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How to train a dog?



How to train a dog?

hear “down”

reward

reward

action

dog learns from rewards to adapt to the environment

can computers do similarly?



Reinforcement learning setting

Agent Environment

action/decision

reward

state

<A, S, R, P>

Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S



Reinforcement learning setting

<A, S, R, P>
Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: 
Policy: ⇡ : S ⇥A ! R,

X
a2A

⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s view: 

⇡(s0) ⇡(s1) ⇡(s2)

s0, a0, r1, s1, a2, r2, s2, a3, r3, s3, . . .



Reinforcement learning setting

<A, S, R, P>
Action space: A

State space: S

Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s goal:
learn a policy to maximize long-term total reward 

X1

t=1
�trtdiscounted:T-step:

all RL tasks can be defined by maximizing total reward

XT

t=1
rt



Reward examples

-2

-1

-1

-6

-3
-1

-5

-3
-5

-2s t

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

shortest path:

100
0



Reward examples

general binary space problem

()

solving the optimal policy is NP-hard!

max

x2{0,1}n
f(x)

(0) (1)

(00) (01) (10) (11)

(000) (010)(001) (011) (100) (110)(101) (111)

r=0

r=0

r=f(x)



Difference between RL and planning?

Planing: find an optimal solution
RL:      find an optimal policy from samples

what if we use planning/search methods to find 
actions that maximize total reward

planning: shortest-path
RL: shortest-path policy 
without knowing the graph



Difference between RL and SL?

supervised learning

supervised learning also learns a model ...
reinforcement learning

environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

learning from labeled data
open loop
passive data

learning from delayed reward
closed loop
explore environment



Applications

Deepmind Deep Q-learning on Atari
[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]



Applications

learning robot skills

https://www.youtube.com/watch?v=VCdxqn0fcnE

physical 
world

control actions

reward

state



More applications

Search
Recommendation system
Stock prediction
...

every decision changes the world



Markov Decision Process

essential mathematical model for RL



Markov Process

(finite) state space S, transition matrix P

a process s0,s1,... is Markov if has no memory

P(st+1 | st, ..., s0) = P(st+1 | st)

sunny

rainy

cloudy

0.2

0.1

0.4

0.3

0.3

0.7

0.2

0.5

0.3
0.2 0.7 0.1

0.3 0.3 0.4

0.2 0.5 0.3

sunny

rainy

cloudyP =

st+1 = stP = s0Pt+1

s    c     r

discrete S -> Markov chain 



Markov Process

stationary distribution: s == sP

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...

t =     0             1            2            3   

0.2
0.7

0.1

sampling from a Markov process:
s, c, c, r ...
s, c, s, c ... 



Markov Reward Process

introduce reward function R

sunny

rainy

cloudy

0.2/2

0.1/-1

0.4/-1

0.3/1

0.3/2

0.7/1

0.2/2

0.5/1

0.3/-1

how to calculate the long-term total reward?

V (sunny) = E[
X1

t=1
�trt|s0 = sunny]

value function
V (sunny) = E[

XT

t=1
rt|s0 = sunny]



Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

V (sunny) =P (s|s)[R(s) + V (s)]
+ P (c|s)[R(c) + V (c)]
+ P (r|s)[R(r) + V (r)]

recursive definition:
=

X

s

P (s|sunny)
�
R(s) + V (s)

�



Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

backward
calculation V (s) = 0

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�



Markov Reward Process

horizontal view: consider discounted infinite steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...               

backward
calculation V (s) = 0

...

V (s) =
X

s0

P (s0|s)
�
R(s0) + �V (s0)

�

repeat until converges



Markov Decision Process

introduce (finite) actions A

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1



Markov Decision Process

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...



Markov Decision Process

horizontal view of the game of Go



Markov Decision Process

goal-directed

t

stationary distribution



Markov Decision Process

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1MDP <S,A,R,P> (often with 𝛾)

essential model for RL
but not all of RL

policy

⇡(a|s) = P (a|s)

⇡(s) = argmax

a
P (a|s)

stochastic

deterministic

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

|A||S| deterministic policies



Expected return

how to calculate the expected total reward of a policy?

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1

similar with the Markov Reward Process

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�
MRP:

MDP:
V ⇡(s) =

X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

expectation over actions
with respect to the policy



Q-function

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,

Q-function => policy



Optimality

there exists an optimal policy ⇡⇤

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

8⇡, 8s, V ⇡⇤
(s) � V ⇡(s)

optimal value function

8s, V ⇤(s) = V ⇡⇤
(s)

8s, 8a,Q⇤(s, a) = Q⇡⇤
(s, a)



Bellman optimality equations

V ⇤
(s) = max

a
Q⇤

(s, a)

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

from the relation between V and Q
Q⇤(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤(s0)

�

we have

the unique fixed point is the optimal value function

Q⇤
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇤

(s0, a)
�

V ⇤
(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤

(s0)
�



Solve optimal policy in MDP

idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:

V (s) max

a
Q⇡

(s, a)

from the Bellman optimality equation



Solve optimal policy in MDP

policy improvement:

V (s) max

a
Q⇡

(s, a)

from the Bellman optimality equation

let ⇡0
be derived from this update

V ⇡(s)  Q⇡(s,⇡0(s))

=
X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �V ⇡(s0))


X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �Q⇡(s0,⇡0(s)))

= . . .

= V ⇡0

so the policy is improved



Solve optimal policy in MDP

Policy iteration algorithm:
loop until converges
policy evaluation: calculate V
policy improvement: choose the action greedily

converges: V ⇡t+1(s) = V ⇡t(s)

⇡t+1(s) = argmax

a
Q⇡t

(s, a)

recall the optimal value function about Q

Q⇡t+1
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t

(s0, a)
�



Solve optimal policy in MDP

Value iteration algorithm:

V0 = 0 
for t=0, 1, ... 

for all s 

end for 
break if ||Vt+1 -Vt ||∞ is small enough 

end for 

Vt+1(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�

embed the policy improvement in evaluation

recall the optimal value function about V

<- synchronous v.s. asynchronous



Solve optimal policy in MDP

Dynamic programming R. E. Bellman
1920-1984

sunny

s

c

r

s

c

r

s

c

r

...

[O. Madani. Polynomial Value Iteration Algorithms for Deterministic MDPs. UAI’02]

Complexity
needs               iterations to converge on deterministic MDP⇥(|S| · |A|)

curse of dimensionality:  Go board 19x19, |S|=2.08x10170

[https://github.com/tromp/golegal]

Q⇡t+1
(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t

(s0, a)
�

Vt+1(s) = max

a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s

0
)

�



from MDP to reinforcement learning

MDP <S,A,R,P>
R and P are unknown



Methods

A: learn R and P,  
   then solve the MDP

B: learn policy without R or P

model-based

model-free

MDP is the model



Model-free RL

explore the environment and learn policy at the 
same time

Monte-Carlo method

Temporal difference method



Monte Carlo RL - evaluation

expected total reward

expectation of trajectory-wise rewards

sunny

s

c

r

s

c

r

s

c

r

...

Q⇡(s, a) = E[
XT

t=1
rt|s, a]

sample trajectory m times, 
approximate the expectation by average

⌧i is sample by following   after s,a⇡Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)

Q, not V



Monte Carlo RL - evaluation+improvement

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

improvement ?



Monte Carlo RL

problem: what if the policy takes only one path?

cannot improve the policy 
no exploration of the environment

sunny

s

c

r

s

c

r

s

c

r

needs exploration !



Exploration methods

one state MDP:  
a.k.a. bandit model

r ⇠ D1

r ⇠ D2

maximize the long-term total reward

• exploration only policy: try every action in turn

• exploitation only policy: try each action once, 
follow the best action forever

waste many trials

risk of pick a bad action
balance between exploration and exploitation



Exploration methods

ϵ-greedy:
follow the best action with probability 1-ϵ 
choose action randomly with probability ϵ

ϵ should decrease along time
softmax:

probability according to action quality

P (k) = eQ(k)/✓/
XK

i=1
eQ(i)/✓

upper confidence bound (UCB):
choose by action quality + confidence

Q(k) +
p
2 lnn/nk



Action-level exploration

ϵ-greedy policy:

given a policy ⇡

⇡✏(s) =

(
⇡(s),with prob. 1� ✏

randomly chosen action,with prob. ✏

ensure probability of visiting every state > 0

exploration can also be in other levels



Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏



Monte Carlo RL - on/off-policy

⇡✏this algorithm evaluates     !   on-policy 

what if we want to evaluate    ?   off-policy ⇡

importance sampling:

E[f ] =

Z

x

p(x)f(x)dx =

Z

x

q(x)
p(x)

q(x)
f(x)dx

1

m

mX

i=1

f(x)
1

m

mX

i=1

p(x)

q(x)
f(x)

sample from p sample from q



Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)  
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏

pi =

(
1� ✏+ ✏/|A|, ai = ⇡(si),

✏/|A|, ai 6= ⇡(si)

⇥
YT�1

i=t+1

⇡(xi, ai)

pi

-- off-policy



Monte Carlo RL

summary

Monte Carlo evaluation:  
approximate expectation by sample average

action-level exploration

on-policy, off-policy: importance sampling

Monte Carlo RL:  
evaluation + action-level exploration + policy improvement (on/off-policy)



Incremental mean

In general, 

Monte-Carlo update:

µt = µt�1 + ↵(xt � µt�1)

MC error

Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)

µt =
1

t

tX

i=1

xi =
1

t

(xt +
t�1X

i=1

xi) =
1

t

(xt + (t� 1)µt�1)

= µt�1 +
1

t

(xt � µt�1)

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))



Temporal-Difference Learning - evaluation

learn as you goupdate policy online

Monte-Carlo update:

TD update:

TD error

MC error

TD Evaluation

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))

Q(st, at)

( Q(st, at) + ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))



Temporal-Difference Learning - example

leaving office 
reach car, raining 
exit highway 
behind truck 
home street 
arrive home 

0          30                  30 
5          35                  40
20         15                  35
30         10                  40
40          3                  43
43          0                  43

state
elapsed 
time

predicted 
total time

predicted 
remaining 
time

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!

M
C 

er
ro

r

TD
 e

rr
or

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!



sunny

s

c

r

s

c

r

s

c

r

s

c

r

Temporal-Difference Learning - backups

MC backup

TD backup

DP backup



SARSA

On-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax

a
Q(s, a)

Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))
⇡✏(s

0)

⇡✏(s)



Q-learning

Off-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax

a
Q(s, a)

⇡(s0)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s)



SARSA v.s. Q-learning

Lecture 5: Model-Free Control

O↵-Policy Learning

Q-Learning

Cli↵ Walking Example



RL in continuous state space

MDP <S,A,R,P>
S (and A) is in

we can do RL now! ... in (small) discrete state space

Rn



Value function approximation

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

modern RL

linear function approx.

very powerful representation
can be all possible policies !

� is a feature mapping
w is the parameter vector

may not represent all policies !

V̂ (s) = w>�(s)

Q̂(s, a) = w>�(s, a)

Q̂(s, ai) = w>
i �(s)



Value function approximation

to approximate Q and V value function
least square approximation

J(w) = Es⇠⇡[
�
Q⇡(s, a)� Q̂(s, a)

�2
]

Recall the errors:
MC update:
TD update:

target

Q(st, at)+ = ↵(R�Q(st, at))

Q(st, at)+ = ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))

model

replace

online environment: stochastic gradient on single sample
�wt = ✓(Q⇡(st, at)� Q̂(st, at))rwQ̂(st, at)



Value function approximation

MC update:

TD update:

�wt = ✓(R� Q̂(st, at))rwQ̂(st, at)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

eligibility traces

Et = ��Et�1 +rwQ̂(st, at)



Q-learning with function approximation

w = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a  
a’ = 

s = s’ 
end for 

⇡(s0)
w+ = ✓(r + �Q̂(s, a)� Q̂(s, a))rwQ̂(st, at)

⇡(s) = argmax

a
ˆQ(s, a)

⇡✏(s)



Approximation model

Linear approximation Q̂(s, a) = w>�(s, a)

coarse coding: raw features

discretization: tide with indicator features

kernelization:

Q̂(s, a) =
mX

i=1

wiK((s, a), (si, ai))

(si,ai) can be randomly sampled

rwQ̂(s, a) = �(s, a)



Approximation model

Nonlinear model approximation

neural network: differentiable model

Q̂(s, a) = f(s, a)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

follow the BP rule to 
pass the gradient

recall the TD update:



Batch RL methods

gradient on single sample introduces large variance

Batch mode evaluation:
collect trajectory and history data

solve batch least square objective

J(w) = ED[
�
V ⇡ � V̂ (s)

�2
]

linear function: closed form
neural networks: batch update/repeated stochastic update

LSMC, LSTD, LSTD(λ)

D = {(s1, V ⇡
1 ), (s2, V

⇡
2 ), . . . , (sm, V ⇡

m)}



Batch RL methods

gradient on single sample introduces large variance

Batch mode policy iteration: LSPI

Q0 = 0, initial state  
for i=0, 1, ... 

collect data D 

end for 

w = argmin
w

X

(s,a)2D

(r + �Q̂(s,⇡(s))� Q̂(s, a))�(s, a)

8s,⇡(s) = argmax

a
Q(s, a)






