
强化学习
与⽣生成对抗⽹网络(GAN)⼊入⻔门

http://lamda.nju.edu.cn/yuy/adl-rl.ashx

http://lamda.nju.edu.cn

南京⼤大学 计算机系 
软件新技术国家重点实验室 

机器器学习与数据挖掘研究所 (LAMDA)

俞扬

.nju.edu.cn

Reinforcement learning

reward

intelligent animals can learn from interactions
to adapt to the environment

can computers do similarly?
reinforcement learning, the
“real artificial intelligence”

Agent Environment

action/decision

reward
state

.nju.edu.cn

Reinforcement learning

reward

Agent Environment

action/decision

reward
state

Agent’s inside: Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s goal: learn a policy to maximize long-term total reward
X1

t=1
�trtdiscounted:T-step:

XT

t=1
rt

.nju.edu.cn

Difference between RL and SL?

supervised learning

both learn a model ...
reinforcement learning

environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
s,a,r,s,a,r,s,  
s,a,r,s,a,r,s,
s,a,r,s,a,r,s,

...

open loop
learning from labeled data
passive data

closed loop
learning from delayed reward
explore environment

.nju.edu.cn

Applications: The Atari games

Deepmind Deep Q-learning on Atari
[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]

.nju.edu.cn

Applications: The game of Go

Deepmind AlphaGo system
[Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587): 484−489, 2016.]

.nju.edu.cn

Applications: Robotics

learning robot skills

https://www.youtube.com/watch?v=VCdxqn0fcnE

physical
world

control actions

reward

state

.nju.edu.cn

More applications

Search
Recommendation system
Stock prediction
...

every decision changes the world

.nju.edu.cn

More applications

Also as an differentiable approach for

modeling structure data

[Bahdanau et al., An Actor-Critic Algorithm for Sequence Prediction. ArXiv 1607.07086]
[He et al., Deep Reinforcement Learning with a Natural Language Action Space, ACL’16]
[B. Dhingra et al., End-to-End Reinforcement Learning of Dialogue Agents for Information Access,
ArXiv 1609.00777]
[Yu et al., SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI’17]
...

.nju.edu.cn

Generality of RL

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

by reinforcement learning

-2

-1

-1

-6

-3
-1

-5

-3
-5

-2s t
100

0

shortest path problem:

2

1

1

6

3
1

5

3
5

2s t

.nju.edu.cn

Generality of RL

general binary space problem

()

solving the optimal policy is NP-hard!
do not formulate everything as RL problem

max
x2{0,1}n

f(x)

(0) (1)

(00) (01) (10) (11)

(000) (010)(001) (011) (100) (110)(101) (111)

r=0

r=0

r=f(x)

.nju.edu.cn

Outline

✦ Markov Decision Process

✦ Value-based methods

✦ Policy search

✦ Deep reinforcement learning

✦ Imitation learning (<- GAN is here)

✦ Discussion on the future

.nju.edu.cn

From Markov Process to MDP

sunny

rainy

cloudy

0.2

0.1

0.4

0.3

0.3

0.7

0.2

0.5

0.3

horizontal view sunny

s

c

r

s

c

r

...

t = 0 1 2

0.2
0.7

0.1

s

c

r

......

.nju.edu.cn

From Markov Process to MDP

horizontal view

sunny

s

c

r

s

c

r

...

t = 0 1 2

0.2
0.7

0.1

s

c

r

......

sunny

s

c

r

s

c

r

s

c

r

...

t = 0 1 2 3

0.2
0.7

0.1

compactly

.nju.edu.cn

From Markov Process to MDP
introduce reward and actions

sunny

rainy

cloudy

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.1/1

.nju.edu.cn

From Markov Process to MDP
introduce reward and actions

sunny

rainy

cloudy

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.1/1
0.09/1

0.1/-1

0.9/2

0.01/-1

0.45/2
0.45/-1

0.2/2

0.7/1

.nju.edu.cn

From Markov Process to MDP
introduce reward and actions

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

.nju.edu.cn

From Markov Process to MDP
introduce reward and actions

sunny

rainy

cloudy

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.1/-1
0.2/2

0.7/1

tabular representation
s 0

c 0

r 1

⇡ =

.nju.edu.cn

From Markov Process to MDP
introduce reward and actions

sunny

rainy

cloudy

0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.09/1

0.9/2

0.01/-1

tabular representation
s 1

c 0

r 0

⇡ =

.nju.edu.cn

Markov Decision Process

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...

.nju.edu.cn

Markov Decision Process

horizontal view of the game of Go

.nju.edu.cn

Solving the optimal policy in MDP

idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

.nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,

.nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

c

s

c

r

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)R(s, a, s0)

Q⇡(s, a) =
X

s0

P (s0|s, a)R(s, a, s0)

.nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

s

c

r

s

c

r

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

Q⇡(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

c

.nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

sunny

s

c

r

s

c

r

s

c

r

...

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

Q⇡(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

.nju.edu.cn

Solving the optimal policy in MDP
idea:

how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:
V (s) max

a
Q⇡(s, a)

from the Bellman optimality equation

policy iteration:policy iteration:policy iteration:

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�value iteration:

.nju.edu.cn

Solving the optimal policy in MDP

policy improvement:
V (s) max

a
Q⇡(s, a)

let ⇡0 be derived from this update

V ⇡(s) Q⇡(s,⇡0(s))

=
X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �V ⇡(s0))

X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �Q⇡(s0,⇡0(s)))

= . . .

= V ⇡0

so the policy is improved

V ⇤(s) = max
a

Q⇤(s, a)

the Bellman optimality equation

.nju.edu.cn

Solving the optimal policy in MDP

dynamic programming R. E. Bellman
1920-1984

sunny

s

c

r

s

c

r

s

c

r

...

[O. Madani. Polynomial Value Iteration Algorithms for Deterministic MDPs. UAI’02]

Complexity
needs iterations to converge on deterministic MDP⇥(|S| · |A|)

curse of dimensionality: Go board 19x19, |S|=2.08x10170
[https://github.com/tromp/golegal]

.nju.edu.cn

from MDP to reinforcement learning

MDP <S,A,R,P>

R and P are unknown

.nju.edu.cn

Methods

A: learn R and P,  
 then solve the MDP

B: learn policy without R or P

model-based

model-free

MDP is the model

.nju.edu.cn

Model-based RL

environment

agent
model policy

issues:
how to learn the model efficiently?
how to update the policy efficiently?
how to combine model learning and policy learning?
...

basic idea:
1. explore the environment randomly,
2. build the model from observations,
3. find the policy by VI or PI

.nju.edu.cn

Learn an MDP model
random walk, and record the transition and the reward.
more efficiently, visit unexplored states
RMax algorithm:

initialize R(s)=Rmax, P = self-trainsition
loop

choose action a, observe state s’ and reward r
update transition count and reward count for s,a,s’
if count of s,a >= m

update reward and transition from estimations
s = s’

sample complexity Õ(|S|2|A|V 3
max/(✏(1� �))3)

[Strehl, et al. Reinforcement learning in finite MDPs: PAC analysis. JMLR’09]

[Bertsekas, Tsitsiklis. R-Max---A general polynomial time algorithm
for near-optimal reinforcement learning. JMLR’02]

.nju.edu.cn

Model-free RL
learn policy without knowing MDP

same idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

.nju.edu.cn

Monte Carlo evaluation

expected total reward

expectation of trajectory-wise rewards

sunny

s

c

r

s

c

r

s

c

r

...

Q⇡(s, a) = E[
XT

t=1
rt|s, a]

sample trajectory m times,
approximate the expectation by average

⌧i is sample by following after s,a⇡Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)

.nju.edu.cn

Monte Carlo RL

same idea:
how is the current policy

improve the current policy

Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)

⇡(s) = argmax
a

Q(s, a)

Monte-Carlo estimation

policy update

.nju.edu.cn

Incremental mean

In general, µt = µt�1 + ↵(xt � µt�1)

µt =
1

t

tX

i=1

xi =
1

t
(xt +

t�1X

i=1

xi) =
1

t
(xt + (t� 1)µt�1)

= µt�1 +
1

t
(xt � µt�1)

Monte-Carlo evaluation:

MC error
Q(st, at) (Q(st, at) + ↵(R�Q(st, at))

Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)batch update:

inc. update:

.nju.edu.cn

Monte Carlo RL - evaluation+improvement

Q0 = 0
for i=0, 1, ..., m

generate trajectory <s0, a0, r1, s1, ..., sT>
for t=0, 1, ..., T-1

R = sum of rewards from t to T
Q(st,at) = Q(st,at) + ⍺(R - Q(st,at))

end for
update policy

end for
⇡(s) = argmax

a
Q(s, a)

improvement ?

.nju.edu.cn

Monte Carlo RL

problem: what if the policy takes only one path?

cannot improve the policy
no exploration of the environment

sunny

s

c

r

s

c

r

s

c

r

needs exploration !

.nju.edu.cn

Exploration methods

one state MDP:  
a.k.a. bandit model

r ⇠ D1

r ⇠ D2

maximize the long-term total reward

• exploration only policy: try every action in turn

• exploitation only policy: try each action once,
follow the best action forever

waste many trials

risk of pick a bad action
balance between exploration and exploitation

.nju.edu.cn

Exploration methods

ϵ-greedy:
follow the best action with probability 1-ϵ
choose action randomly with probability ϵ

ϵ should decrease along time
softmax:

probability according to action quality

P (k) = eQ(k)/✓/
XK

i=1
eQ(i)/✓

upper confidence bound (UCB):
choose by action quality + confidence

Q(k) +
p
2 lnn/nk

.nju.edu.cn

Action-level exploration

ϵ-greedy policy:

given a policy ⇡

⇡✏(s) =

(
⇡(s),with prob. 1� ✏

randomly chosen action,with prob. ✏

ensure probability of visiting every state > 0

exploration can also be in other levels

.nju.edu.cn

Monte Carlo RL

Q0 = 0
for i=0, 1, ..., m

generate trajectory <s0, a0, r1, s1, ..., sT> by
for t=0, 1, ..., T-1

R = sum of rewards from t to T
Q(st,at)= Q(st,at) + ⍺(R - Q(st,at))

end for
update policy

end for
⇡(s) = argmax

a
Q(s, a)

⇡✏

.nju.edu.cn

Monte Carlo RL - on/off-policy

⇡✏this algorithm evaluates ! on-policy

what if we want to evaluate ? off-policy ⇡

importance sampling:

E[f] =

Z

x
p(x)f(x)dx =

Z

x
q(x)

p(x)

q(x)
f(x)dx

1

m

mX

i=1

f(x) 1

m

mX

i=1

p(x)

q(x)
f(x)

sample from p sample from q

.nju.edu.cn

Monte Carlo RL

Q0 = 0
for i=0, 1, ..., m

generate trajectory <s0, a0, r1, s1, ..., sT> by
for t=0, 1, ..., T-1

R = sum of rewards from t to T
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)
c(st,at)++

end for
update policy

end for
⇡(s) = argmax

a
Q(s, a)

⇡✏

pi =

(
1� ✏+ ✏/|A|, ai = ⇡(si),

✏/|A|, ai 6= ⇡(si)

⇥
YT�1

i=t+1

⇡(xi, ai)

pi

-- off-policy

.nju.edu.cn

Monte Carlo RL

summary

Monte Carlo evaluation:  
approximate expectation by sample average

action-level exploration

on-policy, off-policy: importance sampling

Monte Carlo RL:  
evaluation + action-level exploration + policy improvement (on/off-policy)

.nju.edu.cn

Temporal-Difference Learning - evaluation

learn as you goupdate policy online

Monte-Carlo update:

TD update:

TD error

MC error

TD Evaluation

Q(st, at) (Q(st, at) + ↵(R�Q(st, at))

Q(st, at)

(Q(st, at) + ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))

.nju.edu.cn

Temporal-Difference Learning - example

leaving office
reach car, raining
exit highway
behind truck
home street
arrive home

0 30 30
5 35 40
20 15 35
30 10 40
40 3 43
43 0 43

state
elapsed
time

predicted
total time

predicted
remaining
time

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!

M
C

er
ro

r

TD
 e

rr
or

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!

.nju.edu.cn

sunny

s

c

r

s

c

r

s

c

r

s

c

r

Temporal-Difference Learning - backups

MC backup

TD backup

DP backup

.nju.edu.cn

SARSA
On-policy TD control

Q0 = 0, initial state
for i=0, 1, ...

a =
s’, r = do action a
a’ =

s = s’
end for

⇡(s) = argmax
a

Q(s, a)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s
0)

⇡✏(s)

.nju.edu.cn

Q-learning
Off-policy TD control

Q0 = 0, initial state
for i=0, 1, ...

a =
s’, r = do action a
a’ =

s = s’
end for

⇡(s) = argmax
a

Q(s, a)

⇡(s0)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s)

.nju.edu.cn

SARSA v.s. Q-learning

Lecture 5: Model-Free Control

O↵-Policy Learning

Q-Learning

Cli↵ Walking Example

.nju.edu.cn

λ-return

in between TD and MC: n-step prediction

TD(1-step)

n-step return
rt+1 + �Q(st+1, at+1)R(1) =

TD(2-step) rt+1 + �rt+2 + �2Q(st+2, at+2)R(2) =

TD(n-step)
nX

i=1

�i�1rt+i + �nQ(st+n, at+n)R(n) =

MC
TX

i=1

�i�1rt+iR(max) =
Q(st, at) = Q(st, at) + ↵(R(k) �Q(st, at))
k-step TD:

.nju.edu.cn

λ-return

averaging k-step returns, parameter λ

TD(1-step)

TD(2-step)

TD(n-step)

MC

weight

λ-return:

1� �

(1� �)�

(1� �)�n�1

(1� �)�max�1

R� = (1� �)
1X

k=1

�k�1Rk

Q(st, at) = Q(st, at) + ↵(R� �Q(st, at))TD(λ):

.nju.edu.cn

Implementation: eligibility traces

Maintain an extra memory E(s)

s s s s s s

E(s)
TD(λ)

�t = rt+1 + �Q(st+1, at+1)�Q(st, at)
TD error:

Update:

E0(s, a) = 0

Et(s, a) = ��Et�1(s, a) + I(st = s, at = a)

Q(s, a) (Q(s, a) + ↵�tEt(s, a)

.nju.edu.cn

SARSA(λ)
Q0 = 0, initial state
for i=0, 1, ...

s’, r = do action from policy
a’ =

for all s, a

end for
s = s’, a = a’,

end for

⇡✏
⇡✏(s

0)

⇡(s) = argmax
a

Q(s, a)

� = r + �Q(s0, a0)�Q(s, a)
E(s, a) + +

E(s, a) = �E(s, a)

Q(s, a) = Q(s, a) + ↵�Et(s, a)

.nju.edu.cn

MDP <S,A,R,P>

S (and A) is in

we can do RL now! ... in (small) discrete state space

Rn

.nju.edu.cn

Value function approximation

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

modern RL

linear function approx.

very powerful representation
can be all possible policies !

� is a feature mapping
w is the parameter vector

may not represent all policies !

V̂ (s) = w>�(s)

Q̂(s, a) = w>�(s, a)

Q̂(s, ai) = w>
i �(s)

.nju.edu.cn

Value function approximation

to approximate Q and V value function
least square approximation

J(w) = Es⇠⇡[
�
Q⇡(s, a)� Q̂(s, a)

�2
]

Recall the errors:
MC update:
TD update:

target

Q(st, at)+ = ↵(R�Q(st, at))

Q(st, at)+ = ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))

model

replace

online environment: stochastic gradient on single sample
�wt = ✓(Q⇡(st, at)� Q̂(st, at))rwQ̂(st, at)

.nju.edu.cn

Value function approximation

MC update:

TD update:

�wt = ✓(R� Q̂(st, at))rwQ̂(st, at)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

eligibility traces

Et = ��Et�1 +rwQ̂(st, at)

.nju.edu.cn

Q-learning with function approximation

w = 0, initial state
for i=0, 1, ...

a =
s’, r = do action a
a’ =

s = s’
end for

⇡(s0)
w+ = ✓(r + �Q̂(s, a)� Q̂(s, a))rwQ̂(st, at)

⇡(s) = argmax
a

Q̂(s, a)

⇡✏(s)

.nju.edu.cn

Approximation model

Linear approximation Q̂(s, a) = w>�(s, a)

coarse coding: raw features

discretization: tide with indicator features

kernelization:

Q̂(s, a) =
mX

i=1

wiK((s, a), (si, ai))

(si,ai) can be randomly sampled

rwQ̂(s, a) = �(s, a)

.nju.edu.cn

Approximation model

Nonlinear model approximation

neural network: differentiable model

Q̂(s, a) = f(s, a)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

follow the BP rule to
pass the gradient

recall the TD update:

.nju.edu.cn

policy degradation in value function based methods

1 2

1/3 2/3
2/31/3

2/32/3
1/3

1/3

r(1)=0 r(2)=1
ɸ(1)=2 ɸ(2)=1

optimal policy: red
V*(2) > V*(1) > 0

as value function based method minimizes kV̂ � V ⇤k
results in w > 0

sub-optimal policy, better value ≠ better policy

Policy Search

let V̂ (s) = w�(s), to ensure V̂ (2) > V̂ (1), w < 0

[Bartlett. An Introduction to Reinforcement Learning Theory: Value Function Methods. Advanced Lectures on Machine Learning, LNAI 2600]

.nju.edu.cn

Parameterized policy

Gibbs policy (logistic regression)

Gaussian policy (continuous !)

⇡✓(i|s) =
exp(✓>i �(s))P
j exp(✓

>
j �(s))

⇡✓(a|s) =
1p
2⇡�2

exp

✓
� (✓>s� a)2

�2

◆

⇡(a|s) = P (a|s, ✓)

.nju.edu.cn

Direct objective functions

episodic environments: trajectory-wise total reward

where

is the probability of generating the trajectory

J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)

continuing environments: one-step MDPs

d⇡✓ is the stationary distribution of the process

J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)R(s, a) ds da

.nju.edu.cn

Analytical optimization: REINFORCE
J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

logarithm trick r✓p✓ = p✓r✓ log p✓

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)as

r✓ log p✓(⌧) =
TX

i=1

r✓ log ⇡✓(ai|si�1) + const

use samples to estimate the gradient (unbiased estimation)

gradient: r✓J(✓) =

Z

Tra
p✓(⌧)r✓ log p✓(⌧)R(⌧) d⌧

= E[
TX

i=1

r✓ log ⇡✓(ai|si)R(si, ai)]

.nju.edu.cn

Analytical optimization: REINFORCE

Gibbs policy ⇡✓(i|s) =
exp(✓>i �(s))P
j exp(✓

>
j �(s))

r✓j log ⇡✓(ai|si) =
(
�(si, ai)(1� ⇡✓(ai|si)), i = j

��(si, ai)⇡✓(ai|si) i 6= j

Gaussian policy ⇡✓(a|s) =
1p
2⇡�2

exp

✓
� (✓>�(s)� a)2

�2

◆

r✓j log ⇡✓(ai|si) = �2
(✓>�(s)� a)�(s)

�2
+ const

.nju.edu.cn

Analytical optimization: One-step MDPs

logarithm trick r✓⇡✓ = ⇡✓r✓ log ⇡✓

J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)R(s, a) ds da

use samples to estimate the gradient (unbiased estimation)

E[
TX

i=1

r✓ log ⇡✓(ai|si)R(si, ai)]equivalent to

r✓J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)r✓ log ⇡✓(a|s)R(s, a) ds da

= E[r✓ log ⇡✓(a|s)R(s, a)]

.nju.edu.cn

Reduce variance by critic: Actor-Critic

learn policy from trajectories high var. -- actor only
learn value functions low var. -- critic only

combine the two for the good of both:
use critic to stably estimate the gradient

actor environment

action/decision

reward

state

criticagent

[Grondman, et al. Bartlett. A Survey of Actor-Critic Reinforcement Learning:Standard and Natural Policy Gradients. IEEE Trans. SMC-C, 2012]
[Konda & Tsitsiklis. Actor-Critic Algorithms. NIPS'97]

.nju.edu.cn

Reduce variance by critic: Actor-Critic

Maintain another parameter vector w
Qw(s, a) = w>�(s, a) ⇡ Q⇡(s, a)

value-based function approximated methods to update Qw

MC, TD, TD(λ), LSPI

Multi-step MDPs:J(✓) =
Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)Q⇡✓ (s, a) ds da

Learn policy (actor) and Q-value (critic) simultaneously

r✓J(✓) ⇡ E[r✓ log ⇡✓(a|s)Qw(s, a)]

if w is a minimizer of E[(Q⇡✓ (s, a)�Qw(s, a))
2]

Policy Gradient Theorem
equivalent gradient for all objectives

r✓J(✓) = E[r✓ log ⇡✓(a|s)Q⇡✓ (s, a)]

[Sutton et al. Policy gradient methods for reinforcement
learning with function approximation. NIPS’00]

.nju.edu.cn

Example

initial state s
for i=0, 1, ...

s’, r = do action a
a’ =

s = s’, a = a’
end for

a = ⇡✏(s)

� = r + �Qw(s
0, a0)�Qw(s, a)

✓ = ✓ +r✓ log ⇡✓(a|s)Qw(s, a)

w = w + ↵��(s, a)

⇡✏(s
0)

.nju.edu.cn

Control variance by introducing a bias term

Z

S
d⇡✓ (s)r✓

Z

A
⇡✓(a|s)⇡✓(a|s)b(s) dsda = 0

for any bias term b(s)

obtain the bias by minimizing variance
obtain the bias by V(s)

gradient with a bias term
r✓J(✓) = E[r✓ log ⇡✓(a|s)(Q⇡(s, a)� b(s))]

A⇡(s, a) = Q⇡(s, a)� V ⇡(s)advantage function:

r✓J(✓) = E[r✓ log ⇡✓(a|s)A⇡(s, a)]

learn policy, Q and V simultaneously

.nju.edu.cn

Other gradients

nature policy gradient

functional policy gradient

parameter-level exploration

[Kakade. A Natural Policy Gradient. NIPS'01]

[Yu et al. Boosting nonparametric policies. AAMAS'16]

[Sehnke et al. Parameter-exploring policy gradients. Neural Networks’10]✓ ⇠ N

In NPPG, A policy ⇡(s, a) is represented as g((s, a))
with some potential function . For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), ⇡ (a|s) = exp((s,a))P
a0 exp((s,a0)) , and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter �, ⇡ (a|s) = 1p
2⇡�2

exp
⇣
�

((s)�a)2

�2

⌘
. The poten-

tial function is an additive model =
PT

t=1 ht, where the
component function ht is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

r ⇢(⇡)=

Z

X
d
⇡ (s)

X

a2A

Q
⇡ (s, a)r ⇡ (a|s)ds.

Given the current potential function t =
Pt

i=1 ht, the
function can be updated as

 t+1 = t + ⌘tr ⇢(⇡ t).

However, di↵erent with the gradient of linear vectors, the
gradient in a function space r ⇢(⇡ t) is also a function
but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Q

⇡(s, a)r (s,a)⇡ (a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model ht by regression learning
from this set. Now the update rule is by

 t+1 = t + ⌘tht.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
r⇢S(⇡) = 1

m

Pm
i=1 r log p⇡(⌧i)R(⌧i). Considering the same

action functions of NPPG, a policy is formed from a poten-
tial function . For a state-action pair (s, a) in a trajectory
⌧ with the next state s0, the functional gradient with respect
to (s, a) is

r (s,a)⇢(⇡) =
1
m

R(⌧)r (s,a) log p
⇡ (⌧)

=
1
m

p(s0
|s, a)

p⇡ (s0|s)
R(⌧)r (s,a)⇡ (a | s)

=
1
m

p(s0
|s, a)Pn

t=1 p(s
0|s, at)⇡(s, at)

R(⌧)r (s,a)⇡ (a | s).

Then for discrete action space, we have

r (s,a)⇡(a | s) = ⇡ (a | s)(1� ⇡ (a | s)) (3)

and for continuous action space,

r (s,a)⇡(a | s) = 2⇡ (a | s)(a� (s))/�2
. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model ht to fit the gra-
dient value on the samples, and update the potential func-
tion as t+1 = t + ⌘tht with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., ⇡ (a|s) =
exp((s,a))P
a0 exp((s,a0)) ,

and study its convergence on the training samples.
Let 0 be a constant function (e.g. always outputs 0),

and recall t+1 = t + ⌘r ⇢S(⇡). For simplicity, when
the state s is clear, we make some notations: let t,k be
 t(s, ak), let ↵

t
k = ⇡ t(ak|s) for the action ak, �kj =

p(sj |s, ak), �j = p
⇡ (sj |s) and ckj =

Pm
i=1 1(sj2⌧i)�kjR(⌧i)

where 1expression is the indicator function that is 1 when
expression is true and 0 otherwise. Denote k

⇤ the index
of the observed best action of the state s, such that 8k 6=
k
⇤
8j : ck⇤j � ckj .
The functional gradient of total reward on S at a state-

action pair (s, ak) can be rewritten as

r t,k⇢S(⇡)

=
1
m

mX

i=1

lX

j=1

1(sj2⌧i)
p(sj |s, ak)
p⇡ (sj |s)

R(⌧i)r t,k⇡ (ak|s)

=
1
m

mX

i=1

lX

j=1

1(sj2⌧i)
�kjR(⌧i)

�j
↵k(1� ↵k)

=
1
m

↵k(1� ↵k)
lX

j=1

mX

i=1

1(sj 2 ⌧i)
�kjR(⌧i)

�j

=
1
m

↵k(1� ↵k)
lX

j=1

ckj

�j

We prove below that functional gradient converges to the
observed best action. Denote � = mink 6=k⇤

Pl
j=1 ck

⇤j � ckj

be the reward margin, which will e↵ect the convergence rate.

Lemma 1

For an observed state s, let ak⇤ be the observed best action,
it holds that

r t,k⇤ ⇢S(⇡ t)�r t,k⇢S(⇡ t) �
1
m

↵
t
k⇤(1� ↵

t
k⇤)�.

Proof. We first need to prove ↵t
k⇤ � ↵

t
k for all t and k 6= k

⇤.
The proof is by induction. When t = 0, since 0,ak is a
constant for all k, ↵0

k⇤ = ↵
0
k for all k.

Then inductively assume that ↵
t
k⇤ � ↵

t
k for all k 6= k

⇤.
From the inductive assumption we have that, for all k 6= k

⇤,

 t,k⇤ � t,k since ↵
t
k =

exp(t
k)Pn

i=1 exp(t
i)
, and ↵

t
k⇤(1 � ↵

t
k⇤) �

↵
t
k(1� ↵

t
k) since

Pn
k=1 ↵

t
k = 1. Therefore, we have that

 t+1,k⇤ � t+1,k

� ⌘r t,k⇤ ⇢S(⇡ t)� ⌘r t,k⇢S(⇡ t)

�
⌘

m

⇣
↵
t
k⇤(1� ↵

t
k⇤)

lX

j=1

ck⇤j

�j
� ↵

t
k(1� ↵

t
k)

lX

j=1

ckj

�j

⌘

� 0,

In NPPG, A policy ⇡(s, a) is represented as g((s, a))
with some potential function . For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), ⇡ (a|s) = exp((s,a))P
a0 exp((s,a0)) , and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter �, ⇡ (a|s) = 1p
2⇡�2

exp
⇣
�

((s)�a)2

�2

⌘
. The poten-

tial function is an additive model =
PT

t=1 ht, where the
component function ht is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

r ⇢(⇡)=

Z

X
d
⇡ (s)

X

a2A

Q
⇡ (s, a)r ⇡ (a|s)ds.

Given the current potential function t =
Pt

i=1 ht, the
function can be updated as

 t+1 = t + ⌘tr ⇢(⇡ t).

However, di↵erent with the gradient of linear vectors, the
gradient in a function space r ⇢(⇡ t) is also a function
but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Q

⇡(s, a)r (s,a)⇡ (a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model ht by regression learning
from this set. Now the update rule is by

 t+1 = t + ⌘tht.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
r⇢S(⇡) = 1

m

Pm
i=1 r log p⇡(⌧i)R(⌧i). Considering the same

action functions of NPPG, a policy is formed from a poten-
tial function . For a state-action pair (s, a) in a trajectory
⌧ with the next state s0, the functional gradient with respect
to (s, a) is

r (s,a)⇢(⇡) =
1
m

R(⌧)r (s,a) log p
⇡ (⌧)

=
1
m

p(s0
|s, a)

p⇡ (s0|s)
R(⌧)r (s,a)⇡ (a | s)

=
1
m

p(s0
|s, a)Pn

t=1 p(s
0|s, at)⇡(s, at)

R(⌧)r (s,a)⇡ (a | s).

Then for discrete action space, we have

r (s,a)⇡(a | s) = ⇡ (a | s)(1� ⇡ (a | s)) (3)

and for continuous action space,

r (s,a)⇡(a | s) = 2⇡ (a | s)(a� (s))/�2
. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model ht to fit the gra-
dient value on the samples, and update the potential func-
tion as t+1 = t + ⌘tht with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., ⇡ (a|s) =
exp((s,a))P
a0 exp((s,a0)) ,

and study its convergence on the training samples.
Let 0 be a constant function (e.g. always outputs 0),

and recall t+1 = t + ⌘r ⇢S(⇡). For simplicity, when
the state s is clear, we make some notations: let t,k be
 t(s, ak), let ↵

t
k = ⇡ t(ak|s) for the action ak, �kj =

p(sj |s, ak), �j = p
⇡ (sj |s) and ckj =

Pm
i=1 1(sj2⌧i)�kjR(⌧i)

where 1expression is the indicator function that is 1 when
expression is true and 0 otherwise. Denote k

⇤ the index
of the observed best action of the state s, such that 8k 6=
k
⇤
8j : ck⇤j � ckj .
The functional gradient of total reward on S at a state-

action pair (s, ak) can be rewritten as

r t,k⇢S(⇡)

=
1
m

mX

i=1

lX

j=1

1(sj2⌧i)
p(sj |s, ak)
p⇡ (sj |s)

R(⌧i)r t,k⇡ (ak|s)

=
1
m

mX

i=1

lX

j=1

1(sj2⌧i)
�kjR(⌧i)

�j
↵k(1� ↵k)

=
1
m

↵k(1� ↵k)
lX

j=1

mX

i=1

1(sj 2 ⌧i)
�kjR(⌧i)

�j

=
1
m

↵k(1� ↵k)
lX

j=1

ckj

�j

We prove below that functional gradient converges to the
observed best action. Denote � = mink 6=k⇤

Pl
j=1 ck

⇤j � ckj

be the reward margin, which will e↵ect the convergence rate.

Lemma 1

For an observed state s, let ak⇤ be the observed best action,
it holds that

r t,k⇤ ⇢S(⇡ t)�r t,k⇢S(⇡ t) �
1
m

↵
t
k⇤(1� ↵

t
k⇤)�.

Proof. We first need to prove ↵t
k⇤ � ↵

t
k for all t and k 6= k

⇤.
The proof is by induction. When t = 0, since 0,ak is a
constant for all k, ↵0

k⇤ = ↵
0
k for all k.

Then inductively assume that ↵
t
k⇤ � ↵

t
k for all k 6= k

⇤.
From the inductive assumption we have that, for all k 6= k

⇤,

 t,k⇤ � t,k since ↵
t
k =

exp(t
k)Pn

i=1 exp(t
i)
, and ↵

t
k⇤(1 � ↵

t
k⇤) �

↵
t
k(1� ↵

t
k) since

Pn
k=1 ↵

t
k = 1. Therefore, we have that

 t+1,k⇤ � t+1,k

� ⌘r t,k⇤ ⇢S(⇡ t)� ⌘r t,k⇢S(⇡ t)

�
⌘

m

⇣
↵
t
k⇤(1� ↵

t
k⇤)

lX

j=1

ck⇤j

�j
� ↵

t
k(1� ↵

t
k)

lX

j=1

ckj

�j

⌘

� 0,

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

The natural policy gradient is parametrisation independent

It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

rnat
✓ ⇡✓(s, a) = G�1

✓ r✓⇡✓(s, a)

where G✓ is the Fisher information matrix

G✓ = E⇡✓

h
r✓ log ⇡✓(s, a)r✓ log ⇡✓(s, a)

T
i

asynchronous gradient update
[Mnih et al. Asynchronous Methods for Deep Reinforcement Learning . ICML’16]

.nju.edu.cn

Deep Reinforcement Learning
and Games

.nju.edu.cn

The Atari games

Deepmind Deep Q-learning on Atari
[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]

.nju.edu.cn

Eye of agent: Deep learning

a powerful architecture for image analysis
differentiable
require a lot of samples to train

.nju.edu.cn

Deep reinforcement learning

= deep model + reinforcement learning:
deep model as the function approximation / policy model

How to fit deep neural networks?
stability?
data?
network structure?
…

.nju.edu.cn

Deep Q-Network

DQN
• using ϵ-greedy policy
• store 1million recent history (s,a,r,s’) in replay memory D
• sample a mini-batch (32) from D
• calculate Q-learning target
• update CNN by minimizing the Bellman error (delayed update)

Q̃

X
(r + �max

a0
Q̃(s0, a0)�Qw(s, a))

2

DQN on Atari
learn to play from pixels

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

4
fr

am
es

[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]

.nju.edu.cn

Deep Q-Network

se
e

Fi
g.

3,
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

2)
.I

n
ad

di
tio

na
ls

im
ul

at
io

ns
(s

ee
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

s3
an

d
4)

,w
ed

em
on

st
ra

te
th

ei
m

po
rt

an
ce

of
th

ei
nd

iv
id

ua
l

co
re

co
m

po
ne

nt
so

ft
he

D
Q

N
ag

en
t—

th
er

ep
la

y
m

em
or

y,
se

pa
ra

te
ta

rg
et

Q
-n

et
w

or
k

an
d

de
ep

co
nv

ol
ut

io
na

ln
et

w
or

k
ar

ch
ite

ct
ur

e—
by

di
sa

bl
in

g
th

em
an

d
de

m
on

st
ra

tin
g

th
e

de
tr

im
en

ta
le

ffe
ct

s
on

pe
rf

or
m

an
ce

.
W

e
ne

xt
ex

am
in

ed
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

th
at

un
de

r-
pi

nn
ed

th
es

uc
ce

ss
fu

lp
er

fo
rm

an
ce

of
th

ea
ge

nt
in

th
ec

on
te

xt
of

th
eg

am
e

Sp
ac

eI
nv

ad
er

s(
se

eS
up

pl
em

en
ta

ry
V

id
eo

1
fo

ra
de

m
on

st
ra

tio
n

of
th

e
pe

rf
or

m
an

ce
of

D
Q

N
),

by
us

in
g

a
te

ch
ni

qu
e

de
ve

lo
pe

d
fo

rt
he

vi
su

al
-

iz
at

io
n

of
hi

gh
-d

im
en

si
on

al
da

ta
ca

lle
d

‘t-
SN

E’
25

(F
ig

.4
).

A
se

xp
ec

te
d,

th
e

t-
SN

E
al

go
ri

th
m

te
nd

st
o

m
ap

th
e

D
Q

N
re

pr
es

en
ta

tio
n

of
pe

rc
ep

-
tu

al
ly

sim
ila

rs
ta

te
st

o
ne

ar
by

po
in

ts
.I

nt
er

es
tin

gl
y,

w
ea

lso
fo

un
d

in
st

an
ce

s
in

w
hi

ch
th

e
t-

SN
E

al
go

ri
th

m
ge

ne
ra

te
d

si
m

ila
re

m
be

dd
in

gs
fo

rD
Q

N
re

pr
es

en
ta

tio
ns

of
st

at
es

th
at

ar
e

cl
os

e
in

te
rm

so
fe

xp
ec

te
d

re
w

ar
d

bu
t

pe
rc

ep
tu

al
ly

di
ss

im
ila

r(
Fi

g.
4,

bo
tt

om
ri

gh
t,

to
p

le
ft

an
d

m
id

dl
e)

,c
on

-
si

st
en

tw
ith

th
en

ot
io

n
th

at
th

en
et

w
or

k
is

ab
le

to
le

ar
n

re
pr

es
en

ta
tio

ns
th

at
su

pp
or

ta
da

pt
iv

eb
eh

av
io

ur
fr

om
hi

gh
-d

im
en

si
on

al
se

ns
or

y
in

pu
ts

.
Fu

rt
he

rm
or

e,
w

e
al

so
sh

ow
th

at
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

ar
e

ab
le

to
ge

ne
ra

liz
e

to
da

ta
ge

ne
ra

te
d

fr
om

po
lic

ie
s

ot
he

r
th

an
its

ow
n—

in
si

m
ul

at
io

ns
w

he
re

w
ep

re
se

nt
ed

as
in

pu
tt

o
th

en
et

w
or

k
ga

m
e

st
at

es
ex

pe
ri

en
ce

d
du

ri
ng

hu
m

an
an

d
ag

en
tp

la
y,

re
co

rd
ed

th
e

re
pr

e-
se

nt
at

io
ns

of
th

e
la

st
hi

dd
en

la
ye

r,
an

d
vi

su
al

iz
ed

th
e

em
be

dd
in

gs
ge

n-
er

at
ed

by
th

et
-S

N
E

al
go

ri
th

m
(E

xt
en

de
d

D
at

aF
ig

.1
an

d
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n)

.E
xt

en
de

d
D

at
a

Fi
g.

2
pr

ov
id

es
an

ad
di

tio
na

li
llu

st
ra

tio
n

of
ho

w
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

al
lo

w
it

to
ac

cu
ra

te
ly

pr
ed

ic
t

st
at

e
an

d
ac

tio
n

va
lu

es
.

It
is

w
or

th
no

tin
g

th
at

th
eg

am
es

in
w

hi
ch

D
Q

N
ex

ce
ls

ar
ee

xt
re

m
el

y
va

ri
ed

in
th

ei
rn

at
ur

e,
fr

om
si

de
-s

cr
ol

lin
g

sh
oo

te
rs

(R
iv

er
R

ai
d)

to
bo

x-
in

g
ga

m
es

(B
ox

in
g)

an
d

th
re

e-
di

m
en

si
on

al
ca

r-
ra

ci
ng

ga
m

es
(E

nd
ur

o)
.

M
on

te
zu

m
a'

s
R

ev
en

ge
P

riv
at

e
Ey

e
G

ra
vi

ta
r

Fr
os

tb
ite

A
st

er
oi

ds
M

s.
 P

ac
-M

an
B

ow
lin

g
D

ou
bl

e
D

un
k

S
ea

qu
es

t
Ve

nt
ur

e
A

lie
n

A
m

id
ar

R
iv

er
 R

ai
d

B
an

k
H

ei
st

Za
xx

on

C
en

tip
ed

e
C

ho
pp

er
 C

om
m

an
d

W
iz

ar
d

of
 W

or
B

at
tle

 Z
on

e
A

st
er

ix
H

.E
.R

.O
.

Q
*b

er
t

Ic
e

H
oc

ke
y

U
p

an
d

D
ow

n
Fi

sh
in

g
D

er
by

En
du

ro
Ti

m
e

P
ilo

t
Fr

ee
w

ay
K

un
g-

Fu
 M

as
te

r
Tu

ta
nk

ha
m

B
ea

m
 R

id
er

S
pa

ce
 In

va
de

rs
P

on
g

Ja
m

es
 B

on
d

Te
nn

is

K
an

ga
ro

o
R

oa
d

R
un

ne
r

A
ss

au
lt

K
ru

ll
N

am
e

Th
is

 G
am

e
D

em
on

 A
tt

ac
k

G
op

he
r

C
ra

zy
 C

lim
be

r
A

tla
nt

is
R

ob
ot

an
k

S
ta

r G
un

ne
r

B
re

ak
ou

t
B

ox
in

g
Vi

de
o

P
in

ba
ll

A
t h

um
an

-le
ve

l o
r a

bo
ve

B
el

ow
 h

um
an

-le
ve

l

0
10

0
20

0
30

0
40

0
4,

50
0%

50
0

1,
00

0
60

0

B
es

t l
in

ea
r l

ea
rn

er

D
Q

N

Fi
gu

re
3

|C
om

pa
ri

so
n

of
th

e
D

Q
N

ag
en

tw
it

h
th

e
be

st
re

in
fo

rc
em

en
t

le
ar

ni
ng

m
et

ho
ds

15
in

th
e

lit
er

at
ur

e.
T

he
pe

rf
or

m
an

ce
of

D
Q

N
is

no
rm

al
iz

ed
w

ith
re

sp
ec

tt
o

a
pr

of
es

si
on

al
hu

m
an

ga
m

es
te

st
er

(t
ha

ti
s,

10
0%

le
ve

l)
an

d
ra

nd
om

pl
ay

(t
ha

ti
s,

0%
le

ve
l).

N
ot

e
th

at
th

en
or

m
al

iz
ed

pe
rf

or
m

an
ce

of
D

Q
N

,
ex

pr
es

se
d

as
a

pe
rc

en
ta

ge
,i

s
ca

lc
ul

at
ed

as
:1

00
3

(D
Q

N
sc

or
e2

ra
nd

om
pl

ay
sc

or
e)

/(
hu

m
an

sc
or

e2
ra

nd
om

pl
ay

sc
or

e)
.I

tc
an

be
se

en
th

at
D

Q
N

ou
tp

er
fo

rm
sc

om
pe

tin
g

m
et

ho
ds

(a
ls

o
se

e
Ex

te
nd

ed
D

at
a

T
ab

le
2)

in
al

m
os

ta
ll

th
e

ga
m

es
,a

nd
pe

rf
or

m
s

at
a

le
ve

lt
ha

ti
s

br
oa

dl
y

co
m

pa
ra

bl
e

w
ith

or
su

pe
ri

or
to

a
pr

of
es

si
on

al
hu

m
an

ga
m

es
te

st
er

(t
ha

ti
s,

op
er

at
io

na
liz

ed
as

a
le

ve
lo

f
75

%
or

ab
ov

e)
in

th
e

m
aj

or
ity

of
ga

m
es

.A
ud

io
ou

tp
ut

w
as

di
sa

bl
ed

fo
r

bo
th

hu
m

an
pl

ay
er

s
an

d
ag

en
ts

.E
rr

or
ba

rs
in

di
ca

te
s.d

.a
cr

os
s

th
e

30
ev

al
ua

tio
n

ep
is

od
es

,s
ta

rt
in

g
w

ith
di

ffe
re

nt
in

iti
al

co
nd

iti
on

s.

LE
TT

ER
RE

SE
AR

CH

2
6

F
E

B
R

U
A

R
Y

2
0

1
5

|
V

O
L

5
1

8
|

N
A

T
U

R
E

|
5

3
1

M
ac

m
ill

an
 P

ub
lis

he
rs

 L
im

ite
d.

 A
ll

rig
ht

s
re

se
rv

ed
©
20
15

.nju.edu.cn

Deep Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

DQN agents were trained for 10 million frames using standard hyperparameters for all possible combinations of turning replay on or off, using or not using a separate target Q-network, and three different learning
rates. Each agent was evaluated every 250,000 training frames for 135,000 validation frames and the highest average episode score is reported. Note that these evaluation episodes were not truncated at 5 min
leading to higher scores on Enduro than the ones reported in Extended Data Table 2. Note also that the number of training frames was shorter (10 million frames) as compared to the main results presented in
Extended Data Table 2 (50million frames).

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015

effectiveness

.nju.edu.cn

AlphaGo

A combination of tree search, deep neural
networks and reinforcement learning

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

fast roll-out policy

policy network

value network

.nju.edu.cn

AlphaGo

policy network: a CNN output π(s,a)

ARTICLERESEARCH

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black
Feature planes used by the policy network (all but last feature) and value network (all features).

© 2016 Macmillan Publishers Limited. All rights reserved

value network: a CNN output V(s)

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: + 1 for winning and − 1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions
N

eural netw
ork

D
ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

.nju.edu.cn

AlphaGo

policy network: initialization
supervised learning from human v.s. human data ARTICLE RESEARCH

Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation

Filters Symmetries Features Test accu-
racy %

Train accu-
racy %

Raw net
wins %

AlphaGo
wins %

Forward
time (ms)

128 1 48 54.6 57.0 36 53 2.8
192 1 48 55.4 58.0 50 50 4.8
256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 51.4 25 15 4.8
192 1 12 54.7 57.1 30 34 4.8
192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

The policy network architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4, 12 or
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy
network against AlphaGo’s policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo’s search to select moves (AlphaGo
wins); and finally the computation time for a single evaluation of the policy network.

© 2016 Macmillan Publishers Limited. All rights reserved

.nju.edu.cn

AlphaGo

policy network: further improvement
reinforcement learning

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: + 1 for winning and − 1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 7

ARTICLE RESEARCH

better in AlphaGo than a value function ()≈ ()θ σv s v sp derived from the
SL policy network.

Evaluating policy and value networks requires several orders of
magnitude more computation than traditional search heuristics. To
efficiently combine MCTS with deep neural networks, AlphaGo uses
an asynchronous multi-threaded search that executes simulations on
CPUs, and computes policy and value networks in parallel on GPUs.
The final version of AlphaGo used 40 search threads, 48 CPUs, and
8 GPUs. We also implemented a distributed version of AlphaGo that

exploited multiple machines, 40 search threads, 1,202 CPUs and
176 GPUs. The Methods section provides full details of asynchronous
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants
of AlphaGo and several other Go programs, including the strongest
commercial programs Crazy Stone13 and Zen, and the strongest open
source programs Pachi14 and Fuego15. All of these programs are based

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables
6–11). Each program used approximately 5 s computation time per move.
To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS38; an approximate correspondence to human ranks is also shown,

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;
these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. c, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0

El
o

R
at

in
g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.
a, Evaluation of all successors s′ of the root position s, using the value
network vθ(s′); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (λ = 0).
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).

d, Move probabilities directly from the SL policy network, (|)σp a s ;
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Principal variation

Value networka

fPolicy network Percentage of simulations

b c Tree evaluation from rolloutsTree evaluation from value net

d e g

© 2016 Macmillan Publishers Limited. All rights reserved

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: + 1 for winning and − 1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

a randomly picked policy in previous iterations

an old policy

a

s,r

reward:
+1 -- win at terminate state
-1 -- loss at terminate state

environment

a.k.a. self-play

.nju.edu.cn

AlphaGo

value network: supervised learning from RL data

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 7

ARTICLE RESEARCH

better in AlphaGo than a value function ()≈ ()θ σv s v sp derived from the
SL policy network.

Evaluating policy and value networks requires several orders of
magnitude more computation than traditional search heuristics. To
efficiently combine MCTS with deep neural networks, AlphaGo uses
an asynchronous multi-threaded search that executes simulations on
CPUs, and computes policy and value networks in parallel on GPUs.
The final version of AlphaGo used 40 search threads, 48 CPUs, and
8 GPUs. We also implemented a distributed version of AlphaGo that

exploited multiple machines, 40 search threads, 1,202 CPUs and
176 GPUs. The Methods section provides full details of asynchronous
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants
of AlphaGo and several other Go programs, including the strongest
commercial programs Crazy Stone13 and Zen, and the strongest open
source programs Pachi14 and Fuego15. All of these programs are based

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables
6–11). Each program used approximately 5 s computation time per move.
To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS38; an approximate correspondence to human ranks is also shown,

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;
these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. c, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0

El
o

R
at

in
g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.
a, Evaluation of all successors s′ of the root position s, using the value
network vθ(s′); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (λ = 0).
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).

d, Move probabilities directly from the SL policy network, (|)σp a s ;
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Principal variation

Value networka

fPolicy network Percentage of simulations

b c Tree evaluation from rolloutsTree evaluation from value net

d e g

© 2016 Macmillan Publishers Limited. All rights reserved

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: + 1 for winning and − 1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 r

at
e

(%
)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

.nju.edu.cn

Dueling Network Architectures for Deep Reinforcement Learning

Ziyu Wang ZIYU@GOOGLE.COM
Tom Schaul SCHAUL@GOOGLE.COM
Matteo Hessel MTTHSS@GOOGLE.COM
Hado van Hasselt HADO@GOOGLE.COM
Marc Lanctot LANCTOT@GOOGLE.COM
Nando de Freitas NANDODEFREITAS@GMAIL.COM

Google DeepMind, London, UK

Abstract

In recent years there have been many successes
of using deep representations in reinforcement
learning. Still, many of these applications use
conventional architectures, such as convolutional
networks, LSTMs, or auto-encoders. In this pa-
per, we present a new neural network architec-
ture for model-free reinforcement learning. Our
dueling network represents two separate estima-
tors: one for the state value function and one for
the state-dependent action advantage function.
The main benefit of this factoring is to general-
ize learning across actions without imposing any
change to the underlying reinforcement learning
algorithm. Our results show that this architec-
ture leads to better policy evaluation in the pres-
ence of many similar-valued actions. Moreover,
the dueling architecture enables our RL agent to
outperform the state-of-the-art on the Atari 2600
domain.

1. Introduction

Over the past years, deep learning has contributed to dra-
matic advances in scalability and performance of machine
learning (LeCun et al., 2015). One exciting application
is the sequential decision-making setting of reinforcement
learning (RL) and control. Notable examples include deep
Q-learning (Mnih et al., 2015), deep visuomotor policies
(Levine et al., 2015), attention with recurrent networks (Ba
et al., 2015), and model predictive control with embeddings
(Watter et al., 2015). Other recent successes include mas-
sively parallel frameworks (Nair et al., 2015) and expert
move prediction in the game of Go (Maddison et al., 2015),
which produced policies matching those of Monte Carlo
tree search programs, and squarely beaten a professional
player when combined with search (Silver et al., 2016).

In spite of this, most of the approaches for RL use standard
neural networks, such as convolutional networks, MLPs,
LSTMs and autoencoders. The focus in these recent ad-
vances has been on designing improved control and RL al-
gorithms, or simply on incorporating existing neural net-
work architectures into RL methods. Here, we take an al-

ternative but complementary approach of focusing primar-
ily on innovating a neural network architecture that is better
suited for model-free RL. This approach has the benefit that
the new network can be easily combined with existing and
future algorithms for RL. That is, this paper advances a new
network (Figure 1), but uses already published algorithms.

The proposed network architecture, which we name the du-

eling architecture, explicitly separates the representation of
state values and (state-dependent) action advantages. The
dueling architecture consists of two streams that represent
the value and advantage functions, while sharing a common

Figure 1. A popular single stream Q-network (top) and the duel-
ing Q-network (bottom). The dueling network has two streams
to separately estimate (scalar) state-value and the advantages for
each action; the green output module implements equation (9) to
combine them. Both networks output Q-values for each action.

ar
X

iv
:1

51
1.

06
58

1v
3

 [c
s.L

G
]

5
A

pr
 2

01
6

Dueling Network Architectures for Deep Reinforcement Learning

Ziyu Wang ZIYU@GOOGLE.COM
Tom Schaul SCHAUL@GOOGLE.COM
Matteo Hessel MTTHSS@GOOGLE.COM
Hado van Hasselt HADO@GOOGLE.COM
Marc Lanctot LANCTOT@GOOGLE.COM
Nando de Freitas NANDODEFREITAS@GMAIL.COM

Google DeepMind, London, UK

Abstract

In recent years there have been many successes
of using deep representations in reinforcement
learning. Still, many of these applications use
conventional architectures, such as convolutional
networks, LSTMs, or auto-encoders. In this pa-
per, we present a new neural network architec-
ture for model-free reinforcement learning. Our
dueling network represents two separate estima-
tors: one for the state value function and one for
the state-dependent action advantage function.
The main benefit of this factoring is to general-
ize learning across actions without imposing any
change to the underlying reinforcement learning
algorithm. Our results show that this architec-
ture leads to better policy evaluation in the pres-
ence of many similar-valued actions. Moreover,
the dueling architecture enables our RL agent to
outperform the state-of-the-art on the Atari 2600
domain.

1. Introduction

Over the past years, deep learning has contributed to dra-
matic advances in scalability and performance of machine
learning (LeCun et al., 2015). One exciting application
is the sequential decision-making setting of reinforcement
learning (RL) and control. Notable examples include deep
Q-learning (Mnih et al., 2015), deep visuomotor policies
(Levine et al., 2015), attention with recurrent networks (Ba
et al., 2015), and model predictive control with embeddings
(Watter et al., 2015). Other recent successes include mas-
sively parallel frameworks (Nair et al., 2015) and expert
move prediction in the game of Go (Maddison et al., 2015),
which produced policies matching those of Monte Carlo
tree search programs, and squarely beaten a professional
player when combined with search (Silver et al., 2016).

In spite of this, most of the approaches for RL use standard
neural networks, such as convolutional networks, MLPs,
LSTMs and autoencoders. The focus in these recent ad-
vances has been on designing improved control and RL al-
gorithms, or simply on incorporating existing neural net-
work architectures into RL methods. Here, we take an al-

ternative but complementary approach of focusing primar-
ily on innovating a neural network architecture that is better
suited for model-free RL. This approach has the benefit that
the new network can be easily combined with existing and
future algorithms for RL. That is, this paper advances a new
network (Figure 1), but uses already published algorithms.

The proposed network architecture, which we name the du-

eling architecture, explicitly separates the representation of
state values and (state-dependent) action advantages. The
dueling architecture consists of two streams that represent
the value and advantage functions, while sharing a common

Figure 1. A popular single stream Q-network (top) and the duel-
ing Q-network (bottom). The dueling network has two streams
to separately estimate (scalar) state-value and the advantages for
each action; the green output module implements equation (9) to
combine them. Both networks output Q-values for each action.

ar
X

iv
:1

51
1.

06
58

1v
3

 [c
s.L

G
]

5
A

pr
 2

01
6

.nju.edu.cn

Value Iteration Networks

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel

Dept. of Electrical Engineering and Computer Sciences, UC Berkeley

Abstract

We introduce the value iteration network (VIN): a fully differentiable neural net-
work with a ‘planning module’ embedded within. VINs can learn to plan, and are
suitable for predicting outcomes that involve planning-based reasoning, such as
policies for reinforcement learning. Key to our approach is a novel differentiable

approximation of the value-iteration algorithm, which can be represented as a con-
volutional neural network, and trained end-to-end using standard backpropagation.
We evaluate VIN based policies on discrete and continuous path-planning domains,
and on a natural-language based search task. We show that by learning an explicit
planning computation, VIN policies generalize better to new, unseen domains.

1 Introduction

Over the last decade, deep convolutional neural networks (CNNs) have revolutionized supervised
learning for tasks such as object recognition, action recognition, and semantic segmentation [3, 15, 6,
19]. Recently, CNNs have been applied to reinforcement learning (RL) tasks with visual observations
such as Atari games [21], robotic manipulation [18], and imitation learning (IL) [9]. In these tasks, a
neural network (NN) is trained to represent a policy – a mapping from an observation of the system’s
state to an action, with the goal of representing a control strategy that has good long-term behavior,
typically quantified as the minimization of a sequence of time-dependent costs.

The sequential nature of decision making in RL is inherently different than the one-step decisions
in supervised learning, and in general requires some form of planning [2]. However, most recent
deep RL works [21, 18, 9] employed NN architectures that are very similar to the standard networks
used in supervised learning tasks, which typically consist of CNNs for feature extraction, and fully
connected layers that map the features to a probability distribution over actions. Such networks are
inherently reactive, and in particular, lack explicit planning computation. The success of reactive
policies in sequential problems is due to the learning algorithm, which essentially trains a reactive
policy to select actions that have good long-term consequences in its training domain.

To understand why planning can nevertheless be an important ingredient in a policy, consider the
grid-world navigation task depicted in Figure 1 (left), in which the agent can observe a map of its
domain, and is required to navigate between some obstacles to a target position. One hopes that after
training a policy to solve several instances of this problem with different obstacle configurations, the
policy would generalize to solve a different, unseen domain, as in Figure 1 (right). However, as we
show in our experiments, while standard CNN-based networks can be easily trained to solve a set of
such maps, they do not generalize well to new tasks outside this set, because they do not understand
the goal-directed nature of the behavior. This observation suggests that the computation learned by
reactive policies is different from planning, which is required to solve a new task1.

1In principle, with enough training data that covers all possible task configurations, and a rich enough policy
representation, a reactive policy can learn to map each task to its optimal policy. In practice, this is often
too expensive, and we offer a more data-efficient approach by exploiting a flexible prior about the planning
computation underlying the behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

ar
X

iv
:1

60
2.

02
86

7v
4

 [c
s.A

I]
 2

0
M

ar
 2

01
7

modulated) values (s). Finally, the vector (s) is added as additional features to a reactive policy
⇡re(a|�(s), (s)). The full network architecture is depicted in Figure 2 (left).

Returning to our grid-world example, at a particular state s, the reactive policy only needs to query
the values of the states neighboring s in order to select the correct action. Thus, the attention module
in this case could return a (s) vector with a subset of V̄ ⇤ for these neighboring states.

K recurrence

Reward Q

Prev. Value
New Value

VI Module

P

R
V

Figure 2: Planning-based NN models. Left: a general policy representation that adds value function
features from a planner to a reactive policy. Right: VI module – a CNN representation of VI algorithm.

Let ✓ denote all the parameters of the policy, namely, the parameters of fR, fP , and ⇡re, and note
that (s) is in fact a function of �(s). Therefore, the policy can be written in the form ⇡✓(a|�(s)),
similarly to the standard policy form (cf. Section 2). If we could back-propagate through this function,
then potentially we could train the policy using standard RL and IL algorithms, just like any other
standard policy representation. While it is easy to design functions fR and fP that are differentiable
(and we provide several examples in our experiments), back-propagating the gradient through the
planning algorithm is not trivial. In the following, we propose a novel interpretation of an approximate
VI algorithm as a particular form of a CNN. This allows us to conveniently treat the planning module
as just another NN, and by back-propagating through it, we can train the whole policy end-to-end.
3.1 The VI Module
We now introduce the VI module – a NN that encodes a differentiable planning computation.
Our starting point is the VI algorithm (1). Our main observation is that each iteration of VI may
be seen as passing the previous value function Vn and reward function R through a convolution
layer and max-pooling layer. In this analogy, each channel in the convolution layer corresponds to
the Q-function for a specific action, and convolution kernel weights correspond to the discounted
transition probabilities. Thus by recurrently applying a convolution layer K times, K iterations of VI
are effectively performed.

Following this idea, we propose the VI network module, as depicted in Figure 2B. The inputs to the
VI module is a ‘reward image’ R̄ of dimensions l,m, n, where here, for the purpose of clarity, we
follow the CNN formulation and explicitly assume that the state space S̄ maps to a 2-dimensional
grid. However, our approach can be extended to general discrete state spaces, for example, a graph,
as we report in the WikiNav experiment in Section 4.4. The reward is fed into a convolutional layer Q̄
with Ā channels and a linear activation function, Q̄ā,i0,j0 =

P
l,i,j W

ā
l,i,jR̄l,i0�i,j0�j . Each channel

in this layer corresponds to Q̄(s̄, ā) for a particular action ā. This layer is then max-pooled along
the actions channel to produce the next-iteration value function layer V̄ , V̄i,j = maxā Q̄(ā, i, j).
The next-iteration value function layer V̄ is then stacked with the reward R̄, and fed back into the
convolutional layer and max-pooling layer K times, to perform K iterations of value iteration.

The VI module is simply a NN architecture that has the capability of performing an approximate VI
computation. Nevertheless, representing VI in this form makes learning the MDP parameters and
reward function natural – by backpropagating through the network, similarly to a standard CNN. VI
modules can also be composed hierarchically, by treating the value of one VI module as additional
input to another VI module. We further report on this idea in the supplementary material.

3.2 Value Iteration Networks
We now have all the ingredients for a differentiable planning-based policy, which we term a value
iteration network (VIN). The VIN is based on the general planning-based policy defined above, with
the VI module as the planning algorithm. In order to implement a VIN, one has to specify the state

4

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�

.nju.edu.cn

Imitation learning

reinforcement learning with a teacher

.nju.edu.cn

Imitation learning

Reinforcement learning is hard due to the delayed feedback

Introducing experts’ behavior data:
1. learn faster — immediate feedback
2. learn better — more human like

[Abbeel et al., IJRR'2010][Finn et al., ICML'2016] [Sliver et al., RSS'2008]

https://www.youtube.com/watch?v=ydnjS__8Ooc

.nju.edu.cn

Settings

RL problem: <S,A,R,P>
Observation: <S’,A’,R’,P’>

Simplest: S=S’,A=A’,P=P’
Hardest: S≠S’,A≠A’,P≠P’

Environment reward accessible: R ?

internal data
observational data

Can practice: P ?
No — only from demonstration data
Yes — try in the environment

No — simulate the expert
Yes — maximize the reward

.nju.edu.cn

Behavioral Cloning

Demonstration: (s1, a1, s2, a2, …)

(si,ai) -> supervised learning

S. Levine,
CS-294-112-2

Compounding errors:

no practice, no reward

.nju.edu.cn

DAgger: Dataset Aggregation

collect training data from the learnt policy
ask expert to label the data

Loop:
 1. train πθ(ut|ot) from data D = {o1, u1, …, oN, uN}
 2. run πθ(ut|ot) to get dataset Dπ = {o1, …, oM}
 3. Ask expert to label Dπ with actions ut

 4. Aggregate: D←D Ս Dπ
S. Ross et al.,
AISTATS'2011

can practice, no reward

.nju.edu.cn

Inverse Reinforcement Learning

Find a reward function R* which can explain the
expert’s behavior
 Find R* such that:

ππγπγ ∀≥ ∑∑
∞

=

∞

=

],|)([]|)([
0

**

0

*

t
t

t

t
t

t sREsRE

ill formulation

can practice, no reward

Assume the expert’s trajectory is optimal under some
reward, so find R* such that:

.nju.edu.cn

Inverse Reinforcement Learning

Max-margin
 Feature boosting [Ratliff et al., 2007]
 Hierarchical formulation [Kolter et al., 2008]

Feature expectation matching
 Two player game of feature matching [Syed et al., 2008]
 Max entropy of feature matching [Ziebart et al., 2008]

Interpret reward function as parameterization of a policy
class
 Bayesian IRL [Ramachandran et al., 2007]

Different reward function formalizations

.nju.edu.cn

Brief History for IRL

●Sample-based IRL(Guided Cost Learning) [Finn et al.,
ICML'2016]
●Nonlinear IRL with DGP [Wulfmeier et al., NIPS'2015]
●Bayesian nonparametric feature construction IRL [Choi
et al., IJCAI'2014]
●Nonlinear IRL with GP [Levine et al., NIPS'2011]
●Feature construction IRL [Levine et al., NIPS'2010]
●Maximum entropy IRL [Ziebart et al., AAAI'2008]
●Linear programming for Apprenticeship Learning [Syed
& Schapire, ICML'2008]
●Max-margin with boosting [Ratliff et al., NIPS'2007]
●Max-margin planning [Ratliff et al., AAAI'2006]
●IRL with exploration policies [Abbeel et al.,
ICML'2005]
●Apprenticeship Learning [Abbeel & Ng, ICML'2004]
●First MDP formulation for IRL [Ng & Russell,
ICML'2000]
●1-D inverse optimal control [Kalman et al., ASME1964]

energy-based models via sampling to
estimate the partition function

parameterized reward function
to realize nonlinear IRL

state feature construction
to realize nonlinear IRL

dual model to learn the
occupancy measure

feature expectation match

low-dimensional and discrete
state space merely

.nju.edu.cn

IRL example

definition for estimator for the expert's feature expectations:
empirical estimation for the estimator:

)(EE πµµ =

)(1ˆ)(
1 0

i
t

m

i t
t

E s
m

φγµ ∑ ∑=
∞

=
=

Apprenticeship Learning:
find a policy whose performance is close to that of the expert's, on
the unknown linear reward function R* = w*Tϕ.

εε

µπµµπµ

πγπγ

=•≤

−≤−=

− ∑∑
∞

=

∞

=

1
||)~(|||||||)~(|

|]~|)([]|)([|

2

00

EE
TT

tt
t

Ett
t

www

sREsRE

εµπµ ≤− 2||)~(|| Eso we can obtain that if:

then:

[Abbeel et al., ICML’2004]

.nju.edu.cn

IRL example

Eµ

So the problem is reduced to finding a policy that induces feature
expectations close to .)~(πµ

LOOP:
 1. randomly pick some policy, compute the feature expectation,
 and set i = 1
 2. compute

 and let be the value of w(i) that attains this maximum.
 3. if t(i) < ε then terminate.
 4. using RL algorithm to learn the policy under current reward function
 5. compute

 6. set i = i + 1, and go back to step 2

)(minmax)(
)}1..(0{1||:||

)(
2

j
E

T
ijww

i wt µµ −= −∈≤

)()()(ii πµµ =

[Abbeel et al., ICML’2004]

.nju.edu.cn

Generative Adversarial Networks

Classical parametric model fitting

e.g. Gaussian distribution: mean and variance

High dimensional data ?

.nju.edu.cn

Architecture

[Goodfellow et al., NIPS’2014]

.nju.edu.cn

Similarity measures

So some metrics are applied to measure the gap between
real data manifold and generated manifold

KL divergence: Not symetrical

Total Variation:

JS divergence:

Earth-Mover distance:

 ...

)P||P()P||P()P,P(mgmrgr KLKLJS +=

||][||Einf)P,P(~),()P,P(
yxW yxgr

gr

−=
Π∈

γ
γ

|)(P)(P|sup)P,P(AA gr
A

gr −=
∑∈

δ

[M. Arjovsky et al., ICML’2017]

.nju.edu.cn

Generative Adversarial Networks
Motivation:
learn the generated data distribution Pg which can be close to the
real data distribution Pr.

the goal of GANs is:
)()(

)(
)()(

)(
xPxP

xP

xPxP
xP

rg

g

rg

r

+
=

+

With neural networks to approximate the distribution
)()(

)()(
xPxP

xP
xD

gr

r

+
=

Take JS divergence for example,

))(())(()
2/)))(())(((

))((
log(

)()()
2/))()((

)(
log(),(

zgdzgP
zgPzgP

zgP

xdxP
xPxP

xP
PPJS

r
gr

r

r
gr

r
gr

µ

µ

∫

∫

+
+

+
=

Therefore, we can obtain the objective function for GANs:
))](1[log(E))]([log(E ~~ zGxD

gr pzpx −+

[Goodfellow et al., NIPS’2014]

.nju.edu.cn

Mode Collapse Problem of GANs

Possible reasons:
1. the generated manifold cannot cover all the example at the beginning
2. the training procedure failed to recover from mode collapse failure

.nju.edu.cn

Mode Regularization in GANs

GeneratorEncoder
Discriminator2

real samples

real samples

noise

Discriminator1

Functionals:

variational autoencoder: view the decoder as the generator.

generator: confuse the discriminator with a regularized term.

discriminator: try to distinguish two distributions, while discriminator 1
is used to train the variational autoencoder, and discriminator 2 is used
to train the GAN procedure [Che et al., ICLR'2016]

e.g.

.nju.edu.cn

Generative Adversarial Imitation Learning
 (GAIL)

GAIL realize the procedure for inverse reinforcement learning
by finding a saddle point (π, D) of the expression.

LOOP:
 1. Update the discriminator with the gradient

 2. Take a policy step with reward function

)())],(1[log(E))],([log(E πλ
θππ HasDasD −−+

))],(-1log([Ê))],(log([Ê asDasD wwww Ei
∇+∇ ττ

(D(s,a))r(s,a) log=

[Ho et al., NIPS’2016]

.nju.edu.cn

Connections between IRL & GAIL

Inverse Reinforcement Learn

Generative Adversarial Networks:

)],([E)]),([Ε)(min(max ascascH
ECc

ππ
π

π −+−
Π∈∈

))]|(log([E)(saH ππ π −=

)))]((1[log(E))]([log(Emaxmin ~~ zGDxD
gr pzpx

DG
−+

view the discriminator as the reward function for inverse
reinforcement learning.

.nju.edu.cn

Discussion on the future

.nju.edu.cn

Successes of reinforcement learning

Atari games Game of Go

Mujoco VisDoom Dota2

.nju.edu.cn

The cost of the success

figure from [Hasselt et al., AAAI’16]

millions v.s. tens

.nju.edu.cn

Why inefficient?

exploration

optimization

environment modeling

experience transfer

abstraction

in environments, repeatedly:
• generate trajectories
• update the model

.nju.edu.cn

1 — Exploration

generate new and hopefully better trajectories

classical approach — action space noise:
ε-greedy, Gibbs distribution, Gaussian distribution …
may not friendly for policy update

parameter space noise:
e.g. [Plappert et al., ICLR’18] [Fortunato et al., 2018]

could be more efficient
but still memoryless and blind

curiosity-driven exploration:
easy in simple settings (a few discrete states and actions)
difficult in real state/action spaces
e.g., Intrinsic Curiosity Module [Pathak et al., ICML’17]

.nju.edu.cn

The OpenAI Retro Contest
• pixel input
• offline training / online test environments are different
• 1 million steps retrain in test environments
• relatively large environment

our team
246

177

.nju.edu.cn

The OpenAI Retro Contest
curiosity-driven exploration is essential !

we compare images to generate the intrinsic reward

no intrinsic reward with intrinsic reward

our agent

rank 2

rank 3

red: early trajectories
blue: later trajectories

.nju.edu.cn

2 — Optimization

popular ways for model update
TD control

w = w + ↵(r + �max
a

Qw(st+1, a)�Qw(st, at))rwQw(st, at)
<latexit sha1_base64="bLfxaCrBJOkOBjF54WWqigDewCQ=">AAADcHicZZJNb9NAEIa3MR/FfKVwQeLAgoWU0DSyoyJOSK0AiWMrkbaSbVnjzcaxsh/W7gYnWvmX8Us4coUbvwA7DQUnI600+8w776zlSQuWa+P73/c6zq3bd+7u33PvP3j46HH34MmFlgtF6JhIJtVVCpqyXNCxyQ2jV4WiwFNGL9P5h6Z++ZUqnUvxxawKGnPIRD7NCZgaJd1xid/jEh/iCFgxA9xTTZ4B54AjDssE8HlS9nRizWFQDaCPjzbADCAx/X4kIGWQlC2adD1/6K8D7ybBJvHQJs6Sg44TTSRZcCoMYaB1GPiFiS0okxNGKzdaaFoAmUNGwzoVwKmO7fr7K/y6JhM8lao+wuA1bXUUk6mhy9hmCopZTpZtP8LpMvDrYVxzMLNW0S6MLHJos1qoVzzdgc103aaNoZGS6R2xmfE2S7fuwDKp8lq2/eB/lcp1o5sJmhqrZ7KUgq0UnepBc+EgFsAMZLrRCloSWf9aMbERXRaUmCocxWFsXVyHXXulqf1UJdYLqjCaUyWO/GHwlvIQeyMc35BjyuNq3VW1bclf3yD+z6+HvQD3t6Sn1bViqmBuT6vKrdcm2F6S3eRiNAzqF5wfeycfNwu0j56jV6iHAvQOnaDP6AyNEUHf0A/0E/3q/HaeOS+cl9fSzt6m5ylqhfPmD1ObGzs=</latexit><latexit sha1_base64="bLfxaCrBJOkOBjF54WWqigDewCQ=">AAADcHicZZJNb9NAEIa3MR/FfKVwQeLAgoWU0DSyoyJOSK0AiWMrkbaSbVnjzcaxsh/W7gYnWvmX8Us4coUbvwA7DQUnI600+8w776zlSQuWa+P73/c6zq3bd+7u33PvP3j46HH34MmFlgtF6JhIJtVVCpqyXNCxyQ2jV4WiwFNGL9P5h6Z++ZUqnUvxxawKGnPIRD7NCZgaJd1xid/jEh/iCFgxA9xTTZ4B54AjDssE8HlS9nRizWFQDaCPjzbADCAx/X4kIGWQlC2adD1/6K8D7ybBJvHQJs6Sg44TTSRZcCoMYaB1GPiFiS0okxNGKzdaaFoAmUNGwzoVwKmO7fr7K/y6JhM8lao+wuA1bXUUk6mhy9hmCopZTpZtP8LpMvDrYVxzMLNW0S6MLHJos1qoVzzdgc103aaNoZGS6R2xmfE2S7fuwDKp8lq2/eB/lcp1o5sJmhqrZ7KUgq0UnepBc+EgFsAMZLrRCloSWf9aMbERXRaUmCocxWFsXVyHXXulqf1UJdYLqjCaUyWO/GHwlvIQeyMc35BjyuNq3VW1bclf3yD+z6+HvQD3t6Sn1bViqmBuT6vKrdcm2F6S3eRiNAzqF5wfeycfNwu0j56jV6iHAvQOnaDP6AyNEUHf0A/0E/3q/HaeOS+cl9fSzt6m5ylqhfPmD1ObGzs=</latexit><latexit sha1_base64="bLfxaCrBJOkOBjF54WWqigDewCQ=">AAADcHicZZJNb9NAEIa3MR/FfKVwQeLAgoWU0DSyoyJOSK0AiWMrkbaSbVnjzcaxsh/W7gYnWvmX8Us4coUbvwA7DQUnI600+8w776zlSQuWa+P73/c6zq3bd+7u33PvP3j46HH34MmFlgtF6JhIJtVVCpqyXNCxyQ2jV4WiwFNGL9P5h6Z++ZUqnUvxxawKGnPIRD7NCZgaJd1xid/jEh/iCFgxA9xTTZ4B54AjDssE8HlS9nRizWFQDaCPjzbADCAx/X4kIGWQlC2adD1/6K8D7ybBJvHQJs6Sg44TTSRZcCoMYaB1GPiFiS0okxNGKzdaaFoAmUNGwzoVwKmO7fr7K/y6JhM8lao+wuA1bXUUk6mhy9hmCopZTpZtP8LpMvDrYVxzMLNW0S6MLHJos1qoVzzdgc103aaNoZGS6R2xmfE2S7fuwDKp8lq2/eB/lcp1o5sJmhqrZ7KUgq0UnepBc+EgFsAMZLrRCloSWf9aMbERXRaUmCocxWFsXVyHXXulqf1UJdYLqjCaUyWO/GHwlvIQeyMc35BjyuNq3VW1bclf3yD+z6+HvQD3t6Sn1bViqmBuT6vKrdcm2F6S3eRiNAzqF5wfeycfNwu0j56jV6iHAvQOnaDP6AyNEUHf0A/0E/3q/HaeOS+cl9fSzt6m5ylqhfPmD1ObGzs=</latexit><latexit sha1_base64="bLfxaCrBJOkOBjF54WWqigDewCQ=">AAADcHicZZJNb9NAEIa3MR/FfKVwQeLAgoWU0DSyoyJOSK0AiWMrkbaSbVnjzcaxsh/W7gYnWvmX8Us4coUbvwA7DQUnI600+8w776zlSQuWa+P73/c6zq3bd+7u33PvP3j46HH34MmFlgtF6JhIJtVVCpqyXNCxyQ2jV4WiwFNGL9P5h6Z++ZUqnUvxxawKGnPIRD7NCZgaJd1xid/jEh/iCFgxA9xTTZ4B54AjDssE8HlS9nRizWFQDaCPjzbADCAx/X4kIGWQlC2adD1/6K8D7ybBJvHQJs6Sg44TTSRZcCoMYaB1GPiFiS0okxNGKzdaaFoAmUNGwzoVwKmO7fr7K/y6JhM8lao+wuA1bXUUk6mhy9hmCopZTpZtP8LpMvDrYVxzMLNW0S6MLHJos1qoVzzdgc103aaNoZGS6R2xmfE2S7fuwDKp8lq2/eB/lcp1o5sJmhqrZ7KUgq0UnepBc+EgFsAMZLrRCloSWf9aMbERXRaUmCocxWFsXVyHXXulqf1UJdYLqjCaUyWO/GHwlvIQeyMc35BjyuNq3VW1bclf3yD+z6+HvQD3t6Sn1bViqmBuT6vKrdcm2F6S3eRiNAzqF5wfeycfNwu0j56jV6iHAvQOnaDP6AyNEUHf0A/0E/3q/HaeOS+cl9fSzt6m5ylqhfPmD1ObGzs=</latexit><latexit sha1_base64="bLfxaCrBJOkOBjF54WWqigDewCQ=">AAADcHicZZJNb9NAEIa3MR/FfKVwQeLAgoWU0DSyoyJOSK0AiWMrkbaSbVnjzcaxsh/W7gYnWvmX8Us4coUbvwA7DQUnI600+8w776zlSQuWa+P73/c6zq3bd+7u33PvP3j46HH34MmFlgtF6JhIJtVVCpqyXNCxyQ2jV4WiwFNGL9P5h6Z++ZUqnUvxxawKGnPIRD7NCZgaJd1xid/jEh/iCFgxA9xTTZ4B54AjDssE8HlS9nRizWFQDaCPjzbADCAx/X4kIGWQlC2adD1/6K8D7ybBJvHQJs6Sg44TTSRZcCoMYaB1GPiFiS0okxNGKzdaaFoAmUNGwzoVwKmO7fr7K/y6JhM8lao+wuA1bXUUk6mhy9hmCopZTpZtP8LpMvDrYVxzMLNW0S6MLHJos1qoVzzdgc103aaNoZGS6R2xmfE2S7fuwDKp8lq2/eB/lcp1o5sJmhqrZ7KUgq0UnepBc+EgFsAMZLrRCloSWf9aMbERXRaUmCocxWFsXVyHXXulqf1UJdYLqjCaUyWO/GHwlvIQeyMc35BjyuNq3VW1bclf3yD+z6+HvQD3t6Sn1bViqmBuT6vKrdcm2F6S3eRiNAzqF5wfeycfNwu0j56jV6iHAvQOnaDP6AyNEUHf0A/0E/3q/HaeOS+cl9fSzt6m5ylqhfPmD1ObGzs=</latexit>

Q-learning

policy gradient
policy gradient theorem
✓ = ✓ + ↵E[r✓ log ⇡✓(a|s)(Q⇡✓ (s, a)� V ⇡✓ (s))]

<latexit sha1_base64="eqoQv/42JVBK7R/x4mQfAxK9MAY=">AAADh3icZZNda9swFIaVeB+t95Vul7sRM4OEtZkduo+bQcNW2GULS1qwvXCsKLaJZBlLWRM0/cnd7Z/sckritXNyQHD0nPe8R5jjpGS5VL7/u9V27t1/8PDg0H30+MnTZ52j52MpFhWhIyKYqK4TkJTlBR2pXDF6XVYUeMLoVTL/vK5f/aCVzEXxTa1KGnNIi3yWE1AWTTosUhlVgD/hOnmDI2BlBvg8xFEBCYOJ3pYMjphIcVTmk1rbhZ+yh7uX3/UdNF15DD18gsc7tNeLJx3P7/ubwPtJUCcequNictR2oqkgC04LRRhIGQZ+qWINlcoJo8aNFpKWQOaQ0tCmBXAqY735LAa/tmSKZ6Kyp1B4Qxsd5XSm6DLWaQVllpNl049wugx8O4xLDiprFPVCiTKHJrNCueLJHlxPl026NlRCMLknVhlvsmTnDiwVVW5luw++qxjXjW4nSKq0zMSNKNiqojN5vL5wKBbAFKRyrS3oDRHcsqmO6LKkRJlwEIexdrENvfFKEn1uJtoLTBjNaVWc+P3gHeUh9gY4viWnlMdm02WatuSfbxD/59fFXoB7O9Kh2SpmFcz10BjXrk2wuyT7yXjQD+wLLk+9sy/1Ah2gl+gV6qIAfUBn6Cu6QCNE0C/0p9Wy/9Sh89Z573zcStutuucFaoQz/AsXPiOK</latexit><latexit sha1_base64="eqoQv/42JVBK7R/x4mQfAxK9MAY=">AAADh3icZZNda9swFIaVeB+t95Vul7sRM4OEtZkduo+bQcNW2GULS1qwvXCsKLaJZBlLWRM0/cnd7Z/sckritXNyQHD0nPe8R5jjpGS5VL7/u9V27t1/8PDg0H30+MnTZ52j52MpFhWhIyKYqK4TkJTlBR2pXDF6XVYUeMLoVTL/vK5f/aCVzEXxTa1KGnNIi3yWE1AWTTosUhlVgD/hOnmDI2BlBvg8xFEBCYOJ3pYMjphIcVTmk1rbhZ+yh7uX3/UdNF15DD18gsc7tNeLJx3P7/ubwPtJUCcequNictR2oqkgC04LRRhIGQZ+qWINlcoJo8aNFpKWQOaQ0tCmBXAqY735LAa/tmSKZ6Kyp1B4Qxsd5XSm6DLWaQVllpNl049wugx8O4xLDiprFPVCiTKHJrNCueLJHlxPl026NlRCMLknVhlvsmTnDiwVVW5luw++qxjXjW4nSKq0zMSNKNiqojN5vL5wKBbAFKRyrS3oDRHcsqmO6LKkRJlwEIexdrENvfFKEn1uJtoLTBjNaVWc+P3gHeUh9gY4viWnlMdm02WatuSfbxD/59fFXoB7O9Kh2SpmFcz10BjXrk2wuyT7yXjQD+wLLk+9sy/1Ah2gl+gV6qIAfUBn6Cu6QCNE0C/0p9Wy/9Sh89Z573zcStutuucFaoQz/AsXPiOK</latexit><latexit sha1_base64="eqoQv/42JVBK7R/x4mQfAxK9MAY=">AAADh3icZZNda9swFIaVeB+t95Vul7sRM4OEtZkduo+bQcNW2GULS1qwvXCsKLaJZBlLWRM0/cnd7Z/sckritXNyQHD0nPe8R5jjpGS5VL7/u9V27t1/8PDg0H30+MnTZ52j52MpFhWhIyKYqK4TkJTlBR2pXDF6XVYUeMLoVTL/vK5f/aCVzEXxTa1KGnNIi3yWE1AWTTosUhlVgD/hOnmDI2BlBvg8xFEBCYOJ3pYMjphIcVTmk1rbhZ+yh7uX3/UdNF15DD18gsc7tNeLJx3P7/ubwPtJUCcequNictR2oqkgC04LRRhIGQZ+qWINlcoJo8aNFpKWQOaQ0tCmBXAqY735LAa/tmSKZ6Kyp1B4Qxsd5XSm6DLWaQVllpNl049wugx8O4xLDiprFPVCiTKHJrNCueLJHlxPl026NlRCMLknVhlvsmTnDiwVVW5luw++qxjXjW4nSKq0zMSNKNiqojN5vL5wKBbAFKRyrS3oDRHcsqmO6LKkRJlwEIexdrENvfFKEn1uJtoLTBjNaVWc+P3gHeUh9gY4viWnlMdm02WatuSfbxD/59fFXoB7O9Kh2SpmFcz10BjXrk2wuyT7yXjQD+wLLk+9sy/1Ah2gl+gV6qIAfUBn6Cu6QCNE0C/0p9Wy/9Sh89Z573zcStutuucFaoQz/AsXPiOK</latexit><latexit sha1_base64="eqoQv/42JVBK7R/x4mQfAxK9MAY=">AAADh3icZZNda9swFIaVeB+t95Vul7sRM4OEtZkduo+bQcNW2GULS1qwvXCsKLaJZBlLWRM0/cnd7Z/sckritXNyQHD0nPe8R5jjpGS5VL7/u9V27t1/8PDg0H30+MnTZ52j52MpFhWhIyKYqK4TkJTlBR2pXDF6XVYUeMLoVTL/vK5f/aCVzEXxTa1KGnNIi3yWE1AWTTosUhlVgD/hOnmDI2BlBvg8xFEBCYOJ3pYMjphIcVTmk1rbhZ+yh7uX3/UdNF15DD18gsc7tNeLJx3P7/ubwPtJUCcequNictR2oqkgC04LRRhIGQZ+qWINlcoJo8aNFpKWQOaQ0tCmBXAqY735LAa/tmSKZ6Kyp1B4Qxsd5XSm6DLWaQVllpNl049wugx8O4xLDiprFPVCiTKHJrNCueLJHlxPl026NlRCMLknVhlvsmTnDiwVVW5luw++qxjXjW4nSKq0zMSNKNiqojN5vL5wKBbAFKRyrS3oDRHcsqmO6LKkRJlwEIexdrENvfFKEn1uJtoLTBjNaVWc+P3gHeUh9gY4viWnlMdm02WatuSfbxD/59fFXoB7O9Kh2SpmFcz10BjXrk2wuyT7yXjQD+wLLk+9sy/1Ah2gl+gV6qIAfUBn6Cu6QCNE0C/0p9Wy/9Sh89Z573zcStutuucFaoQz/AsXPiOK</latexit><latexit sha1_base64="eqoQv/42JVBK7R/x4mQfAxK9MAY=">AAADh3icZZNda9swFIaVeB+t95Vul7sRM4OEtZkduo+bQcNW2GULS1qwvXCsKLaJZBlLWRM0/cnd7Z/sckritXNyQHD0nPe8R5jjpGS5VL7/u9V27t1/8PDg0H30+MnTZ52j52MpFhWhIyKYqK4TkJTlBR2pXDF6XVYUeMLoVTL/vK5f/aCVzEXxTa1KGnNIi3yWE1AWTTosUhlVgD/hOnmDI2BlBvg8xFEBCYOJ3pYMjphIcVTmk1rbhZ+yh7uX3/UdNF15DD18gsc7tNeLJx3P7/ubwPtJUCcequNictR2oqkgC04LRRhIGQZ+qWINlcoJo8aNFpKWQOaQ0tCmBXAqY735LAa/tmSKZ6Kyp1B4Qxsd5XSm6DLWaQVllpNl049wugx8O4xLDiprFPVCiTKHJrNCueLJHlxPl026NlRCMLknVhlvsmTnDiwVVW5luw++qxjXjW4nSKq0zMSNKNiqojN5vL5wKBbAFKRyrS3oDRHcsqmO6LKkRJlwEIexdrENvfFKEn1uJtoLTBjNaVWc+P3gHeUh9gY4viWnlMdm02WatuSfbxD/59fFXoB7O9Kh2SpmFcz10BjXrk2wuyT7yXjQD+wLLk+9sy/1Ah2gl+gV6qIAfUBn6Cu6QCNE0C/0p9Wy/9Sh89Z573zcStutuucFaoQz/AsXPiOK</latexit>

another way : derivative-free search
optimization from samples (and their evaluations)

bayesian optimization, cross-entropy,
CMA-ES, evolutionary algorithms …
(nature inspired heuristic search)

.nju.edu.cn

RL by derivative-free search

involve both model update and exploration

total rewardblack
box

sample evaluation

have shown advantages
• for decades

 • and recently

e.g. [Shimon Whiteson. Evolutionary computation for reinforcement
learning. In: Reinforcement Learning: State-of-the-Art, 2012]

e.g. [Such et al., Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning. arXiv:1712.06567]

but limitations are also significant
• hard to scale up for large policy models

• sensitive to evaluation noise

e.g. [Qian et al., Derivative-free optimization of high-dimensional non-
convex functions by sequential random embeddings, IJCAI’16]

e.g. [Wang et al., Noisy derivative-free optimization
with value suppression, AAAI’18]

Gym+Mujoco environments
deal with noise noisy

.nju.edu.cn

3 — Environment modeling
model-based RL can be much more efficient

if a good model is available

learning raw transitions is usually infeasible
the world-model [Ha & Schmidhuber, arXiv:1803.10122]
learns in the latent space of an AE by RNN
(did not work in the Retro Contest)

in between model-based and model-free
use (inaccurate) model output as state features, e.g.,

Value Iteration Network [Tamar et al., NIPS’16]
Imagination-Augmented Agents [Weber et al., arXiv:1707.06203]
…

.nju.edu.cn

Manually learned environment

buyers Taobao platform

real-world Taobao

simulator for online shopping ?

simulators for aircraft/robot design are common

• involve customers
• large uncertainty
• adaptive customer policy

customer-platform interactions

.nju.edu.cn

Virtual Taobao
Supervised transition learning does not work

environment (customers) changes as the policy changes
Multi-agent imitation learning

virtual buyers virtual platformbuyers Taobao platform

virtual data

multi-agent GAIL
real data

re
w

ar
d

re
w

ar
d

policy deployment

[Shi, et al. Virtual-Taobao: Virtualizing real-world online retail environment for reinforcement learning. arXiv 1805.10000]

.nju.edu.cn

Virtual vs. real

M F U
0

0.5

1

G
en

de
r P

ro
po

rti
on Ground-Truth

Virtual Taobao

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

C
at

eg
or

y
Pr

op
or

tio
n

Ground-Truth
Virtual Taobao

1 2 3
0

0.5

1

1.5

Po
w

er
 P

ro
po

rti
on Ground-Truth

Virtual Taobao

F T
0

0.5

1

1.5

Le
ve

l P
ro

po
rti

on

Ground-Truth
Virtual Taobao

M F U
0

0.05

0.1

0.15

R
2P

 o
ve

r G
en

de
r Ground-Truth

Virtual Taobao

1 2 3 4 5 6 7 8
0

0.1

0.2

R
2P

 o
ve

r C
at

eg
or

y

Ground-Truth
Virtual Taobao

1 2 3
0

0.05

0.1

0.15

R
2P

 o
ve

r P
ow

er Ground-Truth
Virtual Taobao

T F
0

0.05

0.1

0.15

R
2P

 o
ve

r L
ev

el

Ground-Truth
Virtual Taobao

00:00 06:00 12:00 18:00 24:00
0.06

0.07

0.08

0.09

0.1

R
2P

Ground-Truth
Virtual Taobao

[Shi, et al. Virtual-Taobao: Virtualizing real-world online retail environment for reinforcement learning. arXiv 1805.10000]

close to real environment

multi-agent imitation learning
vs. supervised imitation

0 day 1 day 1 week 1 month
-10%

0%

10%

20%

30%

Im
pr

. o
f R

L
to

 R
an

do
m

VTaobao by BC
VTaobao by MAIL

with constraints,
deliver applicable policy

better models environment changes

00:00 06:00 12:00 18:00 24:00
0%

2%

4%

6%

8%

Vo
lu

m
e

G
ap

RL v.s SL1
RL v.s. SL2

2% GMV increase in A/B test

.nju.edu.cn

4 — Experience transfer
Accumulate and reuse experience is a key part of
human intelligence

transfer of samples, e.g., [Lazaric et al., ICML’08]
transfer of representation, e.g., [Ferrante et al., AAMAS’08]
transfer of skills/options, e.g., [Sutton et al., AIJ’99]

transfer out of the simulators
from policy on states
to policy on state + environment features

⇡(s) ⇡(s, ⌘)

implicit feature learning [Peng et al., arXiv:1710.06537]
explicit feature learning [Zhang et al., IJCAI’18]

.nju.edu.cn

POSEC: Self-calibration

new environment regression

...

calibration

action 2

action 3

action 4

action 5

(s(2)1 , s
(2)
2 , s

(2)
3)

(s(3)1 , s
(3)
2 , s

(3)
3)

(s(4)1 , s
(4)
2 , s

(4)
3)

(s(5)1 , s
(5)
2 , s

(5)
3)

(s
1,
s 2
,.
..
,s
15
)

wN 1

w2

w1 ×

×

×

base policiescombination
weights

aggregated
observations

action 1

(s(1)1 , s
(1)
2 , s

(1)
3)

observations

policy to run

policy generation

policy execution

+=

[Zhang, et al. Learning environmental calibration actions for policy self-evolution. IJCAI’18]
tomorrow 8:30 K2

.nju.edu.cn

Other directions

• Partial-observable and other semi-MDP
• Hierarchical reinforcement learning
• Reward design
• ...

.nju.edu.cn

Books
Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An Introduction

Masashi Sugiyama
Statistical Reinforcement Learning:
Modern Machine Learning Approaches

Marco Wiering and Martijn van Otterlo (eds)
Reinforcement Learning: State-of-the-Art

Mykel J. Kochenderfer
Decision Making Under Uncertainty:
Theory and Application

Also in MDP books

and machine learning books
周志华
机器学习

.nju.edu.cn

Online resources

OpenAI Gym Reinforcement Learning toolkits
https://gym.openai.com

Awesome-RL https://github.com/aikorea/awesome-rl
Resources at MST http://web.mst.edu/~gosavia/rl_website.html

Lectures by David Silver
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Berkeley CS 294: Deep Reinforcement Learning
http://rll.berkeley.edu/deeprlcourse/

https://gym.openai.com/
https://github.com/aikorea/awesome-rl
http://web.mst.edu/~gosavia/rl_website.html

