
Supplementary Material: Subset Selection under
Noise

Chao Qian1 Jing-Cheng Shi2 Yang Yu2 Ke Tang3,1 Zhi-Hua Zhou2

1Anhui Province Key Lab of Big Data Analysis and Application, USTC, China
2National Key Lab for Novel Software Technology, Nanjing University, China

3Shenzhen Key Lab of Computational Intelligence, SUSTech, China
chaoqian@ustc.edu.cn tangk3@sustc.edu.cn

{shijc,yuy,zhouzh}@lamda.nju.edu.cn

1 Detailed Proofs

This part aims to provide some detailed proofs, which are omitted in our original paper due to space
limitation.

Proof of Theorem 1. Let X∗ be an optimal subset, i.e., f(X∗) = OPT . Let Xi denote the subset
after the i-th iteration of the greedy algorithm. Then, we have

f(X∗)− f(Xi) ≤ f(X∗ ∪Xi)− f(Xi)

≤ 1

γXi,k

∑
v∈X∗\Xi

(
f(Xi ∪ {v})− f(Xi)

)
≤ 1

γXi,k

∑
v∈X∗\Xi

(
1

1− ε
F (Xi ∪ {v})− f(Xi)

)

≤ 1

γXi,k

∑
v∈X∗\Xi

(
1

1− ε
F (Xi+1)− f(Xi)

)

≤ k

γXk,k

(
1 + ε

1− ε
f(Xi+1)− f(Xi)

)
,

where the first inequality is by the monotonicity of f , the second inequality is by the definition
of submodularity ratio and |X∗| ≤ k, the third is by the definition of multiplicative noise, i.e.,
F (X) ≥ (1− ε) · f(X), the fourth is by line 3 of Algorithm 1, and the last is by γXi,k ≥ γXi+1,k

and F (X) ≤ (1 + ε) · f(X). By a simple transformation, we can equivalently get

f(Xi+1) ≥
(
1− ε
1 + ε

)((
1− γXk,k

k

)
f(Xi) +

γXk,k
k

OPT
)
.

Based on this inequality, an inductive proof gives the approximation ratio of the returned subset Xk:

f(Xk) ≥
1−ε
1+ε

γXk,k
k

1− 1−ε
1+ε

(
1− γXk,k

k

) (1− (1− ε
1 + ε

)k (
1− γXk,k

k

)k)
·OPT.

�

Lemma 2 shows the relation between the F values of adjacent subsets, which will be used in the
proof of Theorem 3.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Lemma 2. For any X ⊆ V , there exists one item v̂ ∈ V \X such that

F (X ∪ {v̂}) ≥
(
1− ε
1 + ε

)(
1− γX,k

k

)
F (X) +

(1− ε)γX,k
k

·OPT.

Proof. Let X∗ be an optimal subset, i.e., f(X∗) = OPT . Let v̂ ∈ argmaxv∈X∗\X F (X ∪ {v}).
Then, we have

f(X∗)− f(X) ≤ f(X∗ ∪X)− f(X)

≤ 1

γX,k

∑
v∈X∗\X

(
f(X ∪ {v})− f(X)

)
≤ 1

γX,k

∑
v∈X∗\X

(
1

1− ε
F (X ∪ {v})− f(X)

)

≤ k

γX,k

(
1

1− ε
F (X ∪ {v̂})− f(X)

)
,

where the first inequality is by the monotonicity of f , the second inequality is by the definition
of submodularity ratio and |X∗| ≤ k, and the third is by F (X) ≥ (1 − ε)f(X). By a simple
transformation, we can equivalently get

F (X ∪ {v̂}) ≥ (1− ε)
((

1− γX,k
k

)
f(X) +

γX,k
k
·OPT

)
.

By applying f(X) ≥ F (X)/(1 + ε) to this inequality, the lemma holds.

Proof of Theorem 3. Let Jmax denote the maximum value of j ∈ [0, k] such that in P , there exists
a solution x with |x| ≤ j and

F (x) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)j (
1− γmin

k

)j)
·OPT.

We analyze the expected number of iterations until Jmax = k, which implies that there exists one
solution x in P satisfying that |x| ≤ k and F (x) ≥ (1−ε) γmin

k

1− 1−ε
1+ε (1−

γmin
k)

(1− (1−ε1+ε)
k(1− γmin

k)k) ·OPT .

Since f(x) ≥ F (x)/(1 + ε), the desired approximation bound has been reached when Jmax = k.

The initial value of Jmax is 0, since POSS starts from {0}n. Assume that currently Jmax = i < k.
Let x be a corresponding solution with the value i, i.e., |x| ≤ i and

F (x) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)i (
1− γmin

k

)i)
·OPT. (1)

It is easy to see that Jmax cannot decrease because deleting x from P (line 6 of Algorithm 2) implies
that x is weakly dominated by the newly generated solution x′, which must have a smaller size and a
larger F value. By Lemma 2, we know that flipping one specific 0 bit of x (i.e., adding a specific
item) can generate a new solution x′, which satisfies that

F (x′) ≥
(
1− ε
1 + ε

)(
1− γx,k

k

)
F (x) +

(1− ε)γx,k
k

·OPT

=
1− ε
1 + ε

F (x) +

(
OPT − F (x)

1 + ε

)
(1− ε)γx,k

k
.

Note that OPT − F (x)
1+ε ≥ f(x) − F (x)

1+ε ≥ 0. Moreover, γx,k ≥ γmin, since |x| < k and γx,k
decreases with x. Thus, we have

F (x′) ≥
(
1− ε
1 + ε

)(
1− γmin

k

)
F (x) +

(1− ε)γmin

k
·OPT.

By applying Eq. (1) to the above inequality, we easily get

F (x′) ≥
(1− ε)γmin

k

1− 1−ε
1+ε

(
1− γmin

k

) (1− (1− ε
1 + ε

)i+1 (
1− γmin

k

)i+1
)
·OPT.

2

Since |x′| = |x|+ 1 ≤ i+ 1, x′ will be included into P ; otherwise, x′ must be dominated by one
solution in P (line 5 of Algorithm 2), and this implies that Jmax has already been larger than i, which
contradicts with the assumption Jmax = i. After including x′, Jmax ≥ i+ 1. Let Pmax denote the
largest size of P during the run of POSS. Thus, Jmax can increase by at least 1 in one iteration with
probability at least 1

Pmax
· 1n (1−

1
n)
n−1 ≥ 1

enPmax
, where 1

Pmax
is a lower bound on the probability

of selecting x in line 3 of Algorithm 2 and 1
n (1−

1
n)
n−1 is the probability of flipping only a specific

bit of x in line 4. Then, it needs at most enPmax expected number of iterations to increase Jmax.
Thus, after k · enPmax expected number of iterations, Jmax must have reached k.

From the procedure of POSS, we know that the solutions in P must be non-dominated. Thus, each
value of one objective can correspond to at most one solution in P . Because the solutions with
|x| ≥ 2k have −∞ value on the first objective, they must be excluded from P . Thus, Pmax ≤ 2k,
which implies that the expected number of iterations E[T] for finding the desired solution is at most
2ek2n. �

Proof of Proposition 1. LetA = {S1, . . . , Sl} and B = {Sl+1, . . . , S2l}. For the greedy algorithm,
if without noise, it will first select one Si from A, and continue to select Si from B until reaching
the budget. Thus, the greedy algorithm can find an optimal solution. But in the presence of noise,
after selecting one Si from A, it will continue to select Si from A rather than from B, since for
all X ⊆ A, Si ∈ B, F (X) = 2 + δ > 2 = F (X ∪ {Si}). The approximation ratio thus is only
2/(k + 1).

For POSS under noise, we show that it can efficiently follow the path {0}n (i.e., ∅) → {S} →
{S} ∪ X2 → {S} ∪ X3 → · · · → {S} ∪ Xk−1 (i.e., an optimal solution), where S denotes any
element from A and Xi denotes any subset of B with size i. Note that the solutions on the path will
always be kept in the archive P once found, because there is no other solution which can dominate
them. The probability of the first "→" on the path is at least 1

Pmax
· ln (1−

1
n)
n−1, since it is sufficient

to select {0}n in line 3 of Algorithm 2, and flip one of its first l 0-bits and keep other bits unchanged

in line 4. [Multi-bit search] For the second "→", the probability is at least 1
Pmax

· (
l
2)
n2 (1− 1

n)
n−2,

since it is sufficient to select {S} and flip any two 0-bits in its second half. For the i-th "→" with
3 ≤ i ≤ k − 1, the probability is at least 1

Pmax
· l−i+1

n (1− 1
n)
n−1, since it is sufficient to select the

left solution of "→" and flip one 0-bit in its second half. Thus, starting from {0}n, POSS can follow
the path in

enPmax ·

(
1

l
+

4

l − 1
+

k−1∑
i=3

1

l − i+ 1

)
= O(nPmax log n)

expected number of iterations. Since Pmax ≤ 2k, the number of iterations for finding an optimal
solution is O(kn log n) in expectation. �

Proof of Proposition 2. For the greedy algorithm, if without noise, it will first select S4l−2 since
|S4l−2| is the largest, and then find the optimal solution {S4l−2, S4l−1}. But in the presence of noise,
S4l will be first selected since F ({S4l}) = 2l is the largest, and then the solution {S4l, S4l−1} is
found. The approximation ratio is thus only (3l − 2)/(4l − 3).

For POSS under noise, we first show that it can efficiently follow the path {0}n → {S4l} →
{S4l, S4l−1} → {S4l−2, S4l−1, ∗}, where ∗ denotes any subset Si with i 6= 4l − 2, 4l − 1. In this
procedure, we can pessimistically assume that the optimal solution {S4l−2, S4l−1} will never be
found, since we are to derive a running time upper bound for finding it. Note that the solutions
on the path will always be kept in P once found, because no other solutions can dominate them.
The probability of "→" is at least 1

Pmax
· 1n (1−

1
n)
n−1 ≥ 1

enPmax
, since it is sufficient to select the

solution on the left of "→" and flip only one specific 0-bit. Thus, starting from {0}n, POSS can
follow the path in 3 · enPmax expected number of iterations. [Backward search] After that, the
optimal solution {S4l−2, S4l−1} can be found by selecting {S4l−2, S4l−1, ∗} and flipping a specific
1-bit, which happens with probability at least 1

enPmax
. Thus, the total number of required iterations is

at most 4enPmax in expectation. Since Pmax ≤ 4, E[T] = O(n). �

For the analysis of PONSS in the original paper, we assume that
Pr(F (x) > F (y)) ≥ 0.5 + δ if f(x) > f(y),

3

where δ ∈ [0, 0.5). To show that this assumption holds with i.i.d. noise distribution, we prove the
following claim. Note that the value of δ depends on the concrete noise distribution.
Claim 1. If the noise distribution is i.i.d. for each solution x, it holds that

Pr(F (x) > F (y)) ≥ 0.5 if f(x) > f(y).

Proof. If F (x) = f(x) + ξ(x), where the noise ξ(x) is drawn independently from the same
distribution for each x, we have, for two solutions x and y with f(x) > f(y),

Pr(F (x) > F (y)) = Pr(f(x) + ξ(x) > f(y) + ξ(y))

≥ Pr(ξ(x) ≥ ξ(y))
≥ 0.5,

where the first inequality is by the condition that f(x) > f(y), and the last inequality is derived by
Pr(ξ(x) ≥ ξ(y)) + Pr(ξ(x) ≤ ξ(y)) ≥ 1 and Pr(ξ(x) ≥ ξ(y)) = Pr(ξ(x) ≤ ξ(y)) due to that
ξ(x) and ξ(y) are from the same distribution.

If F (x) = f(x) · ξ(x), the claim holds similarly.

2 Detailed Experimental Results

This part aims to provide some experimental results, which are omitted in our original paper due to
space limitation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

1200

1400

1600

1800

In
flu

en
ce

 S
pr

ea
d

PONSS
POSS
Greedy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

200

300

400

500

In
flu

en
ce

 S
pr

ea
d

PONSS
POSS
Greedy

(a) ego-Facebook (b) Weibo

Figure 1: Influence maximization with the budget k = 7 (influence spread: the larger the better): the
comparison between PONSS with different θ values, POSS and the greedy algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
2

PONSS
POSS
Greedy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

R
2

PONSS
POSS
Greedy

(a) protein (b) YearPredictionMSD

Figure 2: Sparse regression with the budget k = 14 (R2: the larger the better): the comparison
between PONSS with different θ values, POSS and the greedy algorithm.

4

	Detailed Proofs
	Detailed Experimental Results

