
On the Effectiveness of Sampling
for Evolutionary Optimization in Noisy Environments⋆

Chao Qian1, Yang Yu1, Yaochu Jin2, and Zhi-Hua Zhou1

1National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

2Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
{qianc,yuy,zhouzh}@lamda.nju.edu.cn, yaochu.jin@surrey.ac.uk

Abstract Sampling has been often employed by evolutionary algorithms to cope
with noise when solving noisy real-world optimization problems. It can improve
the estimation accuracy by averaging over a number of samples, while also in-
creasing the computation cost. Many studies focused on designing efficient sam-
pling methods, and conflicting empirical results have been reported. In this paper,
we investigate the effectiveness of sampling in terms of rigorous running time,
and find that sampling can be ineffective. We provide a general sufficient condi-
tion under which sampling is useless (i.e., sampling increases the running time
for finding an optimal solution), and apply it to analyzing the running time perfor-
mance of (1+1)-EA for optimizing OneMax and Trap problems in the presence
of additive Gaussian noise. Our theoretical analysis indicates that sampling in the
above examples is not helpful, which is further confirmed by empirical simulation
results.

1 Introduction

Evolutionary algorithms (EAs) [4] inspired from natural phenomena are often applied
to solve real-world optimization problems, where the fitness (i.e., objective) evaluation
of a solution is usually noisy. For example, in airplane design, the fitness of every pro-
totype is evaluated by a stochastic computer simulation, and thus is a random variable
whose value can be different from the exact fitness. Handling noise in fitness evalua-
tions is important in that a poor solution can appear to be good due to the noise, which
can mislead the search direction, resulting in an inefficient optimization. Many studies
thus have focused on dealing with noise in evolutionary optimization [2,6,18].

One simple and direct way to reduce the effect of noise is sampling, which samples
the fitness of one solution several times and then uses the average to estimate the true
fitness. An n-time random sampling can reduce the standard deviation by a factor of√
n, and thus makes the fitness estimation closer to the true value, while also increasing

the computation cost n times. Much effort has been devoted to designing smarter sam-
pling approaches, which dynamically decide the sample size for each solution so that
the sampling cost is reduced as much as possible.
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Aizawa and Wah [1] suggested two adaptive sampling methods: increasing the sam-
ple size with the generation number and allocating larger sample size for solutions with
larger estimated variance. Stagge [24] used a larger sample size for better solutions.
Several sequential sampling approaches [7,8,10] were later proposed for tournament
selection, which first estimate the fitness of two solutions by a small number of sam-
ples, and then sequentially increase samples until the difference can be significantly
discriminated. Adaptive sampling was then incorporated into diverse metaheuristic al-
gorithms (e.g., immune algorithm [27], particle swarm optimization [5] and compact
differential evolution [17]) to efficiently cope with noise. It has also been employed
by evolutionary algorithms for noisy multi-objective optimization [20,23,25]. Based on
the assumption that the fitness landscape is locally smooth, an alternative approach to
approximately increase the estimation accuracy without increasing the sampling cost
was proposed [9,22], which estimates the fitness of a solution by averaging the fitness
of previously evaluated neighbors.

Sampling has been shown to be able to improve the local performance of EAs (e.g.,
increase the probability of selecting the true better solution in tournament selection [7]).
A practical performance measure of an algorithm is how much time it needs to find a
desired solution. On this measure, conflicting conclusions about sampling have been
empirically reported. For example, in [1], it was shown that sampling can speed up a
standard genetic algorithm on two test functions; while in [10], sampling led to a larger
computation time for a simple generational genetic algorithm on the OneMax function.

In this paper, we investigate the effectiveness of sampling via rigorous running time
analysis, which measures how soon an algorithm can solve a problem (i.e., the number
of fitness evaluations until finding an optimal solution) and has been a leading theoret-
ical aspect for randomized search heuristics [3,19]. We provide a sufficient condition
under which sampling is useless (i.e., sampling increases the running time). Applying it
to analyze (1+1)-EA solving the Noisy OneMax and the Noisy Trap problems with the
additive Gaussian noise, we disclose that the sampling is ineffective in the two cases
for different reasons. The derived theoretical results are also empirically verified. The
results may help understand the effect of noise and design better strategies for handling
noisy fitness functions.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. Section 3 presents the main theorem, which is then used in case studies in Section
4. Section 5 concludes the paper and discusses future work.

2 Preliminaries

2.1 Sampling and Optimization in the Presence of Noise

An optimization problem can be generally represented as argmaxx∈X f(x), where X
is the feasible solution space and the objective f is also called fitness in the context
of evolutionary computation. In real-world optimization tasks, the fitness evaluation
for a solution is usually disturbed by noise due to a wide range of uncertainties (e.g.,
randomized simulations), and consequently we can not obtain the exact fitness value
but only a noisy one. A commonly studied noise model is additive noise as presented in
Definition 1, which will also be adopted in this paper.



Definition 1 (Additive Noise). Given a distribution N , let fN (x) and f(x) denote the
noisy and true fitness of a solution x respectively, then

fN (x) = f(x) + δ,

where δ is randomly drawn from N , denoted by δ ∼ N .

In evolutionary optimization, sampling as described in Definition 2 has often been
used to reduce the effect of noise. It approximates the true fitness f(x) by the average
of a number of random samples.

Definition 2 (Sampling). Sampling of size k outputs the fitness of a solution as

fN
k (x) =

1

k

∑k

i=1
(f(x) + δi), where δi ∼ N .

For additive Gaussian noise (i.e., N = N(θ, σ2)), fN
k (x) actually can be represented

by f(x) + δ with δ ∼ N(θ, σ2/k), that is, sampling of size k reduces the variance
of noise by a factor of k and thus estimates the fitness more accurately. However, the
computation time is also increased by k times. Many studies thus focused on designing
efficient sampling methods [1,8,24], while the effectiveness of sampling, in particular a
theoretical understanding of sampling, remains unclear.

2.2 Evolutionary Algorithms by Markov Chain Analysis

Evolutionary algorithms [4] are a kind of randomized metaheuristic optimization algo-
rithms. Starting from an initial set of solutions (called a population), EAs try to itera-
tively improve the population by a cycle of three stages: reproducing new solutions from
the current population, evaluating the newly generated solutions, and updating the pop-
ulation by removing bad solutions. The (1+1)-EA, as shown in Algorithm 1, is a simple
EA for maximizing pseudo-Boolean problems over {0, 1}n, which reflects the common
structure of EAs. It maintains only one solution, and repeatedly tries to improve the cur-
rent solution by using bit-wise mutation (i.e., step 3) and selection (i.e., steps 4-5). It has
been widely used for the running time analysis of EAs, e.g., in [16,26]. For (1+1)-EA
with sampling in noisy environments, step 4 changes to be “if fN

k (x′) ≥ fN
k (x)”.

Algorithm 1 ((1+1)-EA) Given pseudo-Boolean function f with solution length n, it
consists of the following steps:
1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x independently with probability p.
4. if f(x′) ≥ f(x)
5. x := x′.
where p ∈ (0, 0.5) is the mutation probability.

The evolution process goes forward only based on the current population, thus, an
EA can be modeled and analyzed as a Markov chain {ξt}+∞

t=0 (e.g., in [16,26]) by taking
the EA’s population space X as the chain’s state space, i.e. ξt ∈ X . Let X ∗ ⊂ X denote



the set of all optimal populations, which contains at least one optimal solution. The goal
of the EA is to reach X ∗ from an initial population. Thus, X ∗ is the optimal state space
of the corresponding Markov chain. In this paper, we assume that the Markov chain is
homogeneous, since EAs often employ time-invariant operators.

Given a Markov chain {ξt}+∞
t=0 and ξt̂ = x, we define its first hitting time (FHT) as

a random variable τ such that τ = min{t|ξt̂+t ∈ X ∗, t ≥ 0}. That is, τ is the num-
ber of steps needed to reach the optimal space for the first time starting from ξt̂ = x.
The mathematical expectation of τ , E[[τ |ξt̂ = x]] =

∑∞
i=0 iP (τ = i), is called the ex-

pected first hitting time (EFHT). For the corresponding EA, the running time is usually
defined as the number of fitness evaluations until an optimal solution is found for the
first time, since the fitness evaluation is often the computational process with the high-
est cost [16,26]. Thus, the expected running time of the EA starting from ξ0 is equal to
N1+N2 ·E[[τ |ξ0]], where N1 and N2 are the number of fitness evaluations for the initial
population and each iteration, respectively. For example, for (1+1)-EA without noise,
N1 = 1 and N2 = 1. Note that, for EAs under noise, we assume that the reevaluation
strategy [13,14,18] is used, i.e., when accessing the fitness of a solution, it is always
reevaluated. For example, for (1+1)-EA with sampling, both fN

k (x′) and fN
k (x) will

be calculated and recalculated in each iteration; thus, N1 = k and N2 = 2k.
Lemma 1 characterizing the EFHT of a Markov chain by one-step transition and

Lemma 2 showing the drift analysis tool will be used to analyze the EFHT of Markov
chains in the paper. Drift analysis was first introduced to the running time analysis of
EAs by He and Yao [16] and later many variants have been proposed (e.g., in [11,12]).
To use it, a function V (x) has to be constructed to measure the distance of a state x to
the optimal state space X ∗. The distance function V (x) satisfies that V (x ∈ X ∗) = 0
and V (x /∈ X ∗) > 0. Then, by investigating the progress on the distance to X ∗ in each
step, i.e., E[[V (ξt)− V (ξt+1)|ξt]], an upper (lower) bound of the EFHT can be derived
through dividing the initial distance by a lower (upper) bound of the progress.

Lemma 1. Given a Markov chain {ξt}+∞
t=0 , we have

∀x ∈ X ∗ : E[[τ |ξt = x]] = 0;

∀x /∈ X ∗ : E[[τ |ξt = x]] = 1 +
∑

y∈X
P (ξt+1 = y|ξt = x)E[[τ |ξt+1 = y]].

Lemma 2 (Drift Analysis [16]). Given a Markov chain {ξt}+∞
t=0 and a distance func-

tion V (x), if it satisfies that for any t ≥ 0 and any ξt with V (ξt) > 0,

0 < cl ≤ E[[V (ξt)− V (ξt+1)|ξt]] ≤ cu,

then the EFHT satisfies that V (ξ0)/cu ≤ E[[τ |ξ0]] ≤ V (ξ0)/cl.

3 Theorem on Sampling Effectiveness

In this section, for EAs solving noisy problems, we provide two situations where the
running time increases with the sample size, i.e., sampling is useless. Let {ξ′t}+∞

t=0 model
the evolutionary process without noise, and let {ξt}+∞

t=0 model that using the sample



size k for fitness evaluation under noise. We always denote X and X ∗ as the state space
and the optimal state space, respectively. For any x, x′ ∈ X , let p(x, x′) and qk(x, x

′)
denote the probability of jumping from state x to x′ in one step for {ξ′t}+∞

t=0 and {ξt}+∞
t=0

respectively, i.e., p(x, x′) =P (ξ′t+1 = x′|ξ′t = x) and qk(x, x
′) =P (ξt+1 = x′|ξt = x).

For clarity, we also represent the EFHT of {ξ′t}+∞
t=0 and {ξt}+∞

t=0 by E[x] and Ek[x]

respectively, i.e., E[x] = E[[τ ′|ξ′0 = x]] and Ek[x] = E[[τ |ξ0 = x]]. Let dg(k)
dk denote the

derivative of a function g(k) with respect to k.

Theorem 1. For an EA A optimizing a problem f under some kind of noise, if there
exists a function g(k) (k ≥ 1) such that either one of the following two situations holds,

(1) max
x/∈X∗

{
∑

x′:E[x′] ̸=E[x]
(qk(x, x

′)− p(x, x′))(E[x]− E[x′])} ≤ g(k) < 0,

and 1 + g(k)− k
dg(k)

dk
≥ 0;

(2) min
x/∈X∗

{
∑

x′:E[x′] ̸=E[x]

(qk(x, x
′)−p(x, x′))(E[x]−E[x′])}≥g(k)>0, and

dg(k)

dk
≤0,

then for any x ∈ X , k · Ek[x] ≤ (k + 1) · Ek+1[x], i.e., sampling is useless.

Before the proof, we first intuitively explain these two situations where sampling is
useless. In situation (1), noise is harmful and using a larger sample size may reduce its
negative effect (i.e., Ek(x) decreases with k), but the decrease rate of Ek(x) is smaller
than the increase rate of the sample size k; thus sampling is overall useless. In situation
(2), noise is actually helpful and using a larger sample size reduces its positive effect,
thus Ek(x) increases with k and sampling is of course useless.
Proof. We use Lemma 2 to prove a bound on Ek[x]. We first construct a distance
function ∀x ∈ X , V (x) = E[x], which satisfies that V (x ∈ X ∗) = 0 and V (x /∈ X ∗) >
0 by Lemma 1. Then, we investigate E[[V (ξt)− V (ξt+1)|ξt = x]] for any x /∈ X ∗.

E[[V (ξt)− V (ξt+1)|ξt = x]] = V (x)− E[[V (ξt+1)|ξt = x]]

= 1 +
∑

x′∈X
p(x, x′)E[x′]−

∑
x′∈X

qk(x, x
′)E[x′] (by Lemma 1)

= 1 +
∑

x′:E[x′] ̸=E[x]
(qk(x, x

′)− p(x, x′))(E[x]− E[x′]) =: 1 + g(x, k).

If situation (1) holds, E[[V (ξt)− V (ξt+1)|ξt = x]] ≤ 1 + g(k). By Lemma 2, we
have Ek[x] ≥ E[x]/(1 + g(k)), which shows that noise is harmful since g(k) < 0.
The expected running time starting from x can be represented by Mk + Nk · Ek[x],
where M and N denote the number of solutions that need to be evaluated for the initial
population and each iteration, respectively. The EFHT Ek[x] may decrease with k; thus
we need to compare its decrease rate with the increase rate of the sample size k. The
condition 1 + g(k)− k dg(k)

dk ≥ 0 implies that d(k/(1+g(k)))
dk ≥ 0, i.e., the decrease rate

of Ek[x] is smaller than the increase rate of k. Thus, the expected running time starting
from x increases with k, i.e., sampling is useless.

If situation (2) holds, E[[V (ξt)− V (ξt+1)|ξt = x]] ≥ 1 + g(k). By Lemma 2, we
have Ek[x] ≤ E[x]/(1+g(k)), which shows that noise is helpful since g(k) > 0. Due to
that dg(k)

dk ≤ 0 (i.e., g(k) decreases with k), Ek[x] increases with k. Thus, the expected
running time Mk +Nk · Ek[x] obviously increases with k, i.e., sampling is useless. �



4 Case Studies

In this section, we will apply the above theorem to analyze the effectiveness of sampling
for EAs solving different pseudo-Boolean problems under additive Gaussian noise.

4.1 (1+1)-EA on Noisy OneMax

OneMax problem is to maximize the number of 1 bits of a solution x ∈ {0, 1}n. It has
become a benchmark for the running time analysis of EAs; particularly, the expected
running time of (1+1)-EA with mutation probability 1

n is Θ(n log n) [15]. For its noisy
variant as in Definition 3, the fitness of a solution accessed in the optimization is a noisy
one fN (x) instead of the true fitness f(x).

Definition 3 (Noisy OneMax Problem). Given a distribution N and n ∈ N+, defining

fN (x) = f(x) + δ =
∑n

i=1
xi + δ

where x ∈ {0, 1}n and δ is randomly drawn from N , Noisy OneMax Problem of size n
is to solve the problem: argmaxx∈{0,1}n Eδ∼N [fN (x)].

Theorem 2. For any σ > 0, sampling is useless for (1+1)-EA optimizing Noisy One-
Max problem with Gaussian noise N = N(θ, σ2).

Proof. We are to show that the situation (1) of Theorem 1 holds here. From Lemma 1
in [21], we know that the EFHT E[x] of (1+1)-EA on OneMax without noise depends
on the number of 0 bits |x|0 and increases with it. Let mut(x, x′) denote the probability
of mutating from x to x′ by step 3 of Algorithm 1. Note that, by sampling of size k, the
Gaussian noise reduces to be N(θ, σ2/k), i.e., fN

k (x) = f(x)+δ with δ ∼ N(θ, σ2/k).
For any x with |x|0 = i ≥ 1 and x′ with |x′|0 = j, if j < i, p(x, x′) = mut(x, x′)

since x′ has less 0 bits and is better than x; if j > i, p(x, x′) = 0 since x′ has more
0 bits and is worse than x. We also have qk(x, x

′) = mut(x, x′) · Prob(f(x′) + δ1 ≥
f(x) + δ2), where δ1, δ2 ∼ N(θ, σ2/k). Note that δ1 − δ2 ∼ N(0, 2σ2/k). Thus,
qk(x, x

′) = mut(x, x′) · Prob(δ ≥ j − i), where δ ∼ N(0, 2σ2/k). Then, we have

g(x, k) =
∑

x′:E[x′] ̸=E[x]
(qk(x, x

′)− p(x, x′))(E[x]− E[x′])

= −
∑

|x′|0=j<i
mut(x, x′) · Prob(δ > i− j) · (E[x]− E[x′])

+
∑

|x′|0=j>i
mut(x, x′) · Prob(δ ≥ j − i) · (E[x]− E[x′])

≤ −Prob(δ > 1) ·
(∑

|x′|0=i−1
mut(x, x′)(E[x]− E[x′])

)
.

Let c = minx/∈X∗
∑

|x′|0=i−1 mut(x, x′)(E[x] − E[x′]). Let δ′ ∼ N(0, 1). Then,

Prob(δ > 1) = Prob(δ′ >
√
k√
2σ

). By Prob(δ′ > m) ≥ m
2
√
2π

e−m2/2 for 0 < m ≤ 1,



we can get Prob(δ > 1) ≥
√
k

4σ
√
π
· e−k/4σ2

when k ≤ 2σ2. Thus, let g(k) = − c
√
k

4σ
√
π
·

e−k/4σ2

which satisfies that maxx/∈X∗ g(x, k) ≤ g(k) < 0. Then,

1 + g(k)− k
dg(k)

dk
= 1− c

√
k

8σ
√
π
· e−k/4σ2

− ck
√
k

16σ3
√
π
· e−k/4σ2

≥ 1− c

2
√
2π

.

When k ≥ 2σ2, Prob(δ > 1) ≈ σ√
kπ

·e−k/4σ2

, since Prob(δ′ > m) ≈ 1
m · 1√

2π
e−m2/2

for m ≥ 1. Thus, let g(k) = − cσ√
kπ

· e−k/4σ2

. Then,

1 + g(k)− k
dg(k)

dk
= 1− 3cσ

2
√
kπ

· e−k/4σ2

− c
√
k

4σ
√
π
· e−k/4σ2

≥ 1−
√
2c√
π
e−1/2,

where the inequality is since xe−x2

reaches the maximum when x =
√
2
2 .

Then, we are to show that c ≤ 1. By Lemma 1, for any x with |x|0 = i ≥ 1, we have

E[x] = 1 +
i−1∑
j=0

∑
|x′|0=j

mut(x, x′)E[x′] + (1−
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x]

≤1+(
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x′ | |x′|0 = i− 1]+(1−
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x].

Thus, E[x]− E[x′ | |x′|0 = i− 1] ≤ 1/
∑i−1

j=0

∑
|x′|0=j mut(x, x′). Then,

∑
|x′|0=i−1

mut(x, x′)(E[x]− E[x′]) ≤
∑

|x′|0=i−1

mut(x, x′)/

i−1∑
j=0

∑
|x′|0=j

mut(x, x′) ≤ 1,

which implies that c ≤ 1. Thus, 1 + g(k)− k dg(k)
dk ≥ 0. �

4.2 (1+1)-EA on Noisy Trap

Trap problem is another commonly used problem in the theoretical analysis of EAs. It
is to maximize the number of 0 bits of a solution except the global optimum 11 . . . 1;
the expected running time of (1+1)-EA with mutation probability 1

n is Θ(nn) [15].

Definition 4 (Noisy Trap Problem). Given a distribution N and n ∈ N+, defining

fN (x) = f(x) + δ = C
∏n

i=1
xi −

∑n

i=1
xi + δ

where x ∈ {0, 1}n, C > n and δ is randomly drawn from N , Noisy Trap Problem of
size n is to solve the problem: argmaxx∈{0,1}n Eδ∼N [fN (x)].

Theorem 3. For any σ > 0, sampling is useless for (1+1)-EA optimizing Noisy Trap
problem with Gaussian noise N = N(θ, σ2) and C = +∞.



Proof. We are to show that the situation (2) of Theorem 1 holds here. From Lemma
2 in [21], we know that the EFHT E[x] of (1+1)-EA on Trap without noise depends on
|x|0 and increases with it.

For any x with |x|0 = i ≥ 1 and x′ with |x′|0 = j, p(x, x′) = 0 if 0 < j < i, and
p(x, x′) = mut(x, x′) if j = 0 or j > i; qk(x, x′) = mut(x, x′) · Prob(δ ≥ i − j) if
j > 0 and qk(x, x

′) = mut(x, x′) ·Prob(δ ≥ i−C) if j = 0, where δ ∼ N(0, 2σ2/k).
Note that C = +∞, thus qk(x, x′) = mut(x, x′) if j = 0. Then, we have

g(x, k) =
∑

x′:E[x′ ]̸=E[x]
(qk(x, x

′)− p(x, x′))(E[x]− E[x′])

=
∑

0<|x′|0=j<i
mut(x, x′) · Prob(δ ≥ i− j) · (E[x]− E[x′])

+
∑

|x′|0=j>i
mut(x, x′) · Prob(δ > j − i) · (E[x′]− E[x]).

Let g(k) = minx/∈X∗ g(x, k), then g(k) > 0. When m > 0, we have that Prob(δ ≥ m)
decreases with k by the property of Gaussian distribution, which implies that for any x,
g(x, k) decreases with k. Thus, g(k) decreases with k, i.e., dg(k)

dk ≤ 0. �

4.3 Empirical Verification

We run (1+1)-EA on the problems to verify the theoretical results. For the (1+1)-EA,
the mutation probability p is set to be 1

n ; for the OneMax and the Trap problems, the
problem size n = 10 and C = n + 1; for the Gaussian noise, θ = 0 and σ = 10.
We investigate the sample size k from 1 to 100; for each k, we run the EA 1, 000
times independently, where each run stops until an optimal solution is found. We use
the average number of iterations and the average number of fitness evaluations as the
estimation of the EFHT and the expected running time (ERT), respectively.

The results are plotted in Figures 1 and 2. For (1+1)-EA optimizing Noisy OneMax
problem, Figure 1 shows that the EFHT can decrease by increasing the sample size k,
however the ERT increases with k, which implies that the decrease rate of the EFHT
cannot catch up with the increase rate of k. On Noisy Trap problem, we can observe
from Figure 2 that both the EFHT and ERT increase with the sample size, which implies
that noise is helpful and using a larger sample size reduces its positive effect. Thus, these
empirical results verify our theoretical analysis.
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Figure 1. Estimated EFHT and ERT for (1+1)-EA on Noisy OneMax with different sample sizes.
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Figure 2. Estimated EFHT and ERT for (1+1)-EA on Noisy Trap with different sample sizes.

5 Conclusion

Sampling has often been employed to smooth noise in evolutionary optimization. Pre-
vious empirical studies showed conflicting results, and sampling thus has not been well
understood. In this paper, we investigate its effectiveness by rigorous running time anal-
ysis. We provide a sufficient condition under which sampling is useless. Using this con-
dition, we prove that sampling is useless for (1+1)-EA optimizing OneMax and Trap
problems under additive Gaussian noise, which is also empirically verified. An intu-
itive interpretation of the theorems is that, noise should be removed for the OneMax
problem, but the extra cost of using sampling is overwhelming; and noise should not
be removed for the Trap problem, thus sampling is useless. Note that, OneMax and
Trap have been recognized as the easiest and the hardest instances, respectively, in the
pseudo-Boolean problem class with a unique global optimum for (1+1)-EA [21]. Thus,
we conjecture that sampling might be useless for a large problem class, which will be a
subject of future research. Our results on the effectiveness of sampling may guide us to
design effective noise handling strategies in real optimization tasks.
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10. Cantú-Paz, E.: Adaptive sampling for noisy problems. In: Proceedings of the 6th ACM Con-
ference on Genetic and Evolutionary Computation. pp. 947–958. Seattle, WA (2004)

11. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
12. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–

697 (2012)
13. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In:

Proceedings of the 14th ACM Conference on Genetic and Evolutionary Computation. pp.
17–24. Philadelphia, PA (2012)

14. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Proceedings of the 6th ACM
Conference on Genetic and Evolutionary Computation. pp. 1088–1099. Seattle, WA (2004)

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science 276(1-2), 51–81 (2002)

16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Arti-
ficial Intelligence 127(1), 57–85 (2001)

17. Iacca, G., Neri, F., Mininno, E.: Noise analysis compact differential evolution. International
Journal of Systems Science 43(7), 1248–1267 (2012)

18. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

19. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms
and Their Computational Complexity. Springer-Verlag, Berlin, Germany (2010)

20. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimiza-
tion. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computa-
tion. pp. 793–800. Dublin, Ireland (2011)

21. Qian, C., Yu, Y., Zhou, Z.H.: On algorithm-dependent boundary case identification for prob-
lem classes. In: Proceedings of the 12th International Conference on Parallel Problem Solv-
ing from Nature. pp. 62–71. Taormina, Italy (2012)

22. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algorithms
using history of search with test of estimation. In: Proceedings of the 2002 IEEE Congress
on Evolutionary Computation. pp. 360–365. Honolulu, HI (2002)

23. Siegmund, F., Ng, A.H., Deb, K.: A comparative study of dynamic resampling strategies
for guided evolutionary multi-objective optimization. In: Proceedings of the 2013 IEEE
Congress on Evolutionary Computation. pp. 1826–1835. Cancun, Mexico (2013)

24. Stagge, P.: Averaging efficiently in the presence of noise. In: Proceedings of the 5th Interna-
tional Conference on Parallel Problem Solving from Nature. pp. 188–197. Amsterdam, The
Netherlands (1998)

25. Syberfeldt, A., Ng, A., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-
objective problems using confidence-based dynamic resampling. European Journal of Op-
erational Research 204(3), 533–544 (2010)

26. Yu, Y., Zhou, Z.H.: A new approach to estimating the expected first hitting time of evolu-
tionary algorithms. Artificial Intelligence 172(15), 1809–1832 (2008)

27. Zhang, Z., Xin, T.: Immune algorithm with adaptive sampling in noisy environments and its
application to stochastic optimization problems. IEEE Computational Intelligence Magazine
2(4), 29–40 (2007)


