Exploring Multi-Action Relationship
in Reinforcement Learning

Han Wang and Yang Yu*

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China
{wangh, yuy}@lamda.nju.edu.cn

Abstract. In many real-world reinforcement learning problems, an agent needs
to control multiple actions simultaneously. To learn under this circumstance, pre-
viously, each action was commonly treated independently with other. However,
these multiple actions are rarely independent in applications, and it could be help-
ful to accelerate the learning if the underlying relationship among the actions is
utilized. This paper explores multi-action relationship in reinforcement learning.
We propose to learn the multi-action relationship by enforcing a regularization
term capturing the relationship. We incorporate the regularization term into the
least-square policy-iteration and the temporal-difference methods, which result
efficiently solvable convex learning objectives. The proposed methods are vali-
dated empirically in several domains. Experiment results show that incorporating
multi-action relationship can effectively improve the learning performance.

1 Introduction

Reinforcement learning techniques intend to enable an agent to learn how to behave
through trial-and-error interactions with its environment. Reinforcement learning has
been an attractive field experiencing progress from theory to practice, with wide ap-
plications, including robotics [2]], computer Go [10], and combinatorial optimization
problems [3].

In many cases, an agent needs to control multiple actions simultaneously. For exam-
ple, an automated driving agent needs to control multiple components in parallel: when
approaching a turning, the agent is supposed to turn the steering wheel, meanwhile re-
lease the accelerator and hit the brake. However, most of previous reinforcement learn-
ing methods treated each action independently with each other, and thus learned each
action separately. The only previous study that explicitly considered multi-action setting
is [9]], where a concurrent action model was proposed to solve multi-action problems
based on SMDP Q-learning.

There are also several studies that are apparently related to this work, but are ac-
tually different, including multi-task, multi-agent, and multidimensional reinforcement
learning. Multi-task reinforcement learning assumes that the agent faces multiple learn-
ing tasks within its lifetime [4]. These approaches often solve different tasks sequen-
tially, rather than the same take concurrently as in the multi-action setting. The need

* This research was supported by the NSFC (61375061, 61223003), Foundation for the Author
of National Excellent Doctoral Dissertation of China (201451)

2 H. Wang and Y. Yu

for adaptive multi-agent systems has led to the development of a multi-agent reinforce-
ment learning field [13]. While multi-agent methods can be used to learn multi-actions,
however, they were developed for solving more general problems [14], but not partic-
ularly for the multi-action problem. Reinforcement learning in multidimensional con-
tinuous action spaces [8] considered an MDP with an N-dimensional action space, thus
provided an effective approach for learning in domains with multidimensional control
variables. To the best of our knowledge, few studies tried to utilize the relationship
among multiple actions.

In this paper, noticing that actions in a task usually have a significant relationship,
we explore utilizing multi-action relationship to improve the learning performance. In-
spired by the supervised multi-task learning [[16} |15] in supervised learning, where the
relationship among labels can be learned through a regularization term, we propose
to capture the relationship among multiple actions by enforcing a regularization term.
Specifically, we model the relationships between actions in a nonparametric manner
as a covariance matrix. By utilizing a matrix-variate normal distribution [5] as a prior
on learning parameters, we incorporate the regularization term into the least-square
policy-iteration and the temporal-difference methods, which result efficiently solvable
convex learning objectives. We then conduct experiments on a 2-action Grid world task,
3-action unmanned aerial vehicle task, and a 3-action helicopter hovering task. Exper-
iment results show that incorporating multi-action relationship can effectively improve
the learning performance.

The rest of this paper is organized into 5 sections: Section 2 introduces the back-
ground; Section 3 presents the proposed methods; The experiment results are reported
in Section 4, and Section 5 concludes this paper.

2 Background

This section introduces the notation in the paper and provides further background on the
standard framework for solving reinforcement learning problems and then formalizes
the problem setting considered in the paper.

2.1 Reinforcement learning

Based on Markov Decision Process (MDP) (S, A, T, R,), where S and A are finite
sets of states and actions, 7" a transition function, R a reward function and -y the discount
factor, the reinforcement learning (RL) agent’s goal is to construct an optimal policy, a
mapping from states to actions, that maximizes the expected cumulative reward. Most
learning algorithms compute optimal policies by learning value functions, which rep-
resent an estimate of how good it is for the agent to be in a certain state (or how good
it is to perform a certain action in that state) [13]]. In this paper, we consider the state
value function and state-action value function defined over all states and all possible
combinations of states and actions. The state value function indicates the expected, dis-
counted, total reward thereafter policy 7* while the state-action value function indicates

Exploring Multi-Action Relationship in Reinforcement Learning 3

the same reward when taking action a in state s. The value functions can be expressed
by recursion according to Bellman equations:

Q" (5,0) = 3 T(s, 0,8) (Rs,a,5') + 7 max Q" (s',a')), "

V*(s) = Z T(s,7*(s),s") (R(s,a,s") +yV*(s)). 2

Since RL is primarily concerned with learning an optimal policy for an MDP assum-
ing that a (perfect) model is not available, RL can be regarded as model free solution
techniques. The transition and reward models are iteratively learned from interaction
with the environment when model-based RL methods are used. In contrast, model-free
RL methods, which we employ in this paper, step right into estimating values for ac-
tions, without even estimating the model of the MDP.

However, in the problem of control, more specifically, MDPs with continuous states
and continuous or discrete actions, our aim is to learn an approximation of the optimal
policy. Consequently, we can estimate 7* directly, or estimate Q* to approximate 7*
indirectly, or even estimate R and T to construct Q* and 7* when needed. In this paper,
we solve the continuous MDP by applying value approximation which uses samples
to approximate Q* directly. When updating the approximations of value functions, we
apply the temporal-difference learning (TD-learning) [12] algorithms to bring some
value in accordance to the immediate reward and the estimated value of the next state
or the state-action pair.

Modeling concurrent decision making, [9]] cast insight in a very general setting, in-
herited from the ability of Semi-Markov Decision Process (SMDP) to model a large
class of decision making problems. This is a more realistic view of the agent environ-
ment interaction where the agent may not have access to the complete model of the
environment. In order to realize this general setting in MDPs, we consider the thought
of recursive decomposition of the action space proposed by [8]], and decompose the
high-dimensional action spaces into a set of sub-action spaces according to the agent’s
inner structure or physical laws (e.g., degree of freedom) in advance. Thus, the agent
can learn the relationships between sub-actions that help the agent improve the future
performance.

In the following subsections, we introduce two typical reinforcement learning algo-
rithms. Our work will adapt these algorithms for the multi-action setting.

2.2 LSPI with value function approximation
Given the Bellman equations for state-action values, the reward can be expressed as:
r(s,a) = Q™(8,a) — VEr(a/|s)p(s|5,0)) [T (8", 0")].

As illustrated in [[11]], if we approximate the state-action value () by a linear function
07 ¢, the immediate reward can be approximate as:

T(S7 CL) ~ 0T¢(37 a) - VEﬂ'(a’\s’)p(s’\s,a) [0T¢(s/7 Cl/)])

4 H. Wang and Y. Yu

where 6 denotes the adaptable parameter vector and ¢ (s, a) is the feature vector in state
s when taking action a. Thus, a new basis function vector is defined as:

P(s,a) = @(s,a) = VEr(w|s)p(s'|s,a) [P(8",0)],
and the expected immediate reward (s, a) is be approximated as:
r(s,a) ~ 01 4p(s, a). 3)

The linear approximation problem of state-action value function Q™ (s, a;) can be
reformed into immediate-reward regression problem according to Eq.(3), and further
can be solved by learning @ in the least-squares framework:

|D|
1
min 7|D| E (Tt_0T¢t)2+C||0||2, @)
t=1

where D is the source of samples. Overall, the LSPI algorithm is summarized in Algo-
rithm [T [7]].

Algorithm 1 LSPI
Initialize Initialize a policy 7, given as @ = 0
Feature vectors are denoted as @

repeat
Set training set D = ()
Initialize state sg
fort =1to7T do
Choose action a using policy 7, observe s} and 7, = (7, ...,77")
Add the training tuple (s, at, ¢, 8) to training set D
end for
Given training set D, update © by solving objective function Eq.()
Update policy 7 by @
until @ converges.

2.3 Gradient temporal-difference learning

Concluded from standard temporal-difference learning (TD-learning), the tabular TD-
learning update is [6]],
V(St) = V(St) + oy - (5,5,

where 0; = 7441 — (V(s¢) — vV (s141)) is the one-step temporal-difference error, and
oy € [0, 1] is a step-size parameter.

When V; is expressed as V (s;) = 0" ¢(s;), the parameter of V; can be solved by
minimizing the following equation,

Bs0) = 5(00° = 3renn = (V(s1) =9V (s011)))

Exploring Multi-Action Relationship in Reinforcement Learning 5

and the gradient with respect to the parameters is
=VeE(s,0) = —(rip1 + YV (se41) = V(se)) - Vo(repr + 7V (se41) — Vise)).
Treating r+1 + YV (st41) to be irrelevant with 6 [6], so that the final gradient is:

—V@E(St, 0) = _(Tt+1 + ’YV(St+1) - V(St)) ! VHV(St)
= —(ris1 +70 " @(s11) — 07 P(s1)) - P(s1)

Then the parameters € is updated by adding this negative gradient with a step size
coefficient.

®

Algorithm 2 Gradient TD Learning

Initialize: Feature function: ¢
Step size: «
Parameters: 0 = 0,t = 0
for each episode do
setd =0
Initialize sq
repeat
Take action from @ with exploration, observe s” and 74
set § = ¢(r + (¢'—)"0) by Eq.B)
0=0+ad
s+ s
until s is terminal
end for

3 Multi-action Relationship Learning

3.1 Problem setting

A multi-action reinforcement learning problem domain D is defined as an MDP
M(S, A, T, R,~). The MDP is as usual, only that the action set A = A; X As X... x Ay
is multi-dimensional, where each A; is a sub-action set. To solve this MDP, an agent
can treat each dimensional action as a separated MDP, and learn multiple MDPs simul-
taneously. Suppose the agent’s action space A is decomposed into N sub-action spaces,
Ai, As, ..., An. Each sub-action space has a value function to be approximated.

We consider the value function approximation by approximating the state-action
value function Q™ (s, a) in linear model:

Q" (s,a) =0T ¢(s,a), (©6)

where 6 denotes the adaptable parameter vector and ¢ is the feature vector in state s
when taking action a. Thus, since there are N sub-action spaces, we formalize IV state-
action value functions according to Eq.(6)). For the i-th sub-action, the state-action value

6 H. Wang and Y. Yu

function Q7 (s, a;) is approximated by the following vector representation:
O;T ¢)1 (S, a;) .

However in many applications, these actions usually have a significant relationship,
learning separated MDPs ignores the relationship. Inspired by the success in multi-task
supervised learning [16]], where the relationship among tasks is essential and helpful, we
hypothesize that explore the relationship among actions in multi-action reinforcement
learning might also be helpful.

However, unlike in multi-task supervised learning, where the relationship among
tasks is often assumed, the relationship among actions can be very different in problems,
and thus must be learned. In this work, we adopt the regularization idea from [[16], and
propose to learn and utilize the action relationship as follows:

1. assume that all sub-actions are unrelated initially;

2. receive state-action pairs according to current policy 7;

3. for each sub-action space, learn the value function using the multi-action relation-
ship, and update the relationship;

4. loop from step 2.

In the following two subsections, we implement the idea into two reinforcement
learning algorithms.

3.2 LSPI with multi-action relationship regularization

Based on Section the immediate reward 7;(s, a;) can be approximated as:
Ti(S, ai) ~ 0?1/),(3, ai).

The linear approximation problem of state-action value function Q7 (s, a;) can be
reformed into immediate-reward regression problem and it can be solved by learning 8,
in the least-squares framework with multi-action regularization.

We assume that the likelihood for 7! at time ¢, given 1);(s,a’), ; and ¢; can be
modeled as:

7“2"(/)1‘(8,57 af;)7 0;, € ~ N<61Td"i(5t7 a’i)v 612)’

where M (m, X) denotes the multivariate normal distribution with mean rm and covari-
ance matrix .
Inspried by [16], the prior on © = (64, ...,0y) can be defined as:

N
Ole; ~ (Hmeﬂomeﬁrd)) ¢(6),

i=1

where I is the d x d identity matrix, Qg4 is the d x 1 zero vector. While the first term is
to penalize the complexity of each column of @ separately, the second term is to model
the structure of @ and is characterized by a matrix-variate distribution:

(@) = MN 4xn (O|04xn, Iq @ £2).

Exploring Multi-Action Relationship in Reinforcement Learning 7

MN (M, A® B) represents the matrix-variate normal distribution, where row covari-
ance matrix A models the relationships between features and column covariance matrix
B models the relationships between each ;. Thus, £2 models the relationships between
multi-action.

As a result, the posterior distribution for @ is proportional to the product of the
prior and the likelihood function:

p(O¥(s,a),r,€ 2) xp(r|¥(s,a),s2,¢€) p(Ole, 2) @)
where r = (r%, ... ,r%, = A TQJY)T, ¥ (s, a) denotes the basis function of all

sub-actions. Taking the negative logarithm of Equation[7} the agent obtain the maximum
a posterior (MAP) estimation of @, and the maximum likelihood estimation (MLE) of
£2 by solving the following problem:

T
1
min 72 — 07 y!)’ Z 10, + tr(©@27'0%) + din(|£2))

©,2>-0 4
- =1 & t=1

where tr(-) denotes the trace of a square matrix, |-| denotes the determinant of a square
matrix, and §2 > 0 means that the matrix 2 is positive semidefinite due to the fact that
2 is defined as a covariance matrix.

The squared loss and the revised regularization are expressed as:

N T
win Z ! 7 (ri -0 y!)” + Sr(@0T) + A2tr(@n—leT)
T2 2
’L:1 t=1 (8)
st. 2>0
tr($2) <1,

where A1 and A2 are regularization parameters.

Since Equation [§]is jointly convex with respect to @ and §2, we can optimize the
objective function with respect to @ when 2 is fixed, and then optimize the objec-
tive function with respect to £2 when @ is fixed alternatively. Then, the parameter
® and multi-action relationship matrix {2 are updated simultaneously to improve the
agent’s performance eventually. And the LSPI with multi-action relationship regular-
ization term is described in Algorithm [3]

3.3 Gradient TD learning with multi-action relationship regularization

Generalized from Section[2.3] in standard temporal-difference learning (TD-learning),
negative gradient can be expressed as:

—VoE(st,0) = —(re41 +YVa(se41) — Vi(se)) - VaVi(se).

When incorporating the multi-action relationship regularization into gradient temporal-
difference learning, we assume that the ith sub-action space maintains the state-action

8 H. Wang and Y. Yu

Algorithm 3 LSPI with Multi-action Relationship Regularization
Initialize Feature functions ¥
Initialize a policy 7, given as @ = 0

Initialize the relationship matrix §2 = %IN

repeat
Set training set D = ()
Initialize state s
fort =1toT do
Choose action a using policy 7, observe s} and 7, = (7, ...,77")
Add the training tuple (s, at, ¢, 8}) to training set D
end for
Given training set D, update @ by solving objective function Eq.(8)
Update £2 by Eq.(TI)
Update policy 7 by @
until 6 converges.

value function Qi(s;, al) = 61 ¢;(s;,at) at time t. The TD error can be rewritten into

N
. 2
B(s)) =Y (ri + 707 di(ser1,ap,1) — 0] di(se,a})” +
=1
A1 Ao

7tr(@@T) + ?tr(@ﬂ_l@T).

Following the method in Section [2.3] the agent can also obtain a maximum a pos-
terior (MAP) estimation of @, and a maximum likelihood estimation (MLE) of {2 by
solving the following problem:

N
g}g; (r + V07 D (Se41,ai1,) — 07 B (st at))” +
A Ty, A2 1T 9)
?tr(@@)+ 3 tr(@N27°07)
st. 2>0
tr(£2) < 1.

This updating process is implemented in every learning step to estimate & and 2
alternatively.

When optimizing & when {2 is fixed, we can formulate the optimization problem
as

N
i i i i i 2
G= Z (Tt + 70?¢t(5t+17 Ayy1) — H;I‘th(st?at))

i=1

+ Mtr(@OT) + Xotr(@271e7T).

Exploring Multi-Action Relationship in Reinforcement Learning 9

Thus the gradient of G with respect to @ is

N
oG i i i i i
90 _2; (Tt + 791'T¢t(3t+17at+1) - 9?@(3%%)) : (10)
tel +20(\ Iy + 20271,
where each e; is the ith column vector of 1.
Then we can optimize the £2 when @ is fixed according to [16]]:
__(©9): (11
tr((@TO)2)

Turning this into a control method by always updating the policy to be greedy with
respect to the current estimate can be concluded as Algorithm 4}

Algorithm 4 Gradient TD Learning with Multi-action Relationship Regularization

Initialize Feature function @
Step sizes o
Parameters @,¢t = 0
for each episode do
=0
Initialize s
repeat
Take action a from 0 with exploration, observe s’ and r¢
set 8 = (ry + (¥'—9)7O) 55 (Equation
O=0+ad
Update £2 using Equation [IT]
s« s
until s is terminal
end for

3.4 Discussions

In general, we set the initial value of §2 to %I ~, Which is corresponding to the assump-
tion that all sub-actions are unrelated initially. However, in some specific domains, there
is some prior knowledge about the relationships between some sub-actions. When this
happens, the corresponding {2 can be represented as equality relations between ele-
ments in £2.

4 Experiments

In this section, we study the multi-action relationship learning in several typical rein-
forcement learning domains and compare it with other multi-action algorithms which
can also be used in multi-action reinforcement learning.

10 H. Wang and Y. Yu

4.1 2-Action GridWorld

The GridWorld domain simulates a path-planning problem for a mobile robot in an
environment with obstacles. The goal of the agent is to navigate from the starting point
to the goal state. We decompose the action orthogonally into its horizontal and vertical
components. In this way, each component represents a sub-action space consisting of
three sub-actions: forward, backward, statically.

Thus, there are 2 sub-action spaces, each of them maintains 3 legal sub-actions. We
compare the multi-action relationship learning algorithm with normal LSPI.

To evaluate the agent’s performance, we report the total reward per episode aver-
aged over the test set and the multi-action correlation matrix. The multi-action corre-
lation matrix shows that the two sub-action spaces are correlated closely. On maps of
6-by-9, based on LSPI, we observe that learning with the multi-action relationship can
converges faster than ignoring the relationship, as showed in Figure[I(a)|

4.2 PST

This domain concerns Persistent Search and Track mission with multiple unmanned
aerial vehicle (UAV) agents. The goal is to perform surveillance and communicate it
back to base in the presence of stochastic communication and health (overall system
functionality) constraints, without losing any UAVs because of running out of fuel. Each
UAV has 4 state dimensions: position of a UAV; integer fuel gty remaining; actuator
status and sensor status. Each UAV can take one of 3 actions: retreat, loiter, advance.

Namely, this domain can be regarded as a centralized multi-agent system with 3
sub-action spaces (3 UAV agents). Based on Gradient TD learning, we evaluate the
performance of the PST system by the total rewards that the agents can obtain.

To demonstrate the importance of our idea, the average reward in the first 200 thou-
sand steps are showed in Figure [I(b)] The result shows that multi-action relationship
learning is significantly better than ignoring the relationship, as the steps increases.

4.3 Helicopter

An implementation of a simulator that models one of the Stanford autonomous heli-
copters (an XCell Tempest helicopter) in the flight regime close to hover is represented
in this domain. Some pilots consider hovering the most challenging aspect of helicopter
flight. Generally, the pilot’s use of control inputs in a hover is as follows: the cyclic
is used to eliminate drift in the horizontal plane; the collective is used to maintain de-
sired altitude; and the tail rotor (or anti-torque system) pedals are used to control nose
direction or heading [1]]. It is the interaction of these controls that can make learning
to hover difficult, since often an adjustment in any one control requires the adjustment
of the other two. We decompose the action orthogonally into its forward, sideways and
downward components.

Analogically, this domain can be regarded as a centralized control system with
3 sub-action spaces when conducting Gradient TD learning. It can be observed that
tracking the relationships between helicopter’s 3 DOFs outperforms ignoring the rela-
tionship, as it converges fasters shown in Figure|1(c)

Exploring Multi-Action Relationship in Reinforcement Learning 11

To demonstrate the learning effect intuitively, the helicopter’s attitude is recorded
throughout the two learning processes. As Figure [2] shows, the helicopter reached to
a relatively stable position (0,0, 0) more quickly. Each point in the Figure [2 denotes
the helicopter’s position during the experiment. Apparently, learning the multi-action
relationship can improve the performance in the long run and with less fluctuation.

0.9 - 450 +
et T
08 etk kR e 100 e
O e hy /
Ry P g +
+ as0 ’
07 R /
F * A
Sosby ¥, 2 « ,
ER B B # X
g T g 250 +* *
§os : ' £ it ,_n’
) 2
LN g 20 + ,
Soalid $ an
g " g 150 Al x"’*
® o3 s F ot
] 100 By i
oz L
i 50 *¥*
" Fod
01 =+ ~ muli-acton regularization ol =+ = muit-acion reganzation
= #% = no regularization — % = noreqularization
-50
o 5 5 20 25 30 0 5 10 15 20 25
number of episodes x 20 number of steps x 8000
(a) 2-Action Gridworld (b) 3-Agent PST
1164 % 107 +
- +
F T b
-1.166 »I *
X
1168 ¥)
117 LA
- 2 %4
£ »
H ¢ *
g #
S 117 v »
£ # *
5 1178 X
] ¥
1178 Sox
* l’
1.18 +
*
Fix
182 e ¥ — & — mut-acton regdarization
* s = % — noregularization
1184
o 5 20 25

10 15
number of episodes x 20

(c) 3-Action Helicopter

Fig. 1. Average rewards on 2-Action Gridworld, 3-Agent PST and 3-Action Helicopter.

sideways position 5 a0 forward position

sideways position 5 .10 forward position

(a) multi-action regularization (b) no multi-action regularization

Fig. 2. Flight positions on 3-Action Helicopter Hover problem.

12 H. Wang and Y. Yu

4.4 On the multi-action relationship

During the experiments described above, we track the relationships matrix’s changing
by using the sum of absolute values of £2 elements. It can be observed from Figure 3]
that the multi-action correlations are learned along with the reinforcement learning. We
can also note that, as long as the correlation is growing, the performance of multi-action

methods are superior, by cross-comparison with Figure [3(a)] 3(b)]and

3

4 F T 56 5-0 00

of D el
w
&
®
\
&
es of Q elements
o o o & < @&
o
Q
,
®

?
°

AN
sum of absolute value
-
©
R

sum of absolute values

2 4 6 8 10 12 14 16 18 2 0 5 10 15 20 2
number of episodes x 20 number of episodes x 8000

(a) 2-Action Gridworld (b) 3-Agent PST

_e ©-0 g-0-2-0-8 0-G O-

lues of £ elements
0
\

um of absolute val
)

2 4 6 8 10 12 14 16 18 20
number of episodes x 20

(c) 3-Action Helicopter

Fig. 3. Sum of Absolute Values of §2 Elements.

5 Conclusion

In this paper, we explore multi-action relationship in learning multi-action reinforce-
ment learning, where multiple actions are required to be controlled simultaneously. By
employing the matrix-variate distribution, we enforce a regularization term capturing
the multi-action relationship and obtain efficiently solvable convex learning objectives
for value function approximation reinforcement learning algorithms. We incorporate
the regularization term into the LSPI and the Gradient TD methods, which are empiri-
cally demonstrated to improve the learning performance. In the future, we will explore
the multi-action relationship in more reinforcement learning approaches.

Exploring Multi-Action Relationship in Reinforcement Learning 13

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

Abbeel, P., Ganapathi, V., Ng, A.Y.: Learning vehicular dynamics, with application to mod-
eling helicopters. In: Weiss, Y., Scholkopf, B., Platt, J. (eds.) Advances in Neural Informa-
tion Processing Systems 18, pp. 1-8. MIT Press, Cambridge, MA (2005)

Cheng, G., Hyon, S.H., Morimoto, J., Ude, A., Hale, J.G., Colvin, G., Scroggin, W., Jacob-
sen, S.C.: Cb: A humanoid research platform for exploring neuroscience. In: Proceedings of
the 6th IEEE-RAS International Conference on Humanoid Robots. pp. 182-187. Genova,
Italy (2006)

Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53
— 66 (1997)

Fumihide, T., Masayuki, Y.: Multitask reinforcement learning on the distribution of mdps.
In: Proceedings of the 2003 IEEE International Symposium on Computational Intelligence
in Robotics and Automation. pp. 1108-1113. Kobe, Japan (2003)

Gupta, A.K., Nagar, D.K.: Matrix Variate Distributions. Chapman and Hall/CRC, Florida
(1999)

van Hasselt, H.: Reinforcement learning in continuous state and action spaces (2012)
Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning
Research 4, 1107-1149 (2003)

Pazis, J., Lagoudakis, M.G.: Reinforcement learning in multidimensional continuous action
spaces. In: Proceedings of the 2011 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning. Paris, France (2011)

Rohanimanesh, K.: Concurrent Decision Making in Markov Decision Processes. Ph.D. the-
sis, University of Massachusetts Amherst (2006)

Silver, D., Sutton, R.S., Miiller, M.: Temporal-difference search in computer go. Machine
Learning 87(2), 183-219 (2012)

Sugiyama, M.: Statistical Reinforcement Learning: Modern Machine Learning Ap-
proaches. Chapman and Hall/CRC, Florida (2015)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cam-
bridge, Massachusetts (1998)

Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State-of-the-Art. Springer,
Berlin (2012)

Wunder, M., Littman, M.L., Babes, M.: Classes of multiagent g-learning dynamics with
e-greedy exploration. In: Proceedings of the 27th International Conference on Machine
Learning. pp. 1167—1174. Haifa, Israel (2010)

Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Transactions
on Knowledge and Data Engineering 26(8), 1819-1837 (2014)

Zhang, Y., Yeung, D.Y.: A regularization approach to learning task relationships in multi-
task learning. ACM Transactions on Knowledge Discovery from Data 8(3), 1-31 (2014)

	Lecture Notes in Computer Science
	Introduction
	Background
	Reinforcement learning
	LSPI with value function approximation
	Gradient temporal-difference learning

	Multi-action Relationship Learning
	Problem setting
	LSPI with multi-action relationship regularization
	Gradient TD learning with multi-action relationship regularization
	Discussions

	Experiments
	2-Action GridWorld
	PST
	Helicopter
	On the multi-action relationship

	Conclusion

