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How to train a dog?



How to train a dog?

hear “down”

reward

reward

action

dog learns from rewards to adapt to the environment

can computers do similarly?



Reinforcement learning setting

Agent Environment

action/decision

reward

state

<A, S, R, P>

Action space: A
State space: S
Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S



Reinforcement learning setting

<A, S, R, P>
Action space: A
State space: S
Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: 
Policy: ⇡ : S ⇥A ! R,

X
a2A

⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s view: 

⇡(s0) ⇡(s1) ⇡(s2)

s0, a0, r1, s1, a2, r2, s2, a3, r3, s3, . . .



Reinforcement learning setting

<A, S, R, P>
Action space: A
State space: S
Reward: R : S ⇥A⇥ S ! R
Transition: P : S ⇥A ! S

Agent Environment

action/decision

reward
state

Agent: Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s goal:
learn a policy to maximize long-term total reward 

X1

t=1
�trtdiscounted:T-step:

all RL tasks can be defined by maximizing total reward

XT

t=1
rt



Reward examples

-2

-1

-1

-6

-3
-1

-5

-3
-5

-2s t

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

shortest path:

100
0



Difference between RL and planning?

Planing: find an optimal solution
RL:      find an optimal policy from samples

what if we use planning/search methods to find 
actions that maximize total reward

planning: shortest-path
RL: shortest-path policy 
without knowing the graph



Difference between RL and SL?

supervised learning

supervised learning also learns a model ...
reinforcement learning

environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

learning from labeled data
open loop
passive data

learning from delayed reward
closed loop
explore environment



Reward examples

general binary space problem

()

solving the optimal policy is NP-hard!

max
x2{0,1}n

f(x)

(0) (1)

(00) (01) (10) (11)

(000) (010)(001) (011) (100) (110)(101) (111)

r=0

r=0

r=f(x)



Applications

Deepmind Deep Q-learning on Atari
[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]



Applications

learning robot skills

https://www.youtube.com/watch?v=VCdxqn0fcnE

physical 
world

control actions

reward

state



More applications

Search
Recommendation system
Stock prediction
...

every decision changes the world



Markov Decision Process

essential mathematical model for RL



Markov Process

(finite) state space S, transition matrix P

a process s0,s1,... is Markov if has no memory

P(st+1 | st, ..., s0) = P(st+1 | st)

sunny

rainy

cloudy

0.2

0.1

0.4

0.3

0.3

0.7

0.2

0.5

0.3
0.2 0.7 0.1

0.3 0.3 0.4

0.2 0.5 0.3

sunny

rainy

cloudyP =

st+1 = stP = s0Pt+1

s    c     r

discrete S -> Markov chain 



Markov Process

stationary distribution: s == sP

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...

t =     0             1            2            3   

0.2
0.7

0.1

sampling from a Markov process:
s, c, c, r ...
s, c, s, c ... 



Markov Reward Process

introduce reward function R

sunny

rainy

cloudy

0.2/2

0.1/-1

0.4/-1

0.3/1

0.3/2

0.7/1

0.2/2

0.5/1

0.3/-1

how to calculate the long-term total reward?

V (sunny) = E[
X1

t=1
�trt|s0 = sunny]

value function
V (sunny) = E[

XT

t=1
rt|s0 = sunny]



Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

V (sunny) =P (s|s)[R(s) + V (s)]
+ P (c|s)[R(c) + V (c)]
+ P (r|s)[R(r) + V (r)]

recursive definition:
=

X

s

P (s|sunny)
�
R(s) + V (s)

�



Markov Reward Process

horizontal view: consider T steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...                 T-1          T

backward
calculation V (s) = 0

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�



Markov Reward Process

horizontal view: consider discounted infinite steps

sunny

s

c

r

s

c

r

s

c

r

...

0.2
0.7

0.1

t =     0             1            2       ...               

backward
calculation V (s) = 0

...

V (s) =
X

s0

P (s0|s)
�
R(s0) + �V (s0)

�

repeat until converges



Markov Decision Process

introduce (finite) actions A

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1



Markov Decision Process

horizontal view

sunny

s

c

r

s

c

r

s

c

r

...



Markov Decision Process

horizontal view of the game of Go



Markov Decision Process

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1MDP <S,A,R,P> (often with 𝛾)

essential model for RL
but not all of RL

policy

⇡(a|s) = P (a|s)

⇡(s) = argmax
a

P (a|s)

stochastic

deterministic

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

|A||S| deterministic policies



Expected return

how to calculate the expected total reward of a policy?

sunny

rainy

cloudy

0.9/2

0.01/-1

0.09/1

0.2/2 0.1/-1

0.7/1
0.4/-1

0.3/10.3/2

0.2/2

0.5/1

0.3/-1

0.45/2
0.45/-1

0.1/1

0.1/-1
0.2/2

0.7/1

similar with the Markov Reward Process

V (s) =
X

s0

P (s0|s)
�
R(s0) + V (s0)

�
MRP:

MDP:
V ⇡(s) =

X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

expectation over actions
with respect to the policy



Q-function

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,

Q-function => policy



Optimality

there exists an optimal policy ⇡⇤

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

8⇡, 8s, V ⇡⇤
(s) � V ⇡(s)

optimal value function

8s, V ⇤(s) = V ⇡⇤
(s)

8s, 8a,Q⇤(s, a) = Q⇡⇤
(s, a)



Bellman optimality equations

V ⇤(s) = max
a

Q⇤(s, a)

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

from the relation between V and Q
Q⇤(s, a) =

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤(s0)

�

we have

the unique fixed point is the optimal value function

Q⇤(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇤(s0, a)

�

V ⇤(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇤(s0)

�



Solve optimal policy in MDP

idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:

V (s) max
a

Q⇡(s, a)

from the Bellman optimality equation



Solve optimal policy in MDP

policy improvement:

V (s) max
a

Q⇡(s, a)

from the Bellman optimality equation

let ⇡0 be derived from this update

V ⇡(s)  Q⇡(s,⇡0(s))

=
X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �V ⇡(s0))


X

s0
P (s0|s,⇡0(s))(R(s,⇡0(s), s0) + �Q⇡(s0,⇡0(s)))

= . . .

= V ⇡0

so the policy is improved



Solve optimal policy in MDP

Policy iteration algorithm:
loop until converges
policy evaluation: calculate V
policy improvement: choose the action greedily

converges: V ⇡t+1(s) = V ⇡t(s)

⇡t+1(s) = argmax
a

Q⇡t(s, a)

recall the optimal value function about Q

Q⇡t+1(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t(s0, a)

�



Solve optimal policy in MDP

Value iteration algorithm:

V0 = 0 
for t=0, 1, ... 

for all s 

end for 
break if ||Vt+1 -Vt ||∞ is small enough 

end for 

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�

embed the policy improvement in evaluation

recall the optimal value function about V

<- synchronous v.s. asynchronous



Solve optimal policy in MDP

Dynamic programming R. E. Bellman
1920-1984

sunny

s

c

r

s

c

r

s

c

r

...

[O. Madani. Polynomial Value Iteration Algorithms for Deterministic MDPs. UAI’02]

Complexity
needs               iterations to converge on deterministic MDP⇥(|S| · |A|)

curse of dimensionality:  Go board 19x19, |S|=2.08x10170
[https://github.com/tromp/golegal]

Q⇡t+1(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + �max

a
Q⇡t(s0, a)

�

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s

0)
�



from MDP to reinforcement learning

MDP <S,A,R,P>

R and P are unknown



Methods

A: learn R and P,  
   then solve the MDP

B: learn policy without R or P

model-based

model-free

MDP is the model



Model-free RL

explore the environment and learn policy at the 
same time

Monte-Carlo method

Temporal difference method



Monte Carlo RL - evaluation

expected total reward

expectation of trajectory-wise rewards

sunny

s

c

r

s

c

r

s

c

r

...

Q⇡(s, a) = E[
XT

t=1
rt|s, a]

sample trajectory m times, 
approximate the expectation by average

⌧i is sample by following   after s,a⇡Q⇡(s, a) =
1

m

mX

i=1

R(⌧i)

Q, not V



Monte Carlo RL - evaluation+improvement

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

improvement ?



Monte Carlo RL

problem: what if the policy takes only one path?

cannot improve the policy 
no exploration of the environment

sunny

s

c

r

s

c

r

s

c

r

needs exploration !



Exploration methods

one state MDP:  
a.k.a. bandit model

r ⇠ D1

r ⇠ D2

maximize the long-term total reward

• exploration only policy: try every action in turn

• exploitation only policy: try each action once, 
follow the best action forever

waste many trials

risk of pick a bad action
balance between exploration and exploitation



Exploration methods

ϵ-greedy:
follow the best action with probability 1-ϵ 
choose action randomly with probability ϵ

ϵ should decrease along time
softmax:

probability according to action quality

P (k) = eQ(k)/✓/
XK

i=1
eQ(i)/✓

upper confidence bound (UCB):
choose by action quality + confidence

Q(k) +
p
2 lnn/nk



Action-level exploration

ϵ-greedy policy:

given a policy ⇡

⇡✏(s) =

(
⇡(s),with prob. 1� ✏

randomly chosen action,with prob. ✏

ensure probability of visiting every state > 0

exploration can also be in other levels



Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1) 
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏



Monte Carlo RL - on/off-policy

⇡✏this algorithm evaluates     !   on-policy 

what if we want to evaluate    ?   off-policy ⇡

importance sampling:

E[f ] =

Z

x
p(x)f(x)dx =

Z

x
q(x)

p(x)

q(x)
f(x)dx

1

m

mX

i=1

f(x)
1

m

mX

i=1

p(x)

q(x)
f(x)

sample from p sample from q



Monte Carlo RL

Q0 = 0 
for i=0, 1, ..., m 

generate trajectory <s0, a0, r1, s1, ..., sT> by 
for t=0, 1, ..., T-1 

R = sum of rewards from t to T 
Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)  
c(st,at)++ 

end for 
update policy  

end for 
⇡(s) = argmax

a
Q(s, a)

⇡✏

pi =

(
1� ✏+ ✏/|A|, ai = ⇡(si),

✏/|A|, ai 6= ⇡(si)

⇥
YT�1

i=t+1

⇡(xi, ai)

pi

-- off-policy



Monte Carlo RL

summary

Monte Carlo evaluation:  
approximate expectation by sample average

action-level exploration

on-policy, off-policy: importance sampling

Monte Carlo RL:  
evaluation + action-level exploration + policy improvement (on/off-policy)



Incremental mean

In general, 

Monte-Carlo update:

µt = µt�1 + ↵(xt � µt�1)

MC error

Q(st,at)= (c(st,at)Q(st,at)+R)/(c(st,at)+1)

µt =
1

t

tX

i=1

xi =
1

t
(xt +

t�1X

i=1

xi) =
1

t
(xt + (t� 1)µt�1)

= µt�1 +
1

t
(xt � µt�1)

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))



Temporal-Difference Learning - evaluation

learn as you goupdate policy online

Monte-Carlo update:

TD update:

TD error

MC error

TD Evaluation

Q(st, at) ( Q(st, at) + ↵(R�Q(st, at))

Q(st, at)

( Q(st, at) + ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))



Temporal-Difference Learning - example

leaving office 
reach car, raining 
exit highway 
behind truck 
home street 
arrive home 

0          30                  30 
5          35                  40
20         15                  35
30         10                  40
40          3                  43
43          0                  43

state
elapsed 
time

predicted 
total time

predicted 
remaining 
time

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!

M
C 

er
ro

r

TD
 e

rr
or

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!



sunny

s

c

r

s

c

r

s

c

r

s

c

r

Temporal-Difference Learning - backups

MC backup

TD backup

DP backup



SARSA

On-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax
a

Q(s, a)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s
0)

⇡✏(s)



Q-learning

Off-policy TD control

Q0 = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a 
a’ = 

s = s’ 
end for 

⇡(s) = argmax
a

Q(s, a)

⇡(s0)
Q(s, a)+= ↵(r + �Q(s0, a0)�Q(s, a))

⇡✏(s)



SARSA v.s. Q-learning

Lecture 5: Model-Free Control

O↵-Policy Learning

Q-Learning

Cli↵ Walking Example



RL in continuous state space

MDP <S,A,R,P>

S (and A) is in

we can do RL now! ... in (small) discrete state space

Rn



Value function approximation

tabular representation

s
0 0.3

1 0.7

c
0 0.6

1 0.4

r
0 0.1

1 0.9

⇡ =

modern RL

linear function approx.

very powerful representation
can be all possible policies !

� is a feature mapping
w is the parameter vector

may not represent all policies !

V̂ (s) = w>�(s)

Q̂(s, a) = w>�(s, a)

Q̂(s, ai) = w>
i �(s)



Value function approximation

to approximate Q and V value function
least square approximation

J(w) = Es⇠⇡[
�
Q⇡(s, a)� Q̂(s, a)

�2
]

Recall the errors:
MC update:
TD update:

target

Q(st, at)+ = ↵(R�Q(st, at))

Q(st, at)+ = ↵(rt+1 + �Q(st+1, at+1)�Q(st, at))

model

replace

online environment: stochastic gradient on single sample
�wt = ✓(Q⇡(st, at)� Q̂(st, at))rwQ̂(st, at)



Value function approximation

MC update:

TD update:

�wt = ✓(R� Q̂(st, at))rwQ̂(st, at)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

eligibility traces

Et = ��Et�1 +rwQ̂(st, at)



Q-learning with function approximation

w = 0, initial state  
for i=0, 1, ... 

a =  
s’, r = do action a  
a’ = 

s = s’ 
end for 

⇡(s0)
w+ = ✓(r + �Q̂(s, a)� Q̂(s, a))rwQ̂(st, at)

⇡(s) = argmax
a

Q̂(s, a)

⇡✏(s)



Approximation model

Linear approximation Q̂(s, a) = w>�(s, a)

coarse coding: raw features

discretization: tide with indicator features

kernelization:

Q̂(s, a) =
mX

i=1

wiK((s, a), (si, ai))

(si,ai) can be randomly sampled

rwQ̂(s, a) = �(s, a)



Approximation model

Nonlinear model approximation

neural network: differentiable model

Q̂(s, a) = f(s, a)

�wt = ✓(rt+1 + �Q̂(st+1, at+1)� Q̂(st, at))rwQ̂(st, at)

follow the BP rule to 
pass the gradient

recall the TD update:



RL in continuous state space

Deep Reinforcement Learning

function approximation by 
deep neural networks



Convolutional neural networks

a powerful neural network architecture for image analysis
differentiable
require a lot of samples to train



Deep Q-Network

DQN
• using ϵ-greedy policy
• store 1million recent history (s,a,r,s’) in replay memory D
• sample a mini-batch (32) from D
• calculate Q-learning target
• update CNN by minimizing the Bellman error (delayed update)

Q̃

X
(r + �max

a0
Q̃(s0, a0)�Qw(s, a))

2

DQN on Atari
learn to play from pixels

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

DQN agents were trained for 10 million frames using standard hyperparameters for all possible combinations of turning replay on or off, using or not using a separate target Q-network, and three different learning
rates. Each agent was evaluated every 250,000 training frames for 135,000 validation frames and the highest average episode score is reported. Note that these evaluation episodes were not truncated at 5 min
leading to higher scores on Enduro than the ones reported in Extended Data Table 2. Note also that the number of training frames was shorter (10 million frames) as compared to the main results presented in
Extended Data Table 2 (50million frames).
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A combination of tree search, deep neural 
networks and reinforcement learning
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ∼…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge

∑

∑

( )= ( )

( )=
( )

( ) ( )

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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AlphaGo

fast roll-out policy:
supervised learning from human v.s. human data

ARTICLERESEARCH

Extended Data Table 4 | Input features for rollout and tree policy

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, ≥3)  
at each intersection of the pattern.

© 2016 Macmillan Publishers Limited. All rights reserved



AlphaGo

policy network: a CNN output π(s,a)

ARTICLERESEARCH

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black
Feature planes used by the policy network (all but last feature) and value network (all features).

© 2016 Macmillan Publishers Limited. All rights reserved

value network: a CNN output V(s)
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation

Filters Symmetries Features Test accu-
racy %

Train accu-
racy %

Raw net
wins %

AlphaGo
wins %

Forward
time (ms)

128 1 48 54.6 57.0 36 53 2.8
192 1 48 55.4 58.0 50 50 4.8
256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 51.4 25 15 4.8
192 1 12 54.7 57.1 30 34 4.8
192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

The policy network architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4, 12 or 
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy 
network against AlphaGo’s policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo’s search to select moves (AlphaGo 
wins); and finally the computation time for a single evaluation of the policy network.

© 2016 Macmillan Publishers Limited. All rights reserved
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ =  0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ =  1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ =  0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ =  1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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