates better to the unseen data. An interesting result is that the human performance on the
two tasks are very close, and both of them are worse than that of ABL. According to the volunteers,
they do not suffer from distinguishing different symbols, but machines are better in checking the
consistency of logical theories — in which people are prone to make mistakes. Therefore, machine
learning systems should make use of their advantages in logical reasoning.

Inside the learning process of ABL, although no ground-truth labels exist for the images of digits and
operators, the CNN training accuracy did increase during the learning process, as shown by Fig. [8a
On the other hand, Fig. [8b] shows the relationship between ABL’s overall equation classification
accuracy, image perception accuracy and results of logical abductions on the RBA tasks, where red
dots indicate successful abductions and the blue dots signify failures. This result shows that the
training of CNN and the logic-based learning of unknown operation rules indeed mutually benefited
each other during the training process.



Cross-task Transfer We also carried experiments on transferring the learned CNN and knowledge
model (i.e., the relational features Atc together with the decision MLP) to different tasks.

The first task transfers the CNN learned from the DBA task to logical exclusive-or equations
constructed by the same characters. As shown in Fig.[9] although the final performances of ABLs
with and without perception transfer are comparable, the convergence of the ABL with perception
transfer is much faster. The second task transfers the learned knowledge model from RBA to DBA
domains. As depicted in the right side of the same figure, ABL with knowledge transfer converged
significantly faster than the compared method. However, comparing the results between knowledge
transfer and perception transfer, we can see that machine learning from sub-symbolic data without
explicitly providing the labels is considerably more difficult.

6 Discussion

As an important cognitive model in psychology, abduction has already attracted some attention in
artificial intelligence [[14} [10], while most of existing works combining abduction and induction
only consider symbolic domains [37,[7,129]. There are also some works use abduction to enhance
machine learning [4, [24], however, they need to adapt logical background knowledge into functional
constraints or use particularly designed operators to support gradient descent during learning and
reasoning, which relax logical inference into a different continuous optimisation problem.

On the other hand, ABL utilises logical abduction and trial-and-error search to bridge machine
learning with original first-order logic, without using gradient. As the result, ABL inherits the full
power of first-order logical reasoning, e.g., it has the potential of abducing new first-order logical
theories that are not in the background knowledge [26]. Consequently, many existing symbolic Al
techniques can be directly incorporated without any modification.
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Figure 10: The extended n-queens experiments, n € {2..10}. each board. In this task, we imple-

mented logical abduction with Prolog-

based ALP and two popular constraint logic programming [16] systems: Constraint Handling

Rules [8] and CLP(FD) [3]]. Given recursive first-order logical background knowledge about chess
moves, the ABL-based approaches achieved better results comparing to CNN and Bi-LSTM.

7 Conclusion

In this paper, we present the abductive learning, where machine learning and logical reasoning can
be entangled and mutually beneficial. Our initial implementation of the ABL framework shows that
it is possible to simultaneously perform sub-symbolic machine learning and full-featured first-order
logical reasoning that allows recursion.

This framework is general and flexible. For example, the perception machine learning model could
be a pre-trained model rather than to be learned from scratch; The task for machine learning could
be semi-supervised rather than having no label at all; The logical abduction could involve second-
order logic clauses to enable abducing recursive clauses and automatically inventing predicates [26].
We hope that the exploration of abductive learning will help pave the way to a unified framework
accommodating learning and reasoning.
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A Background Knowledge for Handwritten Equations Decipherment

In this section, we present the background knowledge of the Handwritten Equations Decipherment
tasks in Prolog language. Following the convention of logic programming, we use words starting with
capital letters and underline dash to represent variables, e.g., “Y”, “Pseudo_Label” and “_"; and
use numbers and words starting with lowercase to represent constant, predicate an function names,

e.g., “0”, “+” and “digit/1”, where the number behind the slash means the arity of the predicate or
function. The sentences initiated with “%” are inline comments.

Table 1: Background knowledge about equation structure.

% Define a single digit

digit(0).

digit(1).

% Recursively define digits

digits([D]) --> [D], digit(D)

digits([DIT]) --> [DI, !, digits(T), digit(D)
digits(X) :- phrase(digits(X), X).

% Recursively define equations.
% Since the pseudo-labels may contain missing values (variables),.
% we define eq_args as non operator symbols (including variables).
eq_arg([D]) --> [D], mnot(D == ’+’), not(D == ’=’)
eq_arg([DIT]) -->

[D], !, eq_arg(T), mnot(D == ’+’), not(D == ’=?)
equation(eq(X, Y, Z)) -->

eq_arg(X), [+], eq_arg(Y), [=], eq_arg(Z).
parse_eq(Pseudo_Labels, Eq) :-

phrase(equation(Eq), Pseudo_Labels).

Tab. [T] illustrates the background knowledge about digits and equation structures. The predicate
digit/1 defines the two numerical pseudo-labels (primitive concepts) “0” and “1”, the other two,
“+” and “=”, are defined in the Definitive Clause Grammar (DCG) rule of equation/1.

The predicates in red colour are recursive DCG rules, defining the pattern of corresponding concepts.
For example, the rules about digits/1 indicates that any list longer than 1 and constructed by digit
are “digits”.

The eq_arg/1 predicate simply defines what are the argument of equation/1. Because the input
pseudo-labels may contain missing values (i.e., the “incorrect” pseudo-labels that have been removed
by the learned heuristic § function in Eq.[5), the argument could be any list composed by digit and
Prolog’s blank variable “_", for example, “10010” and “_101_1".

The DCG rule for equation/1 defines that any equation has the structure of eq(X,Y,Z), forming a
pseudo-label list “[X], [+], [Y], [=], [Z]”, in which X, Y and Z are instances of eq_arg/1.

The predicates in blue simply parses a list given corresponding concepts defined DCG rules, e.g.,
parse_eq/2 takes a list of pseudo-labels as input, and outputs the parsed equation structure
eq(X,Y,2).

Parsing a sequence with DCG rules is also a kind of abduction, in which the DCG rules are background
knowledge, the input list is observation, and the parsed results are abduced explanations. Therefore,
there could be multiple parsing results. For example, parse_eq([A,B,C,D,E,F,G] ,Eq) will output
Eq=eq([A,B], [D], [F,G]) oreq([A], [C,D], [F,G]), where C and E are abduced to be “+” and
in the first case; B and E are abduced to be “+” and “=" in the second case.

w_9

Tab. 2] shows the background knowledge about bit-wise calculation, which calculates the parsed
equation eq(X,Y,Z) and abduces the missing pseudo-labels in eq(X,Y,Z) as well as the missing
operation rules for defining “+”. In our implementation, the missing operation rules to be learned,
i.e. the A¢ is defined with “my_op/3”. For example, a complete rule set defining arithmetic
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Table 2: Background knowledge about bit-wise calculation.

% Abductive bit-wise calculation with given pseudo-labels,
% this procedure abduces missing pseudo-labels together with
% unknown operation rules.
calc(Rules, Pseudo) :-
calc([], Rules, Pseudo).
calc(RulesO, Rulesl, Pseudo) :-
parse_eq(Pseudo, eq(X,Y,Z2)),
bitwise_calc(RulesO, Rulesl, X, Y, Z).

% Bit-wise calculation that handles carrying

bitwise_calc(Rules, Rulesl, X, Y, Z) :-
reverse (X, X1), reverse(Y, Y1), reverse(Z, Z1),
bitwise_calc_r(Rules, Rulesl, X1, Y1, Z1),
maplist(digits, [X,Y,Z]).

% Recursively calculate back-to-front

bitwise_calc_r(Rs, Rs, [1, Y, Y).

bitwise_calc_r(Rs, Rs, X, [1, X).

bitwise_calc_r(Rules, Rulesl, [D1|X], [D2lY], [D31Z]) :-
% Abduces Ac (my_op/3) during the calculation.
abduce_op_rule(my_op([D1], [D2],Sum), Rules, Rules2),
% Handling carry
((Sum = [D3], Carry = [1); (Sum = [C,D3], Carry = [C])),
bitwise_calc_r(Rules2, Rules3, X, Carry, X_carried),
bitwise_calc_r(Rules3, Rulesl, X_carried, Y, Z).

binary addition that is going to be learned should contain my_op (0,0, [0]), my_op(0,1, [1]),
my_op(1,0,[1]) and my_op(1,1,[1,0]). However, in the experiments the ABL sometimes
output my_op(1,1,[1]), my_op(0,1,[0]), my_op(1,0,[0]) and my_op(0,0, [0,1]), which
flips the semantics of 0 and 1.

The calc/2 takes a list of pseudo-labels as input, and outputs the possible A Rules and the missing
pseudo-labels that have been removed by the § function. calc/3 function is a more flexible version
of calc/2, which is able to take some already abduced operation rules RulesO in to consideration.

The bitwise_calc/5 defines the abductive bit-wise calculation process. Given an initialised
operation rule set RulesO (usually the empty ruleset “[]” according to calc/2), it abduces the
consistent operation rule set Rules1 with revised pseudo-labels X, Y and Z. Firstly, it calls the
reverse/2 predicate to reverse the equation arguments, then calls the reverse bit-wise calculation
predicate bitwise_calc_r/5 to complete the abduction, and finally check if the abduced pseudo-
label forms legitimate digits.

The bitwise_calc_r/5 predicate calculates X+Y to Z bit by bit. It terminates when X or Y runs
out of digits and fails if there exists no consistent operation rules with pseudo-labels. During the
calculation, it calls the predicate abduce_op_rule/3 from the Abductive Logic Program (shown in
Tab. [3) to abduce consistent operation rules. It also allows 1-digit carry in its calculation.

Tab. [3] defines the Abductive Logic Program (ALP) for the logical abduction in our handwritten
equation decipherment tasks.

abduce/2 is ABL’s main predicate for making abduction. Given a set of examples that has been
interpreted by the perception machine learning model (and with the learned ¢ function marking
out the incorrect pseudo-labels), abduce/2 will try to abduce a A¢ and the revised pseudo-labels
consistent with all the background knowledge and the labels about the target concept of the examples.

The abduce/3 predicate processes examples sequentially. By abductively calculating the examples
one-by-one, it not along abduces the missing pseudo-labels in each example, but also continuously
put consistent bit-wise operation rule in Ao by calling the calc/3 predicate defined in Tab.
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Table 3: The Abductive Logic Program for handwritten equation decipherment.

% Main predicate for peforming abduction
% ‘‘Examples’’ are the pseudo-labels of a set of examples,
% ‘“Delta_C’’ is the abduced Ag.
abduce (Examples, Delta_C) :-
abduce (Examples, [], Delta_C).
abduce([], Delta_C, Delta_C).
abduce ([E|Examples], Delta_CO, Delta_C1) :-
calc(Delta_CO, Delta_C2, E),
abduce(Exs, Delta_C2, Delta_C1).

% Getting an existed (already abduced) operation rule from history.
abduce_op_rule(R, Rules, Rules) :-
member (R, Rules).
% Abduce a new rule.
abduce_op_rule(R, Rules, [R|Rules]) :-
op_rule(R),
% integrity constraints.
valid_rules(Rules, R).

% Integrity Constraints on operation rule set, forbidding
% redundant rules and inconsistent rules.
valid_rules([], ).
valid_rules([my_op([X1],[Y1],_ ) IRs], my_op([X]1,[Y],Z)) :-
not ([X,Y] = [X1,Y11),
not ([X,Y] = [Y1,X1]),
valid_rules(Rs, my_op([X],[Y],Z)).
valid_rules([my_op([Y], [X],Z) |Rs], my_op([X],[Y],Z)) :-
not(X =Y),
valid_rules(Rs, my_op([X1,[Y],Z)).

% Abducing single operation rule.
op_rule(my_op([X], [Y],[Z])) :- digit(X), digit(Y), digit(Z).
op_rule(my_op([X],[Y], [Z1,22])) :- digit(X), digit(Y), digits([Z1,Z2]).

The abduce_op_rule/3 called by bitwise_calc_r/5 can abduce one operation rule in each call.
Before doing the abduction, it first returns an already abduced operation rule R in Rules and let
bitwise_calc_r/5 to determine if it is consistent with current calculation. If a history R already
meets the requirement then it does nothing; otherwise it will try to abduce a my_op/3 rule defined by
op_rule/1 and return it to the calculation process of bitwise_calc_r/5.

During the abduction process, abduce_op_rule/3 will call an integrity constraint valid_rules/2
to test if the newly abduced R is consistent with previously abduced rule set Rules. Basically, the
integrity constraint says that:

1. No redundant operation rules, i.e., there shouldn’t be two separate rules defining the same
operation X+Y;

2. No conflict operation rules according to the commutative law, i.e., X+Y=Y+X.

B Errors cases of ABL in the experiments

The failures of ABL-based systems are mostly caused by perception errors. Fig.[TT|shows one of the
failure examples in the RBA task:

The ground-truth symbols in the equation is “110010+11100110=100011000, but the perceived
result by ABL is “110010+11100110110001=000", causing a classification failure. After examined
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Figure 11: An example of the wrongly predicted equations during test.

the experimental results, we found that almost all of the learned operation rule sets Ag (relational
features) are correct, and the equation classification errors are only caused by the incorrectly perceived
pseudo-labels. In fact, Fig. [8b|has shown that the performance of ABL relies much on perception
accuracy. More interestingly, according to the human volunteers, the failures made by them are
majorly caused by reasoning errors, i.e. the difficulties in finding consistent operation rules, which is
opposite to ABL.

16



	Introduction
	Related Work
	Abductive Learning
	Problem Setting
	Framework
	Optimisation

	Implementation
	Experiments
	Discussion
	Conclusion
	Background Knowledge for Handwritten Equations Decipherment
	Errors cases of ABL in the experiments

