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Abstract—Evolutionary algorithms are a large family
of heuristic optimization algorithms. They are problem
independent, and have been applied in various optimiza-
tion problems. Thus general analysis tools are especially
appealing for guiding the analysis of evolutionary algo-
rithms in various situations. This paper develops the switch
analysis approach for running time analysis of evolutionary
algorithms, revealing their average computational com-
plexity. Unlike previous analysis approaches that analyze
an algorithm from scratch, the switch analysis makes use
of another well analyzed algorithm and, by contrasting
them, can lead to better results. We investigate the power of
switch analysis by comparing it with two commonly used
analysis approaches, the fitness level method and the drift
analysis. We define the reducibility between two analysis
approaches for comparing their power. By the reducibility
relationship, it is revealed that both the fitness level method
and the drift analysis are reducible to the switch analysis, as
they are equivalent to specific configurations of the switch
analysis. We further show that the switch analysis is not
reducible to the fitness level method, and compare it with
the drift analysis on a concrete analysis case (the Discrete
Linear Problem). The reducibility study might shed some
light on the unified view of different running time analysis
approaches.

Index Terms—Evolutionary algorithms, running time
complexity, analysis approaches, switch analysis

I. INTRODUCTION

Evolutionary algorithms (EAs) [1] are a large family
of general purpose randomized heuristic optimization
algorithms, involving not only the algorithms originally
inspired by the evolution process of natural species, i.e.,
genetic algorithms, evolutionary strategies and genetic
programming, but also many other nature inspired
heuristics such as simulated annealing and particle
swarm optimization. In general, most EAs start with a
random population of solutions, and then iteratively
sample population of solutions, where the sampling
depends only on the very previous population and thus
satisfies the Markov property. In this paper, we study
EAs with the Markov property.

As a general purpose technique, EAs are expected
to be applied to solve various problems, even those
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that were never met before. This situation is different
from the traditional mathematical programming and
algorithm studies in which algorithms have bounded
problem ranges, e.g. in convex optimization all prob-
lems are convex, and sorting algorithms apply on sort-
ing problems. Therefore, to gain high confidence of
applying EAs, we need evidence that EAs will work well
in future problems. There have been many success-
ful application cases, e.g., antenna design [17], circuit
optimization [25], and scheduling [30]. These cases,
however, serve more as intuitions from practice rather
than rigorous evidences. Theoretical justifications to
the effectiveness of EAs are, therefore, of great impor-
tance.

There has been a significant rise of theoretical studies
on EAs in the recent decade. Increasing number of the-
oretical properties have being discovered, particularly
on the running time, which is the average computation
complexity of EAs and is thus a core theoretical issue.
Probe problems (e.g. pseudo-Boolean linear problems
[9]) are widely employed to facilitate the analysis on
questions such as how efficient EAs can be and what
parameters should be used. Interestingly, conflicting
conclusions have been disclosed. For example, using
crossover operators in EAs has been shown quite nec-
essary in some problems (e.g. [8], [18], [28]), but is
undesired in some other problems (e.g. [23]); using
a large population can be helpful in some cases (e.g.
[15]), and unhelpful in some other cases (e.g. [2]). These
disclosures also imply the sophisticated situation we
are facing with EAs. Because of the large variety of
problems, general analysis tools are quite appealing, in
order to guide the analysis of EAs on more problems
rather than ad hoc analyses starting from scratch.

A few general analysis approaches have been de-
veloped, including the fitness level method [31] and
the drift analysis [14]. Fitness level method divides the
input space into levels, captures the transition proba-
bilities between levels, and then bounds the expected
running time from the transition probabilities. Drift
analysis measures the progress of every step of an EA
process1, and then bounds its expected running time
by dividing the total distance by the step size.

This work presents the switch analysis approach for
running time analysis of EAs, extending largely our
preliminary attempt [33]. Different from the existing

1An EA process means the running of an EA on a problem instance.
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approaches, switch analysis compares the expected
running time of two EA processes. For analyzing a given
EA on a given problem, switch analysis can be used
to compare its expected running time with that of a
reference EA process. The reference process can be
particularly designed to be easily analyzable, so that
the whole analysis can be simplified. An early form of
switch analysis has been applied in the proof of the
Theorem 4 of [11]. The switch analysis presented in
this work is more general. We demonstrate the use of
switch analysis by presenting a re-proof of the expected
running time lower bound of any mutation-based EA
on the Boolean function class with a unique global
optimum, which extends our previous work [22] and
has been partially proved in [27] by fitness level method
and has been proved with stochastic dominance in [32]
by drift analysis.

An interesting question is that how these general
analysis approaches relate to each other. To investi-
gate this question, we formally characterize an anal-
ysis approach, and define the reducibility between two
approaches. Roughly speaking, an approach A is re-
ducible to B if B can derive at least the same tight
bound as A while requiring no more information,
which implies that B is at least as powerful as A.
We then prove that both the fitness level method and
the drift analysis are reducible to the switch analysis.
Meanwhile, we also find that switch analysis is not
reducible to the fitness level method. We compare the
switch analysis with the drift analysis on analyzing the
(1+1)-EA solving the Discrete Linear Problem, where we
also derived a new upper bound of its running time.
These results not only disclose the power of the switch
analysis, but also hint at a unified view of different
running time analysis approaches.

The rest of this paper is organized into 7 sections.
After the introduction of preliminaries in Section II,
Section III presents the switch analysis. Section IV then
demonstrates an application of switch analysis. Section
V describes the formal characterization of analysis ap-
proaches and defines the reducibility relationship. The
reducibility between switch analysis and fitness level
method is studied in Section VI, and the reducibility
between switch analysis and drift analysis is studied in
Section VII. Finally, Section VIII concludes.

II. PRELIMINARIES

A. Evolutionary Algorithms

Evolutionary algorithms (EAs) [1] simulate the nat-
ural evolution process by considering two key factors,
variational reproduction and superior selection. They
repeatedly reproduce solutions by varying currently
maintained ones and eliminate inferior solutions, such
that they improve the solutions iteratively. Although
there exist many variants, the common procedure of
EAs can be described as follows:

1. Generate an initial solution set (called population);

2. Reproduce new solutions from the current ones;
3. Evaluate the newly generated solutions;
4. Update the population by removing bad solutions;
5. Repeat steps 2-5 until some criterion is met.

In Algorithm 1, we describe the (1+1)-EA, which is a
drastically simplified and deeply analyzed EA [9], [10].
It employs the population size 1, and uses mutation
operator only.

Algorithm 1 ((1+1)-EA)
Given solution length n and pseudo-Boolean objective
function f , (1+1)-EA maximizing f consists of the
following steps:

1. s :=choose a solution from S = {0, 1}n uniformly
at random.

2. s′ := mutation(s).
3. If f(s′) ≥ f(s), s := s′.
4. Terminate if s is optimal.
5. Goto step 2.

where mutation(·) : S → S is a mutation operator.
The mutation is commonly implemented by the one-

bit mutation or the bit-wise mutation:
one-bit mutation for a solution, randomly choose one
of the n bits, and flip (0 to 1 and vice versa) the chosen
bit.
bit-wise mutation for a solution of length n, flip (0 to
1 and vice versa) each bit with probability 1

n .
Note that the (1+1)-EA with one-bit mutation is usually
called randomized local search (RLS). However, we still
treat it as a specific EA in this paper for convenience.

B. Markov Chain Model

During the running of an EA, the offspring solutions
are generated by varying the maintained solutions.
Thus once the maintained solutions are given, the off-
spring solutions are drawn from a fixed distribution, re-
gardless of how the maintained solutions are arrived at.
This process is naturally modeled by a Markov chain,
which has been widely used for the analysis of EAs [14],
[34]. A Markov chain is a sequence of variables, {ξt}+∞t=0 ,
where the variable ξt+1 depends only on the variable ξt,
i.e., P (ξt+1 | ξt, ξt−1, . . . , ξ0) = P (ξt+1 | ξt). Therefore, a
Markov chain can be fully captured by the initial state
ξ0 and the transition probability P (ξt+1 | ξt).

Denote S as the solution space of a problem. An
EA maintaining m solutions (i.e., the population size
is m) has a search space X ⊆ Sm (of which the exact
size can be found in [29]). There are several possible
ways of modeling the EAs as Markov chains. The most
straightforward one might be taking X as the state
space of the Markov chain, denoted as {ξt}+∞t=0 where
ξt ∈ X . Let X ∗ ⊂ X denote the optimal region, in which
a population contains at least one optimal solution.
It should be clear that a Markov chain models an EA
process, i.e., the process of the running of an EA on
a problem instance. In the rest of the paper, we will
describe a Markov Chain {ξt}+∞t=0 with state space X as
“ξ ∈ X ” for simplicity.
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The goal of the analysis is to disclose how soon
the chain ξ (and thus the corresponding EA process)
falls into X ∗ from some initial state. Particularly, we
consider the performance measure expected first hitting
time defined below:

Definition 1 (Conditional first hitting time, CFHT)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , starting from time t0 where ξt0 = x, let τ be a random
variable that denotes the hitting events:

τ = 0 : ξt0 ∈ X ∗,
τ = i : ξt0+i ∈ X ∗ ∧ ξj /∈ X ∗ (j = t0, . . . , t0 + i− 1).

The conditional expectation of τ ,

E[[τ | ξt0 = x]] =
∑+∞

i=0
i · P (τ = i),

is called the conditional first hitting time (CFHT) of the
Markov chain from t = t0 and ξt0 = x.

Definition 2 (Distribution-CFHT, DCFHT)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , starting from time t0 where ξt0 is drawn from a state
distribution π, the expectation of the CFHT,

E[[τ | ξt0 ∼ π]] = Ex∼π[[τ | ξt0 = x]]

=
∑

x∈X
π(x)E[[τ | ξt0 = x]],

is called the distribution-conditional first hitting time
(DCFHT) of the Markov chain from t = t0 and ξt0 ∼ π.

Definition 3 (Expected first hitting time, EFHT)
Given a Markov chain ξ ∈ X and a target subspace
X ∗ ⊂ X , the DCFHT of the chain from t = 0 and uniform
distribution πu,

E[[τ ]] = E[[τ | ξ0 ∼ πu]] = Ex∼πu
[[τ | ξ0 = x]]

=
∑

x∈X
E[[τ | ξ0 = x]]/|X |,

is called the expected first hitting time (EFHT) of the
Markov chain.

The EFHT of an EA measures the average number of
generations (iterations) that it takes to find an optimal
solution. Within one generation, an EA takes time to
manipulate and evaluate solutions that relate to the
number of solutions it maintains. To reflect the com-
putational time complexity of an EA, we count the
number of evaluations to solutions, i.e., EFHT × the
population size, which is called the expected running
time of the EA.

We call a chain absorbing (with a slight abuse of the
term) if all states in X ∗ are absorbing states.

Definition 4 (Absorbing Markov Chain)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , ξ is said to be an absorbing chain, if

∀x ∈ X ∗,∀t ≥ 0 : P (ξt+1 6= x | ξt = x) = 0.

Given a non-absorbing chain, we can construct a
corresponding absorbing chain that simulates the non-
absorbing chain but stays in the optimal state once it

has been found. The EFHT of the constructed absorb-
ing chain is the same as the EFHT of its corresponding
non-absorbing chain. We then assume all chains con-
sidered in this paper are absorbing.

The following lemma on properties of Markov chains
[20] (Theorem 1.3.5, page 17) will be used in this paper.

Lemma 1
Given an absorbing Markov chain ξ∈X and a target sub-
spaceX ∗⊂X , we have about CFHT that E[[τ |ξt∈X ∗]]=0,

∀x /∈ X ∗ : E[[τ | ξt = x]]

= 1 +
∑

y∈X
P (ξt+1 = y | ξt = x)E[[τ | ξt+1 = y]],

and about DCFHT that,

E[[τ | ξt ∼ πt]] = Ex∼πt
[[τ | ξt = x]]

= 1−πt(X ∗) +
∑

x∈X−X∗,y∈X
πt(x)P (ξt+1 =y|ξt=x)E[[τ |ξt+1 =y]]

= 1− πt(X ∗) + E[[τ | ξt+1 ∼ πt+1]],

where πt+1(x) =
∑
y∈X πt(y)P (ξt+1 = x | ξt = y).

Note that the first two “y ∈ X ” in Lemma 1 can be
replaced by “y ∈ X − X ∗” as in the book [20], since
E[[τ |ξt∈X ∗]] = 0; and “x ∈ X − X ∗” can be replaced by
x ∈ X , since P (ξt+1 ∈ X − X ∗|ξt ∈ X ∗) = 0.

III. SWITCH ANALYSIS

Given two Markov chains ξ and ξ′, let τ and τ ′

denote the hitting events of the two chains, respec-
tively. We present the switch analysis in Theorem 1
that compares the DCFHT of the two chains, i.e.,
E[[τ | ξ0 ∼ π0]] and E[[τ ′ | ξ′0 ∼ π

φ
0 ]], where π0 and πφ0 are

their initial state distribution. Since we are dealing with
two chains, which may have different state spaces, we
utilize aligned mappings as in Definition 5.

Definition 5 (Aligned Mapping)
Given two spaces X and Y with target subspaces X ∗ and
Y∗, respectively, a function φ : X → Y is called
(a) a left-aligned mapping if ∀x ∈ X ∗ : φ(x) ∈ Y∗;
(b) a right-aligned mapping if ∀x ∈ X−X ∗ : φ(x) /∈ Y∗;
(c) an optimal-aligned mapping if it is both left-aligned
and right-aligned.

Note that the function φ : X → Y implies that
for all x ∈ X there exists one and only one y ∈ Y
such that φ(x) = y, but it may not be an injective or
surjective mapping. To simplify the notation, we denote
the mapping φ−1(y) = {x ∈ X | φ(x) = y} as the inverse
solution set of the function. Note that φ−1(y) can be
the empty set for some y ∈ Y . We also extend the
notation of φ to have set input, i.e., φ(X) = ∪x∈X{φ(x)}
for any set X ⊆ X and φ−1(Y ) = ∪y∈Y φ−1(y) for any set
Y ⊆ Y . By the set extension, we have that, if φ is a left-
aligned mapping, X ∗ ⊆ φ−1(Y∗); if φ is a right-aligned
mapping, φ−1(Y∗) ⊆ X ∗; and if φ is an optimal-aligned
mapping, X ∗ = φ−1(Y∗).

The main theoretical result is presented in Theorem
1. The idea is that, if we can bound the difference of the
two chains on the one-step change of the DCFHT, we
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can obtain the difference of their DCFHT by summing
up all the one-step differences. Following the idea, we
find that the calculation of the one-step difference can
be drastically simplified: the one-step transitions of
the two chains under the same distribution of one
chain (i.e., πt in Eq.(1)) and on the same ground of
CFHT of the other chain (i.e., E[[τ ′]] in Eq.(1)). The one-
step differences, ρt, are then summed up to bound the
difference of their DCFHT. Note that the right (or left)-
aligned mapping is used to allow the two chains to have
different state spaces.

Theorem 1 (Switch Analysis)
Given two absorbing Markov chains ξ ∈ X and ξ′ ∈ Y ,
let τ and τ ′ denote the hitting events of ξ and ξ′, respec-
tively, and let πt denote the distribution of ξt. Given a
series of values {ρt ∈ R}+∞t=0 with ρ =

∑+∞
t=0 ρt and a right

(or left)-aligned mapping φ : X → Y , if E[[τ | ξ0 ∼ π0]] is
finite and

∀t :
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≤ (or ≥)
∑
u,y∈Y

πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]]

+ ρt, (1)

where πφt (y) = πt(φ
−1(y)) =

∑
x∈φ−1(y) πt(x), we have

E[[τ | ξ0 ∼ π0]] ≤ (or ≥)E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρ.

For proving the theorem, we define the intermediate
Markov chain ξk for k ∈ {0, 1, · · · }. Denote the one-step
transition of ξ as tr, and the one-step transition of ξ′

as tr′, ξk is a Markov chain that

1) is initially in the state space X and has the same
initial state distribution as ξ, i.e., πk0 = π0;

2) uses transition tr at time {0, 1, . . . , k− 1} if k > 0,
i.e., it is identical to the chain ξ at the first k steps;

3) switches to the state space Y at time k, which is
by mapping the distribution πk of states over X
to the distribution πφk of states over Y via φ;

4) uses transition tr′ from time k, i.e., it then acts
like the chain ξ′ from time 0.

For the intermediate Markov chain ξk, its first hitting
event τk is counted as ξkt ∈ X ∗ for t = 0, 1, . . . , k−1 and
as ξkt ∈ Y∗ for t ≥ k. Therefore the first hitting event of
ξ0 is the same as ξ′ and ξ∞ is the same as ξ.

Lemma 2
Given two absorbing Markov chains ξ ∈ X and ξ′ ∈ Y ,
and a right-aligned mapping φ : X → Y , let τ and
τ ′ denote the hitting events of ξ and ξ′, respectively,
and let πt denote the distribution of ξt, we have for the
hitting events τk of the intermediate chain ξk with any

k ∈ {0, 1, · · · } that

E[[τk | ξk0 ∼ π0]] = k −
∑k−1

t=0
πt(X ∗)

+
∑

x∈X ,y∈Y
πk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]]

−
∑

x∈X∗,y∈Y
πk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]].

Proof. Let πk denote the distribution of ξk. For the
chain ξk at time k− 1, since it will be mapped into the
space Y from time k via φ, by Lemma 1 we have

E[[τk | ξkk−1 ∼ πkk−1]] = 1− πkk−1(X ∗)

+
∑

x∈X−X∗,y∈Y
πkk−1(x)P (ξkk =y|ξkk−1 =x)E[[τk|ξkk =y]].

The chain ξk at time k − 1 acts like the chain ξ,
thus P (ξkk = y|ξkk−1 = x) = P (ξk ∈ φ−1(y)|ξk−1 = x). It
acts like the chain ξ′ from time k, thus E[[τk|ξkk = y]] =
E[[τ ′|ξ′0 = y]]. We then have

E[[τk | ξkk−1 ∼ πkk−1]] = 1− πkk−1(X ∗) (2)

+
∑

x∈X ,y∈Y
πkk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]]

−
∑

x∈X∗,y∈Y
πkk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]].

Note that the last minus term of Eq.(2) is necessary,
because that if ξkk−1 ∈ X ∗ the chain should stop
running, but the right-aligned mapping may map states
in X ∗ to Y − Y∗ and continue running the chain ξ′,
which is excluded by the last minus term.

By Lemma 1 we have that

E[[τk | ξk0 ∼ πk0 ]] = 1− πk0 (X ∗) + E[[τk | ξk1 ∼ πk1 ]]

= . . .

= (k − 1)−
∑k−2

t=0
πkt (X ∗) + E[[τk | ξkk−1 ∼ πkk−1]].

Applying Eq.(2) to the last term, results in that

E[[τk | ξk0 ∼ πk0 ]] = k −
∑k−1

t=0
πkt (X ∗)

+
∑

x∈X ,y∈Y
πkk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]]

−
∑

x∈X∗,y∈Y
πkk−1(x)P (ξk∈φ−1(y)|ξk−1 =x)E[[τ ′|ξ′0 =y]].

For any t < k, since the chain ξk and ξ are identical
before the time k, we have πkt = πt, applying which
obtains the lemma.

Proof of Theorem 1 (“≤” case).
Firstly we prove the “≤” case which requires a right-

aligned mapping.
For any t < k, since the chain ξk and ξ are identical

before the time k, we have πt = πkt , and thus

∀t < k : πkt (X ∗) = πt(X ∗) ≥ πt(φ−1(Y∗)) = πφt (Y∗),(3)

since φ is right-aligned and thus φ−1(Y∗) ⊆ X ∗.
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We prove the theorem by induction on the k of the
intermediate Markov chain ξk.
(a) Initialization is to prove the case k = 0, which
is trivial since ξ0 = ξ′ and thus E[[τ0 | ξ00 ∼ π0]] =
E[[τ ′ | ξ′0 ∼ π

φ
0 ]].

(b) Inductive Hypothesis assumes that for all k ≤
K − 1 (K ≥ 1),

E[[τk | ξk0 ∼ π0]] ≤ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑k−1

t=0
ρt,

we are going to prove

E[[τK | ξK0 ∼ π0]] ≤ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑K−1

t=0
ρt. (4)

Applying Lemma 2,

E[[τK | ξK0 ∼ π0]] = K −
∑K−1

t=0
πt(X ∗)

+
∑

x∈X ,y∈Y
πK−1(x)P (ξK ∈ φ−1(y)|ξK−1 = x)E[[τ ′|ξ′0 = y]]

−
∑

x∈X∗,y∈Y
πK−1(x)P (ξK ∈ φ−1(y)|ξK−1 = x)E[[τ ′|ξ′0 = y]]

we denote ∆(K) =
∑
x∈X∗,y∈Y πK−1(x)P (ξK ∈

φ−1(y)|ξK−1 = x)E[[τ ′|ξ′0 = y]], the derivation continues
as

≤ K −
∑K−1

t=0
πt(X ∗) + ρK−1 −∆(K)

+
∑
u,y∈Y

πφK−1(u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]]

≤ K −
∑K−2

t=0
πt(X ∗)− πφK−1(Y∗) + ρK−1 −∆(K)

+
∑
u,y∈Y

πφK−1(u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]],

where the 1st inequality is by Eq.(1) and the 2nd
inequality is by Eq.(3). Meanwhile, by Lemma 2 we have

E[[τK−1 | ξK−10 ∼ π0]]

= (K − 1)−
∑K−2

t=0
πt(X ∗)−∆(K − 1)

+
∑

x∈X ,y∈Y
πK−2(x)P (ξK−1 ∈ φ−1(y)|ξK−2 = x)E[[τ ′|ξ′0 = y]]

= (K − 1)−
∑K−2

t=0
πt(X ∗)−∆(K − 1)

+
∑
y∈Y

πφK−1(y)E[[τ ′|ξ′0 = y]]

= K −
∑K−2

t=0
πt(X ∗)− πφK−1(Y∗)−∆(K − 1)

+
∑
u,y∈Y

πφK−1(u)P (ξ′1 = y | ξ′0 = u)E[[τ ′|ξ′1 = y]],

where the last two equalities are by Lemma 1. Substi-
tuting this equation into the above inequality obtains

E[[τK | ξK0 ∼ π0]]

≤ E[[τK−1 | ξK−10 ∼ π0]] + ρK−1 + ∆(K − 1)−∆(K)

≤ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑K−1

t=0
ρt + ∆(K − 1)−∆(K), (5)

where the last inequality is by the inductive hypothesis.
On ∆(K− 1)−∆(K), note our definition of absorption
that ∀x ∈ X ∗ : P (ξt+1 6= x|ξt = x) = 0, we have

∀x ∈ X ∗ : πK−1(x) ≥ πK−2(x),

and

∆(K) =
∑

x∈X∗
πK−1(x)E[[τ ′|ξ′0 = φ(x)]].

So we have

∆(K − 1)−∆(K) =
∑
x∈X∗

πK−2(x)E[[τ ′|ξ′0 = φ(x)]]

−
∑
x∈X∗

πK−1(x)E[[τ ′|ξ′0 = φ(x)]]

≤ 0

So that Eq.(5) results in Eq.(4).
(c) Conclusion from (a) and (b), it holds

E[[τ∞ | ξ∞0 ∼ π0]] ≤ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑+∞

t=0
ρt.

Since E[[τ | ξ0 ∼ π0]] is finite, E[[τ∞ | ξ∞0 ∼ π0]] =
E[[τ | ξ0 ∼ π0]]. Finally, by ρ =

∑+∞
t=0 ρt, we get

E[[τ | ξ0 ∼ π0]] ≤ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρ.

Proof of Theorem 1 (“≥” case).
The “≥” case requires a left-aligned mapping. Its

proof is similar to that of the “≤” case, and is easier
since the last minus term of Eq.(2) is zero.

Since φ is left-aligned and thus X ∗ ⊆ φ−1(Y∗), we
have that πt(X ∗) ≤ πt(φ−1(Y∗)) = πφt (Y∗).

The theorem is again proved by induction. The ini-
tialization is the same as for the “≤” case. The inductive
hypothesis assumes that for all k ≤ K − 1 (K ≥ 1),

E[[τk | ξk0 ∼ π0]] ≥ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑k−1

t=0
ρt.

Applying Lemma 2,

E[[τK | ξK0 ∼ π0]] = K −
∑K−1

t=0
πt(X ∗)

+
∑

x∈X ,y∈Y
πK−1(x)P (ξK ∈ φ−1(y)|ξK−1 = x)E[[τ ′|ξ′0 = y]]

by Eq.(1) with “≥” and πK−1(X ∗) ≤ πφK−1(Y∗),

≥ K −
∑K−2

t=0
πt(X ∗)− πφK−1(Y∗) + ρK−1

+
∑
u,y∈Y

πφK−1(u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]]

Meanwhile, by Lemma 1 and Lemma 2, we also have

E[[τK−1 | ξK−10 ∼ π0]] = K −
K−2∑
t=0

πt(X ∗)− πφK−1(Y∗)

+
∑
u,y∈Y

πφK−1(u)P (ξ′1 = y | ξ′0 = u)E[[τ ′|ξ′1 = y]].

Therefore,

E[[τK | ξK0 ∼ π0]] ≥ E[[τK−1 | ξK−10 ∼ π0]] + ρK−1
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≥ E[[τ ′ | ξ′0 ∼ π
φ
0 ]] +

∑K−1

t=0
ρt,

which proves the induction. Therefore, we come to the
conclusion that the theorem holds, using the argument
of the “≤” case.

Though the theorem is proved by treating the state
spaces X and Y as discrete spaces, we can show that
the theorem still holds if X or (and) Y is continuous,
by replacing the sum over the state space with the
integral, which does not affect the inductive proof. We
only present the discrete space version since this paper
studies discrete optimizations.

Using the theorem to compare two chains, we can
waive the long-term behavior of one chain, since Eq.(1)
does not involve the term E[[τ | ξ0 = y]]. Therefore, the
theorem can simplify the analysis of an EA by compar-
ing it with an easy-to-analyze one.

When the Markov chain ξ′ ∈ Y is homogeneous,
i.e., the transition is static regardless of the time, we
can have a compact expression of the switch analysis
theorem, rewriting Eq.(1) as

∀t : ρt ≥ (or ≤)
∑
y∈Y

E[[τ ′ | ξ′0 = y]]·

(
P (φ(ξt+1) = y | ξt ∼ πt)− P (ξ′t+1 = y | ξ′t ∼ π

φ
t )
)
.

By this expression, we can interpret that ρt bounds the
sum of the weighted distribution difference of the two
intermediate chains ξt+1 and ξt at time t+1, where the
weight is given by the CFHT of the chain ξ′. Because
ξt+1 and ξt are different only at time t, the ρt actually
bounds the difference of using transition tr and tr′

at time t. Thus, the difference of the DCFHT of the
original two chains ξ and ξ′ (i.e., ρ) is the sum of the
difference of using tr and tr′ at each time (i.e.,

∑+∞
t=0 ρt).

IV. SWITCH ANALYSIS FOR CLASS-WISE ANALYSIS

This section gives an example of applying switch
analysis. The mutation-based EA in Algorithm 2 is a
general scheme of mutation-based EAs. It abstracts
a general population-based EA which only employs
mutation operator, including many variants of EAs with
parent and offspring populations as well as parallel EAs
as introduced in [27], [32]. The UBoolean in Definition
6 is a wide class of nontrivial pseudo-Boolean func-
tions.

In the following, we give a re-proof using the
switch analysis that the expected running time of
any mutation-based EA with mutation probability p ∈
(0, 0.5) on UBoolean function class (Definition 6) is at
least as large as that of (1+1)-EAu (Algorithm 3) on the
OneMax problem (Definition 7). Doerr et al. [5] first
proved that the expected running time of (1+1)-EA with
mutation probability 1

n on UBoolean is at least as large
as that on OneMax. Later, this result was extended to
arbitrary mutation-based EA with mutation probability
1
n in [27] by using fitness level method and (1+1)-EA
with arbitrary mutation probability p ∈ (0, 0.5) in [22]

by using our early version of switch analysis. Our re-
proved result here combines these two generalizations.
Recently, Witt [32] proved the same result with stochas-
tic dominance by using drift analysis.

A. Definitions

Algorithm 2 (Scheme of a mutation-based EA)
Given solution length n and objective function f , a
mutation-based EA consists of the following steps:

1. choose µ solutions s1, . . . , sµ ∈ {0, 1}n uniformly
at random.
let t := µ, and select a parent s from {s1, . . . , st}
according to t and f(s1), . . . , f(st).

2. st+1 := Mutation(s).
3. select a parent s from {s1, . . . , st+1}

according to t+ 1 and f(s1), . . . , f(st+1).
4. terminates until some criterion is met.
5. let t← t+ 1, Goto step 2.

Algorithm 3 ((1+1)-EAµ)
Given solution length n and objective function f , the
(1+1)-EAµ consists of the following steps:

1. choose µ solutions s1, . . . , sµ ∈ {0, 1}n uniformly
at random.
s := the best one among s1, . . . , sµ.

2. s′ := Mutation(s).
3. if f(s′) ≥ f(s) s := s′.
4. terminates until some criterion is met.
5. goto step 2.

Definition 6 (UBoolean Function Class)
A function f : {0, 1}n → R in UBoolean satisfies that

∃s ∈ {0, 1}n,∀s′ ∈ {0, 1}n − {s}, f(s′) < f(s).

For any function in UBoolean, we assume without
loss of generality that the optimal solution is 11 . . . 1
(briefly denoted as 1n). This is because EAs treat the
bits 0 and 1 symmetrically, and thus the 0 bits in an
optimal solution can be interpreted as 1 bits without
affecting the behavior of EAs.

The OneMax problem in Definition 7 is a particular
instance of UBoolean, which requires to maximize the
number of 1 bits of a solution. It has been proved [10]
that the expected running time of (1+1)-EA on OneMax
is Θ(n lnn).

Definition 7 (OneMax Problem)
OneMax Problem of size n is to find an n bits binary
string s∗ such that

s∗ = arg maxs∈{0,1}n
∑n

i=1
si,

where si is the i-th bit of solution s ∈ {0, 1}n.

B. Analysis

Before the proof, we give some lemmas which will be
used in the following analysis. Since the bits of OneMax
problem are independent and their weights are the
same, it is not hard to see that the CFHT E[[τ ′ | ξ′t = x]]
of (1+1)-EA on OneMax only depends on the number
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of 0 bits of the solution x, i.e., |x|0. Thus, we denote
E(j) as the CFHT E[[τ ′ | ξ′t = x]] with |x|0 = j. Then, it
is obvious that E(0) = 0, which implies the optimal
solution. Lemma 3 (from [22]) gives the order on E(j),
which discloses that E(j) increases with j. Lemma 4
(from [32]) says that it is more likely that the offspring
generated by mutating a parent solution with less 0 bits
has smaller number of 0 bits. Note that we consider |·|0
instead of | · |1 in their original lemma. It obviously still
holds due to the symmetry.

Lemma 3 ([22])
For any mutation probability 0 < p < 0.5, it holds that

E(0) < E(1) < E(2) < . . . < E(n).

Lemma 4 ([32])
Let a, b ∈ {0, 1}n be two search points satisfying |a|0 <
|b|0. Denote by mut(x) the random string obtained by
mutating each bit of x independently with probability p.
Let j be an arbitrary integer in [0, n]. If p ≤ 0.5 then

P (|mut(a)|0 ≤ j) ≥ P (|mut(b)|0 ≤ j).

We will also need an inequality in Lemma 5 that,
given two random variables, when the cumulative dis-
tribution of one is always smaller than the other’s, the
expectation with ordered events of the former is larger.

Lemma 5
Let m (m ≥ 1) be an integer. If two distributions P and
Q over {0, 1, . . . ,m} (i.e., for any i = 0, . . . ,m, Pi and Qi
are non-negative, and the sum of each is 1) satisfy that

∀0 ≤ k ≤ m− 1,
∑k

i=0
Pi ≤

∑k

i=0
Qi,

then for any 0 ≤ E0 < E1 < . . . < Em it holds that∑m

i=0
Pi · Ei ≥

∑m

i=0
Qi · Ei.

Proof. Let f(x0, . . . , xm) =
∑m
i=0Eixi. Because Ei is in-

creasing, f is Schur-concave by Theorem A.3 in Chapter
3 of [19]. The condition implies that the distribution
(Q0, . . . , Qm) majorizes (P0, . . . , Pm). Thus, we have

f(P0, . . . , Pm) ≥ f(Q0, . . . , Qm),

which proves the lemma.

Theorem 2
The expected running time of any mutation-based EA
with µ initial solutions and any mutation probability
p ∈ (0, 0.5) on UBoolean is at least as large as that of
(1+1)-EAµ with the same p on the OneMax problem.
Proof. We construct a history-encoded Markov chain
to model the mutation-based EAs as in Algorithm 2. Let
X = {(s1, . . . , st) | sj ∈ {0, 1}n, t ≥ µ}, where (s1, . . . , st)
is a sequence of solutions that are the search history
of the EA until time t and µ is the number of initial
solutions, and X ∗ = {x ∈ X | 1n ∈ x}, where s ∈ x
means that s appears in the sequence. Therefore, the
chain ξ ∈ X models an arbitrary mutation-based EA
on any function in UBoolean. Obviously, ∀i ≥ 0, ξi ∈
{(s1, . . . , st) | sj ∈ {0, 1}n, t = µ+ i}.

Let ξ′ ∈ Y model the reference process that is the
(1+1)-EA running on the OneMax problem. Then Y =
{0, 1}n and Y∗ = {1n}. We construct the function φ :
X → Y that φ(x) = 1n−i0i with i = min{|s|0 | s ∈ x}.
It is easy to see that such a φ is an optimal-aligned
mapping because φ(x) = 1n iff 1n ∈ x iff x ∈ X ∗.

Then, we investigate the condition Eq.(1) of switch
analysis. For any x /∈ X ∗, assume |φ(x)|0 = i > 0. Let Pj
be the probability that the offspring solution generated
on φ(x) by bit-wise mutation has j number of 0 bits.
For ξ′, it accepts only the offspring solution with no
more 0 bits than the parent, thus, we have∑

y∈Y
P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]]

=
∑i−1

j=0
PjE(j) + (1−

∑i−1

j=0
Pj)E(i).

For ξ, it selects a solution s from x for reproduction.
Let P ′j be the probability that the offspring solution
s′ generated on s by bit-wise mutation has j number
of 0 bits. If |s′|0 < i, |φ((x, s′))|0 = |s′|0; otherwise,
|φ((x, s′))| = i, where (x, s′) is the solution sequence
until time t+ 1. Thus, we have∑

y∈Y
P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

=
∑i−1

j=0
P ′jE(j) + (1−

∑i−1

j=0
P ′j)E(i).

By the definition of φ, we have |s|0 ≥ |φ(x)|0 = i. Then,
by Lemma 4,

∑k
j=0 Pj ≥

∑k
j=0 P

′
j for any k ∈ [0, n].

Meanwhile, E(i) increases with i as in Lemma 3. Thus,
by Lemma 5, we have∑i−1

j=0
P ′jE(j) + (1−

∑i−1

j=0
P ′j)E(i)

≥
∑i−1

j=0
PjE(j) + (1−

∑i−1

j=0
Pj)E(i),

which is equivalent to∑
y∈Y

P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≥
∑

y∈Y
P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]].

Thus, the condition Eq.(1) of switch analysis holds with
ρt = 0. We have E[[τ |ξ0 ∼ π0]] ≥ E[[τ ′|ξ′0 ∼ π

φ
0 ]].

Then, we investigate E[[τ ′|ξ′0 ∼ π
φ
0 ]]. For mutation-

based EAs (i.e., Algorithm 2), the initial population
consists of µ solutions s1, . . . , sµ randomly selected
from {0, 1}n. By the definition of φ, we know that
∀0 ≤ j ≤ n : πφ0 ({y ∈ Y | |y|0 = j}) is the probability
that min{|s1|0, . . . , |sµ|0} = j. Thus,

E[[τ ′|ξ′0 ∼ π
φ
0 ]] =

∑n

j=0
πφ0 ({y ∈ Y | |y|0 = j})E(j)

=
∑n

j=0
P (min{|s1|0, . . . , |su|0} = j)E(j),

which is actually the EFHT of the Markov chain mod-
eling (1+1)-EAµ on OneMax.

Since both mutation-based EAs and (1+1)-EAµ eval-
uate µ solutions in the initial process and evalu-
ate one solution in each iteration, E[[τ |ξ0 ∼ π0]] ≥
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E[[τ ′|ξ′0 ∼ π
φ
0 ]] implies that the expected running time

of any mutation-based EA on UBoolean is at least as
large as that of (1+1)-EAµ on OneMax.

V. ANALYSIS APPROACH CHARACTERIZATION

As we have shown that the switch analysis can help
analyze the running time of EAs, a natural question is
how powerful the switch analysis is, particularly com-
paring with existing approaches. There have developed
several analysis approaches for the running time of EAs,
including the fitness level method [31] and the drift
analysis [14]. We will compare the switch analysis with
the two approaches.

To support the comparative study, we notice that
there are rarely rigorous definitions of an “analysis
approach”, which is a necessary basis for formal dis-
cussions. Analysis approaches, in general, are usually
conceptually described rather than rigorously defined,
and are applied on problems case-by-case. However, a
general analysis approach for EA processes commonly
specifies a set of variables to look at and a procedure
to follow with. Therefore, in this context, it is possible
to treat an analysis approach like an algorithm with
input, parameters and output. The input is a variable
assignment derived from the concerning EA process;
the parameters are variable assignments which should
rely on no more information of the EA process than
the input; and the output is a lower and upper bound
of the running time, as described in Definition 8. We
distinguish the input with parameters in order to clarify
the amount of information that an approach requires
from the concerning EA process. Note that the state
space X itself of the EA process is not regarded as
part of the input, since it can be known ahead of
specifying the optimization problem. For an analysis
approach A, we denote Au(Θ; Ω) and Al(Θ; Ω) as the
upper and lower bounds respectively, given the input
Θ and parameters Ω. When the context is clear, we will
omit Θ and parameters Ω.

Definition 8 (EA Analysis Approach)
A procedure A is called an EA analysis approach if for
any EA process ξ ∈ X with initial state ξ0 and transition
probability P , A provided with Θ = g(ξ0, P ) for some
function g and a set of parameters Ω(Θ) outputs a lower
running time bound of ξ notated as Al(Θ; Ω) and/or an
upper bound Au(Θ; Ω).

We are interested in the tightness of the output
bounds of an analysis approach with limited infor-
mation from the concerning EA process, rather than
its “computational cost”. Note that some mathematical
operators, such as the inverse of an irregular matrix,
may not be practical. We assume that all calculations
discussed in this paper are efficient for simplicity.

As for the formal characterization of switch analysis,
we need to specify the input, the parameters and the
output. Since we are considering analyzing the running
time of an EA process, all the variables derived from

the reference process used in the switch analysis are
regarded as parameters, which include bounds of the
one-step transition probabilities and the CFHT of the
reference process. The input of the switch analysis
includes bounds of one-step transition probabilities of
the concerning EA process. It should be noted that the
tightness of the input bounds determines the optimal
tightness of the output bounds we can have, and
then the goodness of the selected parameter values
determines how close the actually derived bounds are
to the optimal bounds; thus we do not specify how
tight the input and how good the parameters should be
when characterizing approaches. The switch analysis is
formally characterized in Characterization 1.

Characterization 1 (Switch Analysis)
For an EA process ξ ∈ X , the switch analysis approach
ASA is defined by its parameters, input and output:
Parameters: a reference process ξ′ ∈ Y with bounds of its
transition probabilities P (ξ′1|ξ′0) and CFHT E[[τ ′ | ξ′t = y]]
for all y ∈ Y and t ∈ {0, 1}, and a right-aligned mapping
φu : X → Y or a left-aligned mapping φl : X → Y .
Input: bounds of one-step transition probabilities
P (ξt+1 | ξt).
Output: denoting πφt (y) = πt(φ

−1(y)) for all y ∈ Y ,
AuSA = E[[τ ′ | ξ′0 ∼ π

φ
0 ]] + ρu where ρu =

∑+∞
t=0 ρ

u
t and

ρut ≥
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]] −∑

u,y∈Y
πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] for all t;

AlSA = E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρl where ρl =

∑+∞
t=0 ρ

l
t and

ρlt ≤
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]] −∑

u,y∈Y
πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] for all t.

As analysis approaches are characterized by their
input, parameters and output, we can then study their
relative power. In the first thought, if one approach de-
rives tighter running time bounds than another, the for-
mer is more powerful. However, the tightness is effected
by many aspects. Different usages of a method can
result in different bounds. We shall not compare the
results of particular uses of two approaches. Therefore,
we define the reducibility between analysis approaches
in Definition 9.

Definition 9 (Reducible)
For two EA analysis approaches A1 and A2, if for any
input Θ and any parameter ΩA, there exist a transforma-
tion T and parameter ΩB (which possibly depends on
ΩA) such that
(a) Au1 (Θ; ΩA) ≥ Au2 (T (Θ); ΩB), then A1 is upper-bound
reducible to A2;
(b) Al1(Θ; ΩA) ≤ Al2(T (Θ); ΩB), then A1 is lower-bound
reducible to A2.
Moreover, A1 is reducible to A2 if it is both upper-bound
reducible and lower-bound reducible.

By the definition, for analysis approaches A1 and A2,
we say that “A1 is reducible to A2”, if it is possible to
construct an input of A2 by the transformation T solely
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from the input of A1, while A2 using some parameters
outputs a bound that is at least as good as that of A1.
If no such transformation or parameters exists, A1 is
not reducible to A2. Intuitively there are two possible
reasons that one approach is not reducible to another:
one is that the latter cannot take all the input of the
former, i.e., T has to lose important information in
the input; and the other is that, though T does not
lose information, the latter cannot make full use of it.
When A1 is proved to be reducible to A2, we can say
that A2 is at least as powerful as A1 since it takes no
more input information but derives no loose bounds.
However, this does not imply that A2 is easier to use.
The usability of an analysis approach can also depend
on its intuitiveness and the background of the analyst,
which is out of the consideration of this work.

VI. SWITCH ANALYSIS V.S. FITNESS LEVEL METHOD

A. Fitness Level Method

Fitness level method [31] is an intuitive method for
analyzing expected running time of EAs. Given an EA
process, we partition the solution space into level sets
according to their fitness values, and order the level
sets according to the fitness of the solutions in the sets.
This partition is formally described in Definition 10 for
maximizing problems.

Definition 10 (<f -Partition [31])
Given a problem f : S → R and the solution space S
with target subspace S∗, for all S1,S2 ⊆ S, the relation
S1 <f S2 holds if f(a) < f(b) for all a ∈ S1 and b ∈ S2.
A <f -partition of S is a partition of S into non-empty
sets S1, . . . ,Sm such that S1 <f S2 <f . . . <f Sm and
Sm = S∗.

Note that elitist (i.e., never lose the best solution)
EAs select solutions with better fitness. The level sets,
intuitively, form stairs, based on which an upper bound
can be derived by summing up the maximum time
taken for leaving every stair, and a lower bound is the
minimum time of leaving a stair (i.e., we optimistically
assume that the optimum is reached by a single jump).
This is formally described in Lemma 6, with a slight but
equivalent modification from the original definition to
unify the lower and upper bounds. In the lemma, when
the EA uses a population of solutions, the notation
ξt ∈ Si will denote that the best solution of the
population ξt is in the solution space Si.
Lemma 6 (Fitness Level Method [31])
For an elitist EA process ξ on a problem f , let S1, ...,Sm
be a <f -partition, and let vi ≤ P (ξt+1 ∈ ∪mj=i+1Sj | ξt =
x) for all x ∈ Si, and ui ≥ P (ξt+1 ∈ ∪mj=i+1Sj | ξt = x) for
all x ∈ Si. Then, the DCFHT of the EA process is at most∑

1≤i≤m−1
π0(Si) ·

∑m−1

j=i

1

vj
,

and is at least ∑
1≤i≤m−1

π0(Si) ·
1

ui
.

Later on, more elaborated fitness level method was
discovered by Sudholt [27], which we call as the refined
fitness level method in this paper as in Lemma 7.

Lemma 7 (Refined Fitness Level Method [26], [27])
For an elitist EA process ξ on a problem f , let S1, ...,Sm
be a <f -partition, let vi ≤ minj

1
γi,j

P (ξt+1 ∈ Sj | ξt = x)

and ui ≥ maxj
1
γi,j

P (ξt+1 ∈ Sj | ξt = x) for all x ∈ Si
where

∑m
j=i+1 γi,j = 1, and let χu, χl ∈ [0, 1] be constants

such that χu ≥ γi,j/
∑m
k=j γi,k ≥ χl for all i < j < m,

χu ≥ 1−vj+1/vj andχl ≥ 1−uj+1/uj for all 1 ≤ j ≤ m−2.
Then the DCFHT of the EA process is at most∑m−1

i=1
π0(Si) ·

( 1

vi
+ χu

∑m−1

j=i+1

1

vj

)
,

and is at least∑m−1

i=1
π0(Si) · (

1

ui
+ χl

∑m−1

j=i+1

1

uj
).

The refined fitness level method follows the general
idea of the fitness level method, while introduces a vari-
able χ that reflects the distribution of the probability
that the EA jumps to better levels. When χ is small, the
EA has a high probability to jump across many levels
and thus make a large progress; when χ is large, the EA
can only take a small progress in every step. Obviously,
χ can take 1 for upper bounds and 0 for lower bounds,
which degrades the refined method to be the original
fitness level method. Therefore, the original fitness level
method is a special case of the refined one.

Since Lemma 6 is a special case of Lemma 7 in
respect of upper and lower bounds, we characterize
the fitness level method using the latter lemma in
Characterization 2.

Characterization 2 (Fitness Level Method)
For an EA process ξ ∈ X , the fitness level method AFL is
defined by its parameters, input and output:
Parameters: a <f -partition {S1, . . . ,Sm}, where S1 <f
S2 <f . . . <f Sm = S∗.
Input: for some non-negative variables

∑m
j=i+1 γi,j = 1,

transition probability bounds
vi ≤ minx∈Si minj

1
γi,j

P (ξt+1 ∈ Sj | ξt = x),
ui ≥ maxx∈Si maxj

1
γi,j

P (ξt+1 ∈ Sj | ξt = x),
χu ≥ γi,j/

∑m
k=j γi,k ≥ χl for all i < j < m,

χu ≥ 1−vj+1/vj andχl ≥ 1−uj+1/uj for all 1 ≤ j ≤ m−2.
Output:
AuFL =

∑m−1
i=1 π0(Si) ·

(
1
vi

+ χu
∑m−1
j=i+1

1
vj

)
,

AlFL =
∑m−1
i=1 π0(Si) · ( 1

ui
+ χl

∑m−1
j=i+1

1
uj

).

B. The Power of Switch Analysis from Fitness Level
Method

Theorem 3
AFL is reducible to ASA.

Before proving the theorem, we introduce a simple
Markov chain, OneJump, that will be used as the refer-
ence chain for switch analysis.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2014 10

Definition 11 (OneJump)
OneJump chain with state space dimension n is a homo-
geneous Markov chain ξ ∈ {0, 1}n with n+ 1 parameters
{p0, . . . , pn} each is in [0, 1] and target state 1n. Its initial
state is selected from {0, 1}n uniformly at random, and
its transition probability is defined as, for any x ∈ {0, 1}n
and any t,

P (ξt+1 = y | ξt = x) =


p|x|1 , y = 1n

1− p|x|1 , y = x

0, otherwise

,

where |x|1 is the number of 1 bits in x.
It is straightforward to calculate the CFHT of One-

Jump, which is 1
pn−j

when starting from a solution s

with |s|1 = n − j. As the CFHT depends only on the
number of 0 bits, we denote Eoj(j) = 1

pn−j
as the CFHT

of OneJump starting from solutions with j 0 bits, for
simplicity.

Theorem 3 is proved by combining Lemma 8 and
Lemma 9, which respectively prove the upper bound
and lower bound reducibility.

Lemma 8
AFL is upper-bound reducible to ASA.
Proof. The proof is to find the parameters of ASA and
the input of ASA from that of AFL, and show that
AuSA ≤ AuFL.

Denote ξ ∈ X as the EA process we are going to ana-
lyze. By the parameter of AFL, we have a <f -partition
{S1,S2, . . . ,Sm}, which divides the solution space into
m subspaces. We moreover know some variables vi, γi,j
and χu as in Characterization 2, which are the input of
AFL.

We choose the reference process ξ′ ∈ Y = {0, 1}m−1
to be the OneJump with dimension m− 1 and param-
eters pi = 1/( 1

vi+1
+ χu

∑m−1
j=i+2

1
vj

) (0 ≤ i < m − 1).
We construct the function φ : X → Y as that φ(x) =
1i−10m−i for all x ∈ Si. It is easy to verify that φ is an
optimal-aligned mapping since φ(x) ∈ Y∗ = {1m−1} if
and only if x ∈ Sm.

We then calculate the upper bound output of ASA
using the input of AFL and the reference process. By
the function φ, populations in the partition Si are
mapped to the solution 1i−10m−i for the reference
process, starting from which OneJump takes Eoj(m− i)
steps to reach its optimum. We then consider one-step
transition of ξ. By the input of AFL, we know that
variables vi (together with γi,j and χu) bound from
below the probability of generating better solutions.
Thus we can have an upper bound on the left part of
Eq.(1): for any non-optimal state x ∈ Si (i < m),∑

y∈Y
P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]] (6)

≤ vi
∑m

j=i+1
γi,jEoj(m− j) + (1− vi)Eoj(m− i),

where the first part is the sum of the events that better
solutions are found and the second part is the remain-
ing event. The inequality holds because χu ≥ 1−vj+1/vj

leading to Eoj(m−i) ≥ Eoj(m−j) for all j = i+1, . . . ,m.
Meanwhile considering the reference process, for any
x ∈ Si, since φ(x) = 1i−10m−i, we have∑

y∈Y
P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]] (7)

= (1− pi−1)Eoj(m− i) = Eoj(m− i)− pi−1 ·
1

pi−1
= Eoj(m− i)− 1.

By comparing Eq.(6) with Eq.(7), we get, for any x ∈
Si (i < m), we have∑
y∈Y

P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

−
∑
y∈Y

P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]]

≤ 1 +

m−1∑
j=i+1

viγi,jEoj(m− j)− viEoj(m− i)

= 1+

m−1∑
j=i+1

viγi,j(
1

vj
+χu

m−1∑
k=j+1

1

vk
)− vi(

1

vi
+ χu

m−1∑
j=i+1

1

vj
)

(by Eoj(m− j) =
1

pj−1
and Eoj(m− i) =

1

pi−1
)

=1 +vi

m−1∑
j=i+1

1

vj
(γi,j+χu

j−1∑
k=i+1

γi,k)− vi(
1

vi
+ χu

m−1∑
j=i+1

1

vj
)

≤ 1 + vi

m−1∑
j=i+1

1

vj
(χu

m∑
k=j

γi,k + χu

j−1∑
k=i+1

γi,k)

− vi(
1

vi
+ χu

m−1∑
j=i+1

1

vj
) (by χu ≥ γi,j/

m∑
k=j

γi,k)

= 0. (by
m∑

k=i+1

γi,k = 1)

Thus, for all t ≥ 0,∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

−
∑
u,y∈Y

πφt (u)P (ξ′1 = y|ξ′0 = u)E[[τ ′|ξ′1 = y]]

≤ 0.

Therefore, we find ρut = 0 for all t as a proper assign-
ment of ρut in Characterization 1, and thus ρu=0. We
then can calculate the upper bound output, noticing
πφ0 (y) = π0(φ−1(y)),

AuSA = E[[τ ′|ξ′0 ∼ π
φ
0 ]] + 0

=

m∑
i=1

π0(Si)Eoj(m− i)

=

m−1∑
i=1

π0(Si)(
1

vi
+ χu

m−1∑
j=i+1

1

vj
) = AuFL,

which proves the lemma.

Lemma 9
AFL is lower-bound reducible to ASA.
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The proof for Lemma 9 is similar to that for Lemma
8 except the change of variables and the corresponding
inequality directions.

The proof of the reducibility is constructive, which
provides a way that the switch analysis can simulate
the fitness level method. Through the way, any proofs
accomplished using the fitness level method can be
also accomplished using the switch analysis.

C. Case Study on Peak Problem

As we have proven that AFL is reducible to ASA, a
following natural question is whether the inverse is also
true, i.e., “is ASA reducible to AFL?”. In this section,
through investigation on the Peak problem, we find the
answer to the question is negative, which implies that
the switch analysis is strictly more powerful than the
fitness level method.

Definition 12 (Peak Problem)
Peak Problem of size n is to find an n bits binary string s∗

such that

s∗ = arg maxs∈{0,1}n
∏n

i=1
si,

where si is the i-th bit of a solution s ∈ {0, 1}n.
The Peak problem is to seek a needle in a haystack.

The optimal solution is 1n with fitness value 1, while
all the other solutions are with fitness value 0. The only
possible <f -partition for the peak problem contains
two sets: S1 containing all non-optimal solutions and
S2 containing the optimal solution.

We study the running time of (1+1)-EA 6= on the Peak
problem. (1+1)-EA 6= is the same as (1+1)-EA but does
not accept solutions with equal fitness value in the
selection. Consequently, on the Peak problem, (1+1)-EA
will perform a random walk in non-optimal solutions,
since they are with the same fitness value, while (1+1)-
EA 6= stays where it is until the optimal solution is found.

Theorem 4
ASA is not reducible to AFL.

The theorem is proved by contrasting Lemma 10 and
Lemma 11.

Lemma 10
For the process that (1+1)-EA 6= with bit-wise mutation
on the Peak problem with size n under uniform initial
distribution, for all possible parameters, AuFL ≥ (1 −
1
2n )nn and AlFL ≤ (1− 1

2n )n( n
n−1 )n−1.

Proof. For the Peak problem, the <f -partition can only
contain two sets {S1,S2} where S1 = {0, 1}n−{1n} and
S2 = {1n}. Therefore, we can only have m = 2 and
γ1,2 = 1, which lead to AuFL = π0(S1) · 1

v1
= (1− 1

2n ) · 1
v1

and AlFL = (1− 1
2n ) · 1

u1
where v1 and u1 are respectively

lower and upper bounds of transition probability from
S1 to S2.

Given a solution s with |s|1 = n − j (j > 0), the
probability that it is mutated to 1n in one step is
1
nj (1 − 1

n )n−j , which decreases with j. By definition,
v1 ≤ mins∈S1 P (ξt+1 ∈ S2 | ξt = s) = 1

nn , and u1 ≥

maxs∈S1 P (ξt+1 ∈ S2 | ξt = s) = 1
n (1− 1

n )n−1. Therefore,
AuFL ≥ (1− 1

2n )nn and AlFL ≤ (1− 1
2n )n( n

n−1 )n−1.

Lemma 11
For the process that (1+1)-EA 6= with bit-wise mutation
on the Peak problem with size n under uniform initial
distribution, there exists an assignment of parameters
such that AuSA ≤

(
n
2 + n

2(n−1)
)n

and AlSA ≥
(
n
2

)n
.

Proof. We choose the reference process to be the One-
Jump with dimension n and parameters pi = ( 1

n )n−i(1−
1
n )i (i < n). We simply use the function φ(x) = x, which
is obviously an optimal-aligned mapping.

We investigate Eq.(1). For any x /∈ X ∗ with |x|1 =
n− j (j > 0), we have∑

y∈Y
P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]]

= (1− pn−j)Eoj(j)

= (1− 1

nj
(1− 1

n
)n−j)Eoj(j)

=
∑
y∈Y

P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]].

Thus, we have found proper ρut = ρlt = 0, then
ρu = ρl = 0. By the switch analysis theorem, we have
E[[τ |ξ0 ∼ π0]] ≤ (and ≥)E[[τ ′|ξ′0 ∼ π

φ
0 ]]. Moreover,

E[[τ ′|ξ′0∼π
φ
0 ]]=

n∑
j=1

(
n
j

)
2n
· Eoj(j) =

n∑
j=1

(
n
j

)
2n
· nj( n

n− 1
)n−j

=
1

2n
((n+

n

n− 1
)n − (

n

n− 1
)n).

Thus, we have

AuSA = E[[τ ′|ξ′0 ∼ π
φ
0 ]]

=
1

2n
((n+

n

n− 1
)n − (

n

n− 1
)n) ≤

(n
2

+
n

2(n− 1)

)n
,

and

AlSA = E[[τ ′|ξ′0 ∼ π
φ
0 ]]

=
1

2n
((n+

n

n− 1
)n − (

n

n− 1
)n) ≥

(n
2

)n
,

which proves the lemma.
It is straightforward to verify by comparing Lemma

10 with Lemma 11 that AuSA < AuFL and AlSA > AlFL.
Actually, the fitness level method can only derive a
polynomial lower bound for this process, which is quite
loose; while switch analysis can lead to tight bounds
since it allows a fine investigation between fitness
levels. In other words, the fitness level method cannot
take all the input of switch analysis. Therefore, the case
study proves that ASA is not reducible to AFL.

VII. SWITCH ANALYSIS V.S. DRIFT ANALYSIS

A. Drift Analysis

Drift analysis [12], [14], [16], [24] might be nowadays
the most widely used approach for analyzing running
time of EAs. There have emerged several variants of
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drift analysis [3], [5], [13], [21], which simplify and
combine other techniques with drift analysis. In this
work, we focus on the classical drift analysis, which is
also called additive drift analysis as in Lemma 12.

The drift analysis embodied by Lemma 12, can be
intuitively understood. Drift analysis introduces a dis-
tance function (not necessarily a metric) to measure
the distance from any population to the optimal pop-
ulation space. Relying on the distance function, drift
analysis estimates the average progress toward the op-
timum of every step of an EA, and then the number
of steps the EA takes to arrive at the optimum can be
derived through dividing the initial distance by one-
step progress.

Note that the recently proposed two variants of clas-
sical drift analysis, the multiplicative drift analysis [5]
and the adaptive drift analysis [3], are not stronger than
the classical one, since the multiplicative drift analysis
is proved by the classical one and the adaptive drift
analysis is actually the classical (multiplicative) one
with carefully-designed distance functions which may
depend on the objective functions and some parameter
values of the analyzed EAs.

Definition 13 (Distance Function)
For a state space X with the optimal subspace X ∗, a
function V satisfying V (x) = 0 for all x ∈ X ∗ and
V (x) > 0 for all x ∈ X −X ∗ is called a distance function.

Lemma 12 (Drift Analysis [14], [16])
For an EA process ξ ∈ X , let V be a distance function, if
there exists a positive value cl such that

∀t ≥ 0, ξt /∈ X ∗ : cl ≤ E[[V (ξt)− V (ξt+1) | ξt]],

we have E[[τ | ξ0 ∼ π0]] ≤
∑
x∈X π0(x)V (x)/cl;

and if there exists a positive value cu such that

∀t ≥ 0, ξt /∈ X ∗ : cu ≥ E[[V (ξt)− V (ξt+1) | ξt]],

we have E[[τ | ξ0 ∼ π0]] ≥
∑
x∈X π0(x)V (x)/cu.

It should be noted that, when cl is negative, we will
say that the drift analysis fails with such a distance
function.

Characterization 3 (Drift Analysis)
For an EA process ξ ∈ X , the drift analysis approachADA
is defined by its parameters, input and output:
Paramters: a distance function V .
Input:
cl > 0 for upper bound analysis such that cl ≤
E[[V (ξt)− V (ξt+1) | ξt]] for all t ≥ 0, ξt /∈ X ∗;
cu > 0 for lower bound analysis such that cu ≥
E[[V (ξt)− V (ξt+1) | ξt]] for all t ≥ 0, ξt /∈ X ∗.
Output:
AuDA =

∑
x∈X π0(x)V (x)/cl;

AlDA =
∑
x∈X π0(x)V (x)/cu.

B. The Power of Switch Analysis from Drift Analysis

Theorem 5
ADA is reducible to ASA.

Lemma 13
ADA is upper-bound reducible to ASA.
Proof. The proof is to construct parameters and input
of ASA from that of ADA, such that AuSA ≤ AuDA.

Denote ξ as the EA process we are going to analyze.
By ADA, we have a distance function V as the param-
eter, and cl as the input, as in Characterization 3.

Let V = {V (x) | x ∈ X} = {V0, V1, . . . , Vm} be the set
of distinct values of the distance function, the size of
which is m + 1. We order the elements of V as V0 =
0 < V1 < . . . < Vm, and denote the value index of x as
Vx = i where V (x) = Vi. Without loss of generality, we
assume V1 ≥ 1, since if not, we multiply every element
in V as well as cl with 1

V1
, which does not affect the

drift condition and result.
We choose the reference process ξ′ ∈ Y = {0, 1}m

to be the OneJump with dimension m and parameters
pi = 1

Vm−i
(i = 0, . . . ,m − 1). We then construct

the function φ(x) = 1m−Vx0Vx , which uses only the
distance function value index. It is easy to verify that
the function is an optimal-aligned mapping, since all
populations with distance function value 0 are mapped
to 1m.

We investigate Eq.(1). For any x /∈ X ∗, we have∑
y∈Y

P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

=
∑

i=0,...,m

P (V (ξt+1) = Vi | ξt = x) · Eoj(i)

=
∑

i=0,...,m

P (V (ξt+1) = Vi | ξt = x) · Vi (by Eoj(i) =
1

pm−i
)

= E[[V (ξt+1) | ξt = x]].

Since

E[[V (ξt)− V (ξt+1) | ξt = x]]

= V (x)− E[[V (ξt+1) | ξt = x]] ≥ cl,

we have∑
y∈Y

P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]≤V (x)− cl.

Meanwhile, since φ(x) = 1m−Vx0Vx , for any x /∈ X ∗ we
have ∑

y∈Y
P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]]

= Eoj(Vx)− 1 = V (x)− 1.

We then have, for all x /∈ X ∗,∑
y∈Y

P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

−
∑
y∈Y

P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]] ≤ 1− cl,

and thus, by summing up all x, we get∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]
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≤
∑

x∈X ,y∈Y
πt(x)P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]]

+ (1− cl) · (1− πt(X ∗)).

Therefore, we have found a proper ρut = (1 − cl) · (1 −
πt(X ∗)). We then calculate

ρu =
∑+∞

t=0
ρut = (1− cl) ·

∑+∞

t=0
(1− πt(X ∗))

= (1− cl) · E[[τ | ξ0 ∼ π0]].

Substituting ρu, we get

E[[τ |ξ0 ∼ π0]]≤E[[τ ′|ξ′0 ∼ π
φ
0 ]] + (1− cl) · E[[τ | ξ0∼π0]],

which derives E[[τ |ξ0 ∼ π0]] ≤ E[[τ ′|ξ′0 ∼ π
φ
0 ]]/cl. More-

over, by the function φ,

E[[τ ′|ξ′0 ∼ π
φ
0 ]] =

∑
i=0,...,m

π0({x | Vx = i}) · Eoj(i)

=
∑

i=0,...,m

π0({x | V (x) = Vi}) · Vi =
∑
x∈X

π0(x) · V (x).

Overall, we have,

AuSA = E[[τ ′|ξ′0 ∼ π
φ
0 ]]/cl =

∑
x∈X

π0(x) · V (x)/cl = AuDA,

which proves the lemma.

Lemma 14
ADA is lower-bound reducible to ASA.

The proof of Lemma 14 is similar to that of Lemma 13
except replacing cl with cu and changing the direction
of the corresponding inequalities. The two lemmas
together prove Theorem 5. Moreover, the proofs of the
lemmas are constructive, which provide a way of using
switch analysis based on the drift analysis.

C. Case Study on Discrete Linear Problem

We are then interested in whether switch analysis is
also reducible to drift analysis. It is however hard to
obtain a full answer, since that will need to investigate
all possible distance functions in an unconstrained
function space. By investigating the Discrete Linear
Problem, we show in this section that switch analysis
is not reducible to a restricted version of drift analysis
that uses any fixed linear distance function.

Definition 14 (Discrete Linear Problem)
A Discrete Linear Problem with size n and vocabulary set
{0, 1, . . . , r} is to find a string s∗ from {0, 1, . . . , r}n such
that, for given positive weights w1, . . . , wn,

s∗ = arg maxs∈{0,1,...,r}n
∑n

i=1
wisi,

where si is the value on the i-th position of a solution
s ∈ {0, . . . , r}n. Without loss of generality, we assume
that w1 ≤ w2 ≤ . . . ≤ wn.

To run (1+1)-EA with bit-wise mutation on the Dis-
crete Linear Problem, we need a modification of the
mutation. When the input space is {0, 1}n, the mutation
flips a bit of the solution from 0 to 1 and vice versa.

While the input space is {0, . . . , r}n, we define that
the mutation flips a bit from its own value k to be
a random value in {0, . . . , r} − {k}. Note that the bit-
wise mutation defined in the previous sections uses the
mutation probability 1

n (i.e., each bit is flipped with
probability 1

n ); here we generalize it to p ∈ (0, 1).
It has been proved that, for Discrete Linear Problem

as in Definition 14, there exists no universal linear
distance function such that (1+1)-EA has positive drift.

Definition 15 (Linear Distance Function Space)
For solutions with length n, the linear distance function
space L consists of all distance functions that are linear
combination of solution bits, i.e.,

L = {V | ∀w ∈ Rn : V (s) =
∑n

i=1
wisi}.

Lemma 15 ([4], [6])
For the process of
(a) (1+1)-EA with p ≥ 7/n on Discrete Linear Problem
with vocabulary {0, 1},
(b) (1+1)-EA with p = 1/n on Discrete Linear Problem
with vocabulary {0, . . . , r}(r ≥ 43),
AuDA with any fixed parameter V ∈ L fails.
Proof. In [6] and [4], it has been proved that under
the condition of this lemma, the minimum drift cl is
negative for any distance function in L. Therefore AuDA
fails.

Lemma 16
For the process of (1+1)-EA with p = c/n for some
constant c > 0 on Discrete Linear Problem,
(a) with vocabulary {0, 1}, there exists an assignment of
parameters such that AuSA = O(n log n),
(b) with vocabulary {0, . . . , r}, there exists an as-
signment of parameters such that AuSA = (1 +
o(1)) e

c

c rn log n+O(r3n log log n).
Lemma 16 can be straightforwardly proved by ap-

plying the Theorem 5 that drift analysis is reducible to
switch analysis, and that the bounds have been proved
in [3] and [7] using the multiplicative adaptive drift
analysis. Contrasting Lemma 16 with Lemma 15, it is
obvious that switch analysis is not reducible to the
restricted version of drift analysis.

Since the bound in (b) of the Lemma involves r3, in
Lemma 17 we give another upper bound using switch
analysis, which is tighter in term of r although looser
in term of n.

We define RLS6= as a modification of RLS, where
the only difference is that RLS 6= uses the selection as
f(s′) > f(s) in step 3 of Algorithm 1. In other words,
RLS accepts the offspring solution with equal fitness,
while RLS 6= only accepts a better offspring solution.
The reference process used in the proof of Lemma
17 is the RLS 6= running on the LeadingOnes problem
in Definition 16 with size n. We denote the reference
process as ξ′ (and thus the first hitting event as τ ′),
which has a property in Proposition 1.

Definition 16 (LeadingOnes Problem)
LeadingOnes Problem of size n is to find an n bits binary
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string s∗ such that, defining LO(s) =
∑n
i=1

∏i
j=1 sj ,

s∗ = arg max
s∈{0,1}n

f(s) = arg max
s∈{0,1}n

LO(s),

where sj is the j-th bit of a solution s ∈ {0, 1}n.

Proposition 1
∀t ≥ 0 ∀s ∈ {0, 1}n : E[[τ ′|ξ′t = s]] = n(n− |s|1), where |s|1
denotes the number of 1 bits of s.
Proof. Let the initial solution have j (1 ≤ j ≤ n) 0 bits,
which are placed randomly. In the run of the RLS 6=,
the number of 0 bits of the maintained solution will
never increase and the 0 bits will not change places,
which is because the RLS 6= flips one bit at a time
and that turning a 1 bit to be 0 will never increase
the fitness thus will be rejected by the strict selection
strategy. Therefore, for one step, with probability 1

n a
solution with j−1 0 bits will be generated and replaces
the maintained solution (i.e., the first 0 bit is flipped);
with the remaining probability, the maintained solution
keeps unchanged. Thus, the expected steps to decrease
the number of 0 bits by 1 is n. Through stepwise
improvement, the expected running time to get to
the optimal solution from a solution with j 0 bits is
n · j. Note that “∀t ≥ 0” holds since the process is
homogeneous, i.e., the process would be the same if
starting from another time point.

Due to the proposition, we simplify our notation by
denoting Erls(j) as the CFHT E[[τ ′|ξ′t = s]] with |s|1 =
n− j, i.e., Erls(j) = n · j.

Lemma 17
For the process of (1+1)-EA with p < 0.5 on Discrete Lin-
ear Problem with vocabulary {0, . . . , r}, there exists an
assignment of parameters such that AuSA ≤ r2n/(p(1 −
p)n−1).
Proof. We construct the reference process ξ′ by run-
ning RLS6= on the LeadingOnes problem of size r · n,
where the solution space is therefore Y = {0, 1}rn.

We then need to construct a function from X =
{0, . . . , r}n to Y = {0, 1}rn. Given a Discrete Linear
Problem with weights w1 ≤ . . . ≤ wn, for any solution x,
let δ(x, j) =

∑n
i=1 wixi − r

∑n
i=j wi, and θ(x) = min{j ∈

{1, . . . , n+1} | δ(x, j) ≥ 0} (note the sum from j = n+1
to n is zero), which is the threshold index that the sum
of the last weights is not larger than the fitness value.
So for two solutions x and x′ with f(x) ≤ f(x′), we have
θ(x) ≥ θ(x′). Then let

m(x) = r(n− θ(x) + 1) + bδ(x, θ(x))/wθ(x)−1c.

So for two solutions x and x′ with f(x) ≤ f(x′), we
have m(x) ≤ m(x′). This is because, when θ(x) = θ(x′),
denoting a = wθ(x)−1 and b = r

∑n
i=θ(x) wi,

m(x)−m(x′) = bδ(x, θ(x))/ac − bδ(x′, θ(x))/ac
= b(f(x)− b)/ac − b(f(x′)− b)/ac ≤ 0,

since f(x) ≤ f(x′); when θ(x) ≥ θ(x′) + 1, note that
δ(x, θ(x)) < rwθ(x)−1 since otherwise θ(x) is not the

minimum index,

m(x)−m(x′) ≤−r +bδ(x, θ(x))

wθ(x)−1
c − bδ(x

′, θ(x′))

wθ(x′)−1
c

≤ −r + r − 0 = 0.

The function is φ(x) = 1m(x)0rn−m(x). It is also easy
to verify that φ is an optimal-aligned mapping, since
for x∗ = rn we have θ(x∗) = 1, m(x∗) = rn and thus
φ(x∗) = 1rn, while vice versa.

We investigate Eq.(1). For any x /∈ X ∗, we have∑
y∈Y

P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]]

= Erls(rn−m(x))− 1 = rn(rn−m(x))− 1.

For the process ξ, let x′ be the next solution after mu-
tating x and passing the selection. By the behavior of
the selection, we have f(x′) ≥ f(x), then m(x′) ≥ m(x).
Moreover, since x is non-optimal, there is at least one
position j ∈ [θ(x) − 1, n] such that xj < r. Thus, the
probability of m(x′) ≥ m(x) + 1 is at least 1

rp(1− p)
n−1

since it is sufficient to flip the value on this position
to r and keep other bits unchanged. As we know that
Erls(i) increases with i, we then have∑

y∈Y
P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≤ 1

r
p(1− p)n−1 · Erls(rn−m(x)− 1)

+ (1− 1

r
p(1− p)n−1) · Erls(rn−m(x))

= rn(rn−m(x))− np(1− p)n−1.

We then have∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

≤
∑

x∈X ,y∈Y
πt(x)P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]]

+ (1− np(1− p)n−1) · (1− πt(X ∗)),

thus we have found a proper ρut = (1 − np(1 − p)n−1) ·
(1− πt(X ∗)), and therefore,

E[[τ |ξ0 ∼ π0]] ≤ E[[τ ′|ξ′0 ∼ π
φ
0 ]]/(np(1− p)n−1),

since
∑+∞
t=0 (1 − πt(X ∗)) = E[[τ |ξ0 ∼ π0]]. Moreover,

for the reference process, we have E[[τ ′|ξ′0 ∼ π
φ
0 ]] ≤

Erls(rn) = r2n2. Finally, we get

AuSA=E[[τ ′|ξ′0 ∼ π
φ
0 ]]/(np(1−p)n−1)≤r2n/(p(1−p)n−1),

which proves the lemma.
The upper bound r2n/(p(1 − p)n−1) arrives at its

minimum of O(r2n2) at p = 1/n. We know now that the
expected running time of the (1+1)-EA with mutation
rate 1/n on the Discrete Linear problem with vocabu-
lary size r + 1 is O(min{r2n2, rn log n+ r3n log log n}).
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VIII. DISCUSSION AND CONCLUSION

This paper extends our preliminary attempt [33] and
develops the switch analysis approach for running time
analysis of evolutionary algorithms (EAs). Switch anal-
ysis compares two EA processes. In the comparison,
we are able to eliminate the long-term behavior of one
process, and need to compare only the one-step tran-
sition probabilities of the two processes. This allows
us to derive the running time bounds of the target
process by comparing with a simple reference process.
As an example of using switch analysis, we give a re-
proof of the expected running time lower bound of
mutation-based EAs on pseudo-Boolean functions with
a unique global optimum, which extends our previous
work [22] and has been partially proved in [27] and
more generally in [32] using different techniques.

In order to investigate the relationship between gen-
eral analysis approaches for EAs, we formally character-
ize these approaches and define the reducibility rela-
tionship. The reducibility is defined following the intu-
ition that an approach is at least as powerful as another
if it can derive no worse result using no more informa-
tion. We have shown that the fitness level method and
the drift analysis, the two major analysis approaches,
are both reducible to switch analysis. On the oppo-
site direction, by studying on the Peak problem, we
have shown that switch analysis is not reducible to
the fitness level method. By studying on the Discrete
Linear Problem, we have shown that switch analysis is
not reducible to a restricted version of drift analysis;
and moreover, comparing with a recent running time
upper bound (1 + o(1))(ec/c)rn log n + O(r3n log log n)
for mutation probability p = c/n using multiplicative
adaptive drift analysis [7], we derive another upper
bound r2n/(p(1− p)n−1) that is (1 + o(1))(ec/c)r2n2 for
p = c/n, which is, although larger in term of n by
a factor n/ log n, tighter in term of r. These results
disclose the power of switch analysis for running time
analysis of EAs.

If one has already obtained an analysis result using
the fitness level method or the drift analysis, there
could be a simple way to use switch analysis to fur-
ther improve the result. Noticed that the proofs of
the reducibility are constructive (Theorems 3 and 5),
thus we can first transform the analysis process to be
using switch analysis, and then try to replace some
components of the switch analysis (such as the refer-
ence process or the mapping function) to improve the
analysis result.

An important future work is to study the relationship
between the switch analysis and the drift analysis in
the continuous solution space situation. In the current
paper, the solution space is discrete thus there are lim-
ited distinct distance function values. However, when
the solution space is continuous, it is unknown if the
reducibility from drift analysis to switch analysis is still
invalid.
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