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Abstract

Selecting the optimal subset from a large set of variables is a fundamental problem
in various learning tasks such as feature selection, sparse regression, dictionary
learning, etc. In this paper, we propose the POSS approach which employs evo-
lutionary Pareto optimization to find a small-sized subset with good performance.
We prove that for sparse regression, POSS is able to achieve the best-so-far the-
oretically guaranteed approximation performance efficiently. Particularly, for the
Exponential Decay subclass, POSS is proven to achieve an optimal solution. Em-
pirical study verifies the theoretical results, and exhibits the superior performance
of POSS to greedy and convex relaxation methods.

1 Introduction

Subset selection is to select a subset of size k from a total set of n variables for optimizing some
criterion. This problem arises in many applications, e.g., feature selection, sparse learning and
compressed sensing. The subset selection problem is, however, generally NP-hard [13, 4]. Previous
employed techniques can be mainly categorized into two branches, greedy algorithms and convex
relaxation methods. Greedy algorithms iteratively select or abandon one variable that makes the
criterion currently optimized [9, 19], which are however limited due to its greedy behavior. Convex
relaxation methods usually replace the set size constraint (i.e., the `0-norm) with convex constraints,
e.g., the `1-norm constraint [18] and the elastic net penalty [29]; then find the optimal solutions to
the relaxed problem, which however could be distant to the true optimum.

Pareto optimization solves a problem by reformulating it as a bi-objective optimization problem
and employing a bi-objective evolutionary algorithm, which has significantly developed recently in
theoretical foundation [22, 15] and applications [16]. This paper proposes the POSS (Pareto Opti-
mization for Subset Selection) method, which treats subset selection as a bi-objective optimization
problem that optimizes some given criterion and the subset size simultaneously. To investigate the
performance of POSS, we study a representative example of subset selection, the sparse regression.

The subset selection problem in sparse regression is to best estimate a predictor variable by linear
regression [12], where the quality of estimation is usually measured by the mean squared error, or
equivalently, the squared multiple correlation R2 [6, 11]. Gilbert et al. [9] studied the two-phased
approach with orthogonal matching pursuit (OMP), and proved the multiplicative approximation
guarantee 1 + Θ(µk2) for the mean squared error, when the coherence µ (i.e., the maximum cor-
relation between any pair of observation variables) is O(1/k). This approximation bound was later
improved by [20, 19]. Under the same small coherence condition, Das and Kempe [2] analyzed the
forward regression (FR) algorithm [12] and obtained an approximation guarantee 1−Θ(µk) forR2.
These results however will break down when µ ∈ w(1/k). By introducing the submodularity ratio
γ, Das and Kempe [3] proved the approximation guarantee 1 − e−γ on R2 by the FR algorithm;
this guarantee is considered to be the strongest since it can be applied with any coherence. Note
that sparse regression is similar to the problem of sparse recovery [7, 25, 21, 17], but they are for
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different purposes. Assuming that the predictor variable has a sparse representation, sparse recovery
is to recover the exact coefficients of the truly sparse solution.

We theoretically prove that, for sparse regression, POSS using polynomial time achieves a mul-
tiplicative approximation guarantee 1 − e−γ for squared multiple correlation R2, the best-so-far
guarantee obtained by the FR algorithm [3]. For the Exponential Decay subclass, which has clear
applications in sensor networks [2], POSS can provably find an optimal solution, while FR cannot.
The experimental results verify the theoretical results and exhibit the superior performance of POSS.

We start the rest of the paper by introducing the subset selection problem. We then present in
three subsequent sections the POSS method, its theoretical analysis for sparse regression, and the
empirical studies. The final section concludes this paper.

2 Subset Selection

The subset selection problem originally aims at selecting a few columns from a matrix, so that the
matrix is most represented by the selected columns [1]. In this paper, we present the generalized
subset selection problem that can be applied to arbitrary criterion evaluating the selection.

2.1 The General Problem

Given a set of observation variables V = {X1, . . . , Xn}, a criterion f and a positive integer k, the
subset selection problem is to select a subset S ⊆ V such that f is optimized with the constraint
|S| ≤ k, where | · | denotes the size of a set. For notational convenience, we will not distinguish
between S and its index set IS = {i | Xi ∈ S}. Subset selection is formally stated as follows.
Definition 1 (Subset Selection). Given all variables V = {X1, . . . , Xn}, a criterion f and a posi-
tive integer k, the subset selection problem is to find the solution of the optimization problem:

arg minS⊆V f(S) s.t. |S| ≤ k. (1)

The subset selection problem is NP-hard in general [13, 4], except for some extremely simple crite-
ria. In this paper, we take sparse regression as the representative case.

2.2 Sparse Regression

Sparse regression [12] finds a sparse approximation solution to the regression problem, where the
solution vector can only have a few non-zero elements.
Definition 2 (Sparse Regression). Given all observation variables V = {X1, . . . , Xn}, a predictor
variable Z and a positive integer k, define the mean squared error of a subset S ⊆ V as

MSEZ,S = minα∈R|S| E
[
(Z −

∑
i∈S

αiXi)
2
]
.

Sparse regression is to find a set of at most k variables minimizing the mean squared error, i.e.,
arg minS⊆V MSEZ,S s.t. |S| ≤ k.

For the ease of theoretical treatment, the squared multiple correlation
R2
Z,S = (V ar(Z)−MSEZ,S)/V ar(Z)

is used to replace MSEZ,S [6, 11] so that the sparse regression is equivalently

arg maxS⊆V R
2
Z,S s.t. |S| ≤ k. (2)

Sparse regression is a representative example of subset selection [12]. Note that we will study Eq. (2)
in this paper. Without loss of generality, we assume that all random variables are normalized to have
expectation 0 and variance 1. Thus, R2

Z,S is simplified to be 1−MSEZ,S .

For sparse regression, Das and Kempe [3] proved that the forward regression (FR) algorithm, pre-
sented in Algorithm 1, can produce a solution SFR with |SFR|=k and R2

Z,SFR ≥ (1−e−γSFR,k) ·
OPT (whereOPT denotes the optimal function value of Eq. (2)), which is the best currently known
approximation guarantee. The FR algorithm is a greedy approach, which iteratively selects a vari-
able with the largest R2 improvement.
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Algorithm 1 Forward Regression
Input: all variables V = {X1, . . . , Xn}, a predictor variable Z and an integer parameter k ∈ [1, n]
Output: a subset of V with k variables
Process:

1: Let t = 0 and St = ∅.
2: repeat
3: Let X∗ be a variable maximizing R2

Z,St∪{X}, i.e., X∗ = arg maxX∈V \St
R2
Z,St∪{X}.

4: Let St+1 = St ∪ {X∗}, and t = t+ 1.
5: until t = k
6: return Sk

3 The POSS Method

The subset selection in Eq. (1) can be separated into two objectives, one optimizes the criterion, i.e.,
minS⊆V f(S), meanwhile the other keeps the size small, i.e., minS⊆V max{|S| − k, 0}. Usually
the two objectives are conflicting, that is, a subset with a better criterion value could have a larger
size. The POSS method solves the two objectives simultaneously, which is described as follows.

Let us use the binary vector representation for subsets membership indication, i.e., s ∈ {0, 1}n
represents a subset S of V by assigning si = 1 if the i-th element of V is in S and si = 0 otherwise.
We assign two properties for a solution s: o1 is the criterion value and o2 is the sparsity,

s.o1 =

{
+∞, s = {0}n, or |s| ≥ 2k

f(s), otherwise
, s.o2 = |s|.

where the set of o1 to +∞ is to exclude trivial or overly bad solutions. We further introduce the
isolation function I : {0, 1}n→ R as in [22], which determines if two solutions are allowed to be
compared: they are comparable only if they have the same isolation function value. The implemen-
tation of I is left as a parameter of the method, while its effect will be clear in the analysis.

As will be introduced later, we need to compare solutions. For solutions s and s′, we first judge if
they have the same isolation function value. If not, we say that they are incomparable. If they have
the same isolation function value, s is worse than s′ if s′ has a smaller or equal value on both the
properties; s is strictly worse if s′ has a strictly smaller value in one property, and meanwhile has a
smaller or equal value in the other property. But if both s is not worse than s′ and s′ is not worse
than s, we still say that they are incomparable.

POSS is described in Algorithm 2. Starting from the solution representing an empty set and the
archive P containing only the empty set (line 1), POSS generates new solutions by randomly flip-
ping bits of an archived solution (in the binary vector representation), as lines 4 and 5. Newly
generated solutions are compared with the previously archived solutions (line 6). If the newly gen-
erated solution is not strictly worse than any previously archived solution, it will be archived. Before
archiving the newly generated solution in line 8, the archive set P is cleaned by removing solutions
in Q, which are previously archived solutions but are worse than the newly generated solution.

The iteration of POSS repeats for T times. Note that T is a parameter, which could depend on the
available resource of the user. We will analyze the relationship between the solution quality and T in
later sections, and will use the theoretically derived T value in the experiments. After the iterations,
we select the final solution from the archived solutions according to Eq. (1), i.e., select the solution
with the smallest f value while the constraint on the set size is kept (line 12).

4 POSS for Sparse Regression

In this section, we examine the theoretical performance of the POSS method for sparse regression.
For sparse regression, the criterion f is implemented as f(s) = −R2

Z,s. Note that minimizing
−R2

Z,s is equivalent to the original objective that maximizes R2
Z,s in Eq. (2).

We need some notations for the analysis. Let Cov(·, ·) be the covariance between two random
variables, C be the covariance matrix between all observation variables, i.e., Ci,j = Cov(Xi, Xj),
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Algorithm 2 POSS
Input: all variables V = {X1, . . . , Xn}, a given criterion f and an integer parameter k ∈ [1, n]
Parameter: the number of iterations T and an isolation function I : {0, 1}n → R
Output: a subset of V with at most k variables
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: Generate s′ from s by flipping each bit of s with probability 1/n.
6: if @z ∈ P such that I(z) = I(s′) and

(
(z.o1 < s′.o1 ∧ z.o2 ≤ s′.o2) or (z.o1 ≤ s′.o1 ∧

z.o2 < s
′.o2)

)
then

7: Q = {z ∈ P | I(z) = I(s′) ∧ s′.o1 ≤ z.o1 ∧ s′.o2 ≤ z.o2}.
8: P = (P \Q) ∪ {s′}.
9: end if

10: t = t+ 1.
11: end while
12: return arg mins∈P,|s|≤k f(s)

and b be the covariance vector between Z and observation variables, i.e., bi = Cov(Z,Xi). Let CS
denote the submatrix of C with row and column set S, and bS denote the subvector of b, containing
elements bi with i ∈ S. Let Res(Z, S) = Z −

∑
i∈S αiXi denote the residual of Z with respect to

S, where α ∈ R|S| is the least square solution to MSEZ,S [6]. The submodularity ratio presented
in Definition 3 is a measure characterizing how close a set function f is to submodularity. It is easy
to see that f is submodular iff γU,k(f) ≥ 1 for any U and k. For f being the objective function R2,
we will use γU,k shortly in the paper.
Definition 3 (Submodularity Ratio [3]). Let f be a non-negative set function. The submodularity
ratio of f with respect to a set U and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S(f(L ∪ {x})− f(L))

f(L ∪ S)− f(L)
.

4.1 On General Sparse Regression

Our first result is the theoretical approximation bound of POSS for sparse regression in Theorem 1.
Let OPT denote the optimal function value of Eq. (2). The expected running time of POSS is the
average number of objective function (i.e., R2) evaluations, the most time-consuming step, which
is also the average number of iterations T (denoted by E[T ]) since it only needs to perform one
objective evaluation for the newly generated solution s′ in each iteration.
Theorem 1. For sparse regression, POSS with E[T ] ≤ 2ek2n and I(·) = 0 (i.e., a constant func-
tion) finds a set S of variables with |S| ≤ k and R2

Z,S ≥ (1− e−γ∅,k) ·OPT .

The proof relies on the property of R2 in Lemma 1, that for any subset of variables, there always
exists another variable, the inclusion of which can bring an improvement on R2 proportional to the
current distance to the optimum. Lemma 1 is extracted from the proof of Theorem 3.2 in [3].

Lemma 1. For any S ⊆ V , there exists one variable X̂ ∈ V − S such that

R2
Z,S∪{X̂} −R

2
Z,S ≥

γ∅,k
k

(OPT −R2
Z,S).

Proof. Let S∗k be the optimal set of variables of Eq. (2), i.e., R2
Z,S∗k

= OPT . Let S̄ = S∗k − S
and S′ = {Res(X,S) | X ∈ S̄}. Using Lemmas 2.3 and 2.4 in [2], we can easily derive that
R2
Z,S∪S̄ = R2

Z,S + R2
Z,S′ . Because R2

Z,S increases with S and S∗k ⊆ S ∪ S̄, we have R2
Z,S∪S̄ ≥

R2
Z,S∗k

= OPT . Thus, R2
Z,S′ ≥ OPT − R2

Z,S . By Definition 3, |S′| = |S̄| ≤ k and R2
Z,∅ = 0,

we get
∑
X′∈S′ R

2
Z,X′ ≥ γ∅,kR

2
Z,S′ ≥ γ∅,k(OPT − R2

Z,S). Let X̂ ′ = arg maxX′∈S′ R
2
Z,X′ .

Then, R2
Z,X̂′

≥ γ∅,k
|S′| (OPT − R

2
Z,S) ≥ γ∅,k

k (OPT − R2
Z,S). Let X̂ ∈ S̄ correspond to X̂ ′, i.e.,

Res(X̂, S) = X̂ ′. Thus,R2
Z,S∪{X̂}−R

2
Z,S = R2

Z,X̂′
≥ γ∅,k

k (OPT−R2
Z,S). The lemma holds.
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Proof of Theorem 1. Since the isolation function is a constant function, all solutions are allowed
to be compared and we can ignore it. Let Jmax denote the maximum value of j ∈ [0, k] such that in
the archive set P , there exists a solution s with |s| ≤ j and R2

Z,s ≥ (1− (1− γ∅,k
k )j) ·OPT . That

is, Jmax = max{j ∈ [0, k] | ∃s ∈ P, |s| ≤ j ∧R2
Z,s ≥ (1− (1− γ∅,k

k )j) ·OPT}. We then analyze
the expected iterations until Jmax = k, which implies that there exists one solution s in P satisfying
that |s| ≤ k and R2

Z,s ≥ (1− (1− γ∅,k
k )k) ·OPT ≥ (1− e−γ∅,k) ·OPT .

The initial value of Jmax is 0, since POSS starts from {0}n. Assume that currently Jmax = i < k.
Let s be a corresponding solution with the value i, i.e., |s| ≤ i and R2

Z,s ≥ (1− (1− γ∅,k
k )i) ·OPT .

It is easy to see that Jmax cannot decrease because cleaning s from P (lines 7 and 8 of Algorithm 2)
implies that s is “worse” than a newly generated solution s′, which must have a smaller size and a
larger R2 value. By Lemma 1, we know that flipping one specific 0 bit of s (i.e., adding a specific
variable into S) can generate a new solution s′, which satisfies that R2

Z,s′ − R2
Z,s ≥

γ∅,k
k (OPT −

R2
Z,s). Then, we have

R2
Z,s′ ≥ (1−

γ∅,k
k

)R2
Z,s +

γ∅,k
k
·OPT ≥ (1− (1−

γ∅,k
k

)i+1) ·OPT.

Since |s′| = |s| + 1 ≤ i + 1, s′ will be included into P ; otherwise, from line 6 of Algorithm 2, s′
must be “strictly worse” than one solution in P , and this implies that Jmax has already been larger
than i, which contradicts with the assumption Jmax = i. After including s′, Jmax ≥ i+1. Let Pmax

denote the largest size of P . Thus, Jmax can increase by at least 1 in one iteration with probability at
least 1

Pmax
· 1n (1− 1

n )n−1 ≥ 1
enPmax

, where 1
Pmax

is a lower bound on the probability of selecting s in
line 4 of Algorithm 2 and 1

n (1− 1
n )n−1 is the probability of flipping a specific bit of s and keeping

other bits unchanged in line 5. Then, it needs at most enPmax expected iterations to increase Jmax.
Thus, after k · enPmax expected iterations, Jmax must have reached k.

By the procedure of POSS, we know that the solutions maintained in P must be incomparable.
Thus, each value of one property can correspond to at most one solution in P . Because the solutions
with |s| ≥ 2k have +∞ value on the first property, they must be excluded from P . Thus, |s| ∈
{0, 1, . . . , 2k − 1}, which implies that Pmax ≤ 2k. Hence, the expected number of iterations E[T ]
for finding the desired solution is at most 2ek2n. �

Comparing with the approximation guarantee of FR, (1 − e−γSFR,k) · OPT [3], it is easy to see
that γ∅,k ≥ γSFR,k from Definition 3. Thus, POSS with the simplest configuration of the isolation
function can do at least as well as FR on any sparse regression problem, and achieves the best
previous approximation guarantee. We next investigate if POSS can be strictly better than FR.

4.2 On The Exponential Decay Subclass

Our second result is on a subclass of sparse regression, called Exponential Decay as in Definition 4.
In this subclass, the observation variables can be ordered in a line such that their covariances are
decreasing exponentially with the distance.
Definition 4 (Exponential Decay [2]). The variablesXi are associated with points y1 ≤ y2 ≤ . . . ≤
yn, and Ci,j = a|yi−yj | for some constant a ∈ (0, 1).
Since we have shown that POSS with a constant isolation function is generally good, we prove
below that POSS with a proper isolation function can be even better: it is strictly better than FR
on the Exponential Decay subclass, as POSS finds an optimal solution (i.e., Theorem 2) while FR
cannot (i.e., Proposition 1). The isolation function I(s ∈ {0, 1}n) = min{i | si = 1} implies that
two solutions are comparable only if they have the same minimum index for bit 1.
Theorem 2. For the Exponential Decay subclass of sparse regression, POSS with E[T ] ∈ O(k2(n−
k)n log n) and I(s ∈ {0, 1}n) = min{i | si = 1} finds an optimal solution.
The proof of Theorem 2 utilizes the dynamic programming property of the problem, as in Lemma 2.
Lemma 2. [2] Let R2(v, j) denote the maximum R2

Z,S value by choosing v variables, including
necessarily Xj , from Xj , . . . , Xn. That is, R2(v, j) = max{R2

Z,S | S ⊆ {Xj , . . . , Xn}, Xj ∈
S, |S| = v}. Then, the following recursive relation holds:

R2(v + 1, j) = maxj+1≤i≤n

(
R2(v, i) + b2j + (bj − bi)2 a2|yi−yj |

1− a2|yi−yj |
− 2bjbi

a|yi−yj |

1 + a|yi−yj |

)
,

where the term in
()

is theR2 value by addingXj into the variable subset corresponding toR2(v, i).
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Proof of Theorem 2. We divide the optimization process into k + 1 phases, where the i-th (1 ≤
i ≤ k) phase starts after the (i−1)-th phase has finished. We define that the i-th phase finishes when
for each solution corresponding to R2(i, j) (1 ≤ j ≤ n − i + 1), there exists one solution in the
archive P which is “better” than it. Here, a solution s is “better” than s′ is equivalent to that s′ is
“worse” than s. Let ξi denote the iterations since phase i−1 has finished, until phase i is completed.

Starting from the solution {0}n, the 0-th phase has finished. Then, we consider ξi (i ≥ 1). In this
phase, from Lemma 2, we know that a solution “better” than a corresponding solution ofR2(i, j) can
be generated by selecting a specific one from the solutions “better” thanR2(i−1, j+1), . . . , R2(i−
1, n) and flipping its j-th bit, which happens with probability at least 1

Pmax
· 1
n (1− 1

n )n−1 ≥ 1
enPmax

.
Thus, if we have found L desired solutions in the i-th phase, the probability of finding a new desired
solution in the next iteration is at least (n−i+1−L)· 1

enPmax
, where n−i+1 is the total number of de-

sired solutions to find in the i-th phase. Then, E[ξi] ≤
∑n−i
L=0

enPmax

n−i+1−L ∈ O(n log nPmax). There-
fore, the expected number of iterations E[T ] isO(kn log nPmax) until the k-th phase finishes, which
implies that an optimal solution corresponding to max1≤j≤nR

2(k, j) has been found. Note that
Pmax ≤ 2k(n−k), because the incomparable property of the maintained solutions by POSS ensures
that there exists at most one solution in P for each possible combination of |s| ∈ {0, 1, . . . , 2k− 1}
and I(s) ∈ {0, 1, . . . , n}. Thus, E[T ] for finding an optimal solution is O(k2(n− k)n log n). �

Then, we analyze FR (i.e., Algorithm 1) for this special class. We show below that FR can be
blocked from finding an optimal solution by giving a simple example.
Example 1. X1 = Y1, Xi = riXi−1 + Yi, where ri ∈ (0, 1), and Yi are independent random
variables with expectation 0 such that each Xi has variance 1.

For i < j, Cov(Xi, Xj) =
∏j
k=i+1 rk. Then, it is easy to verify that Example 1 belongs to the

Exponential Decay class by letting y1 = 0 and yi =
∑i
k=2 loga rk for i ≥ 2.

Proposition 1. For Example 1 with n = 3, r2 = 0.03, r3 = 0.5, Cov(Y1, Z) = Cov(Y2, Z) = δ
and Cov(Y3, Z) = 0.505δ, FR cannot find the optimal solution for k = 2.

Proof. The covariances between Xi and Z are b1 = δ, b2 = 0.03b1 + δ = 1.03δ and b3 = 0.5b2 +
0.505δ = 1.02δ. SinceXi and Z have expectation 0 and variance 1,R2

Z,S can be simply represented
as bTSC

−1
S bS [11]. We then calculate the R2 value as follows: R2

Z,X1
= δ2, R2

Z,X2
= 1.0609δ2,

R2
Z,X3

= 1.0404δ2; R2
Z,{X1,X2} = 2.0009δ2, R2

Z,{X1,X3} = 2.0103δ2, R2
Z,{X2,X3} = 1.4009δ2.

The optimal solution for k = 2 is {X1, X3}. FR first selects X2 since R2
Z,X2

is the largest, then
selects X1 since R2

Z,{X2,X1} > R2
Z,{X2,X3}; thus produces a local optimal solution {X1, X2}.

It is also easy to verify that other two previous methods OMP [19] and FoBa [26] cannot find the
optimal solution for this example, due to their greedy nature.

5 Empirical Study

We conducted experiments on 12 data sets1 in Table 1 to compare POSS with the following methods:
• FR [12] iteratively adds one variable with the largest improvement on R2.
• OMP [19] iteratively adds one variable that mostly correlates with the predictor variable residual.
• FoBa [26] is based on OMP but deletes one variable adaptively when beneficial. Set parameter
ν = 0.5, the solution path length is five times as long as the maximum sparsity level (i.e., 5 × k),
and the last active set containing k variables is used as the final selection [26].
• RFE [10] iteratively deletes one variable with the smallest weight by linear regression.
• Lasso [18], SCAD [8] and MCP [24] replaces the `0 norm constraint with the `1 norm penalty,
the smoothly clipped absolute deviation penalty and the mimimax concave penalty, respectively. For
implementing these methods, we use the SparseReg toolbox developed in [28, 27].
For POSS, we use I(·) = 0 since it is generally good, and the number of iterations T is set to be
b2ek2nc as suggested by Theorem 1. To evaluate how far these methods are from the optimum, we
also compute the optimal subset by exhaustive enumeration, denoted as OPT.

1The data sets are from http://archive.ics.uci.edu/ml/ and http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/. Some binary classification data are used for regression.
All variables are normalized to have mean 0 and variance 1.

6

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Table 1: The data sets.

data set #inst #feat data set #inst #feat data set #inst #feat
housing 506 13 sonar 208 60 clean1 476 166
eunite2001 367 16 triazines 186 60 w5a 9888 300
svmguide3 1284 21 coil2000 9000 86 gisette 7000 5000
ionosphere 351 34 mushrooms 8124 112 farm-ads 4143 54877

Table 2: The training R2 value (mean±std.) of the compared methods on 12 data sets for k = 8. In
each data set, ‘•/◦’ denote respectively that POSS is significantly better/worse than the correspond-
ing method by the t-test [5] with confidence level 0.05. ‘-’ means that no results were obtained after
running several days.

Data set OPT POSS FR FoBa OMP RFE MCP
housing .7437±.0297 .7437±.0297 .7429±.0300• .7423±.0301• .7415±.0300• .7388±.0304• .7354±.0297•
eunite2001 .8484±.0132 .8482±.0132 .8348±.0143• .8442±.0144• .8349±.0150• .8424±.0153• .8320±.0150•
svmguide3 .2705±.0255 .2701±.0257 .2615±.0260• .2601±.0279• .2557±.0270• .2136±.0325• .2397±.0237•
ionosphere .5995±.0326 .5990±.0329 .5920±.0352• .5929±.0346• .5921±.0353• .5832±.0415• .5740±.0348•
sonar – .5365±.0410 .5171±.0440• .5138±.0432• .5112±.0425• .4321±.0636• .4496±.0482•
triazines – .4301±.0603 .4150±.0592• .4107±.0600• .4073±.0591• .3615±.0712• .3793±.0584•
coil2000 – .0627±.0076 .0624±.0076• .0619±.0075• .0619±.0075• .0363±.0141• .0570±.0075•
mushrooms – .9912±.0020 .9909±.0021• .9909±.0022• .9909±.0022• .6813±.1294• .8652±.0474•
clean1 – .4368±.0300 .4169±.0299• .4145±.0309• .4132±.0315• .1596±.0562• .3563±.0364•
w5a – .3376±.0267 .3319±.0247• .3341±.0258• .3313±.0246• .3342±.0276• .2694±.0385•
gisette – .7265±.0098 .7001±.0116• .6747±.0145• .6731±.0134• .5360±.0318• .5709±.0123•
farm-ads – .4217±.0100 .4196±.0101• .4170±.0113• .4170±.0113• – .3771±.0110•

POSS: win/tie/loss – 12/0/0 12/0/0 12/0/0 11/0/0 12/0/0

To assess each method on each data set, we repeat the following process 100 times. The data set is
randomly and evenly split into a training set and a test set. Sparse regression is built on the training
set, and evaluated on the test set. We report the average training and test R2 values.

5.1 On Optimization Performance

Table 2 lists the training R2 for k = 8, which reveals the optimization quality of the methods. Note
that the results of Lasso, SCAD and MCP are very close, and we only report that of MCP due to the
page limit. By the t-test [5] with significance level 0.05, POSS is shown significantly better than all
the compared methods on all data sets.

We plot the performance curves on two data sets for k ≤ 8 in Figure 1. For sonar, OPT is calculated
only for k ≤ 5. We can observe that POSS tightly follows OPT, and has a clear advantage over
the rest methods. FR, FoBa and OMP have close performances, while are much better than MCP,
SCAD and Lasso. The bad performance of Lasso is consistent with the previous results in [3, 26].
We notice that, although the `1 norm constraint is a tight convex relaxation of the `0 norm constraint
and can have good results in sparse recovery tasks, the performance of Lasso is not as good as POSS
and greedy methods on most data sets. This is due to that, unlike assumed in sparse recovery tasks,
there may not exist a sparse structure in the data sets. In this case, `1 norm constraint can be a bad
approximation of `0 norm constraint. Meanwhile, `1 norm constraint also shifts the optimization
problem, making it hard to well optimize the original R2 criterion.

Considering the running time (in the number of objective function evaluations), OPT does exhaustive
search, thus needs

(
n
k

)
≥ nk

kk
time, which could be unacceptable for a slightly large data set. FR,

FoBa and OMP are greedy-like approaches, thus are efficient and their running time are all in the
order of kn. POSS finds the solutions closest to those of OPT, taking 2ek2n time. Although POSS
is slower by a factor of k, the difference would be small when k is a small constant.

Since the 2ek2n time is a theoretical upper bound for POSS being as good as FR, we empirically
examine how tight this bound is. By selecting FR as the baseline, we plot the curve of the R2

value over the running time for POSS on the two largest data sets gisette and farm-ads, as shown
in Figure 2. We do not split the training and test set, and the curve for POSS is the average of 30
independent runs. The x-axis is in kn, the running time of FR. We can observe that POSS takes
about only 14% and 23% of the theoretical time to achieve a better performance, respectively on the
two data sets. This implies that POSS can be more efficient in practice than in theoretical analysis.

7



3 4 5 6 7
k

OPT POSS FR FoBa OMP RFE MCP SCAD Lasso

3 4 5 6 7 8
0.18

0.2

0.22

0.24

0.26

k

R
2

(a) on svmguide3

3 4 5 6 7 8

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k

R
2

(b) on sonar

Figure 1: Training R2 (the larger the better).
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Figure 2: Performance v.s. running time of POSS.
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Figure 4: Sparse regression with `2 regularization
on sonar. RSS: the smaller the better.

5.2 On Generalization Performance

When testing sparse regression on the test data, it has been known that the sparsity alone may be
not a good complexity measure [26], since it only restricts the number of variables, but the range of
the variables is unrestricted. Thus better optimization does not always lead to better generalization
performance. We also observe this in Figure 3. On svmguide3, testR2 is consistent with trainingR2

in Figure 1(a), however on sonar, better training R2 (as in Figure 1(b)) leads to worse test R2 (as in
Figure 3(b)), which may be due to the small number of instances making it prone to overfitting.

As suggested in [26], other regularization terms may be necessary. We add the `2 norm regulariza-
tion into the objective function, i.e.,

RSSZ,S = minα∈R|S| E
[
(Z −

∑
i∈S αiXi)

2
]

+ λ|α|22.
The optimization is now arg minS⊆V RSSZ,S s.t. |S| ≤ k . We then test all the compared
methods to solve this optimization problem with λ = 0.9615 on sonar. As plotted in Figure 4, we
can observe that POSS still does the best optimization on the training RSS, and by introducing the
`2 norm, it leads to the best generalization performance in R2.

6 Conclusion

In this paper, we study the problem of subset selection, which has many applications ranging from
machine learning to signal processing. The general goal is to select a subset of size k from a large
set of variables such that a given criterion is optimized. We propose the POSS approach that solves
the two objectives of the subset selection problem simultaneously, i.e., optimizing the criterion and
reducing the subset size.

On sparse regression, a representative of subset selection, we theoretically prove that a simple POSS
(i.e., using a constant isolation function) can generally achieve the best previous approximation
guarantee, using time 2ek2n. Moreover, we prove that, with a proper isolation function, it finds an
optimal solution for an important subclass Exponential Decay using timeO(k2(n−k)n log n), while
other greedy-like methods may not find an optimal solution. We verify the superior performance of
POSS by experiments, which also show that POSS can be more efficient than its theoretical time.

We will further study Pareto optimization from the aspects of using potential heuristic operators [14]
and utilizing infeasible solutions [23]; and try to apply it to more machine learning tasks.
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