@ ‘ﬁ 5',;. J,\'% Artificial Intelligence, cs, Nanjing University

Spring, 2018, Yang Yu

NANJING UNIVLERSITY

Lecture 5: Search 4

http://cs.nju.edu.cn/yuy/course_ail8.ashx




Previously...

Path-based search

Uninformed search

Depth-first, breadth first, uniform-cost search

Informed search

Best-first, A* search

Adversarial search

Alpha-Beta search



Beyond classical search
Bandit search
Tree search: Monte-Carlo Tree Search
General search:

Gradient decent
Metaheuristic search



Bandit

0 \
all A

2 3 4
\ [4

Multiple arms
Each arm has an expected reward,
but unknown, with an unknown distribution

Maximize your award in fixed trials



Simplest strategies
Two simplest strategies

Exploration-only:
for T trails and K arms, try each arm T/K times

problem? waste on suboptimal arms

Exploitation-only:

1. try each arm once
2. try the observed best arm T-K times

problem? risk of wrong best arm



e-greedy
Balance the exploration and exploitation:

with ¢ probability, try a random arm
with 1-e probability, try the best arm

A 15K

PHAY R,

¢ controls the balance SARH T

FEME e

it #5:

1: r =

2: Yi=1,2,...K: Q(i) = 0, count(i) = 0;

3 fort=12,...,T do

4:  if rand()< ¢ then

3 k=M1,2,..., K dELE) 5] 40 A Bl L HY
fi: else

T k = arg max; Q(7)

8: endif

9: v =R{k);

10: r=r+1v;
R{E)xcount(k)—w

L1 Q(k) =2 ::.:::'.(lnll:k‘,l';J 3

12:  count(k) = count(k) + 1;

13: end for

Mt BB




Softmax

Balance the exploration and exploitation:
Choose arm with probability

Q%
P(k) = ————\ (16.4)
2l
dYer
i=1
fA: IBE K,
')":ﬁ‘l'f'l iR
t controls the balance BT
?EI’L;) ZET.
R
1: r =0
2. Vi—1,2,...K: Qi) =0, count(i) = 0;

3: fort=1,2,...,T do

k= M1,2,..., K Pt (16.4)pf HLi%k
v = H(k);

r—r+wu _

Q) = s,

; count(k) = count(k) + 1;

9: end for

W SR

- O N

0




Upper-confidence bound

Balance the exploration and exploitation:
Choose arm with the largest value of

average reward + upper confidence bound

Q) \/ =




Use bandit to search

i
T

5

Neamt
- 87
75 .
4 ] lasi
Aratﬂ 3 ”
Sibiu  ,,  Fagaras
118 JVaslui
80
Timisoara Rimnicu Vilcea
]
142
Il ] Lugoj Pitesti 211
70 ~ 08 .
_ 35 : : Hirsova
[JMehadia 101 S Urziceni
® 86
[E 138 Bucharest
Dobreta [ 120 %
JCraiova Eforie

[]1Giurgiu



Use bandit to search

0+ /217 use many roll-outs to

n, estimate the average cost

of each arm
5 <%_> D
D

arm selection: UCB

N [
] imi ]
- .
]
. 1 [JHirsova
[] SN ziceni
a2
]
]

762 a roll-out

]
Eforie



From bandit to tree

grow a tree

update the values along
the path




Monte-Carlo Tree Search
also called Upper-Confidence Tree (UCT)

Kocsis Szepesvari, 06
Gradually grow the search tree:

» |terate Tree-Walk
» Building Blocks

» Select next action
Bandit phase
» Add a node
Grow a leaf of the search tree
» Select next action bis
Random phase, roll-out
» Compute instant reward

Evaluate Random
» Update information in visited nodes Phase ¥,
'y
Propagate Explored Tree " (2

» Returned solution:
» Path visited most often



Monte-Carlo Tree Search

Example:

Selection Cxpansion Simulation Backpropagation

Pic from https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#cite_note-Kocsis-Szepesvari-5

rollout


https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#

Monte-Carlo Tree Search

private TreeNode select () {

puklic TreeNode selected = null;
. 4 double bestValue = Double.MIN VALUE;

~

st
" for (TreeNcce ¢ : children)
:_ couble uctValue = c.totValue / (o.nVisits + egpsiion) +
5T Math.sqrt(Math.leg(nVisite+l) / (c.nVisits + epsilen)) +
r.nextDouble() * epsilcon;
To // =small random number to break ties randomly in unexpanded nodes
do 1f (uctvalue > bkestvValue) ({ ..
selected = ¢;
pul bestvValae = uctValue;
}
}
retLurn selected;
]
T— !HE = cur.select(); totValue += value;
visited.add (cur); }
}
r— *
cur.expand() ;
TreeNode nswNode = cur.select();
visited.add (newNode) ;
double value = rcllQut (newNode) ;
for (TreeNcde node :@: wvisited) (
// would need extra logic for n-player game
node.updateStats (value) ;
1
}

codes from http://mcts.ai/code/java.html



http://mcts.ai/code/java.html

Monte-Carlo Tree Search

optimal? Yes, after infinite tries

compare with alpha-beta pruning
no need of heuristic function



Monte-Carlo Tree Search

Improving random rollout

Monte-Carlo-based Briigman 93
1.

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

Improvements 7

» Put stones randomly in the neighborhood of a previous stone

» Put stones matching patterns prior knowledge

» Put stones optimizing a value function Silver et al. 07



General solution space search



Greedy idea in continuous space

Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, 12), (2, v2), (3, ¥3)
— objective function f(x1, v, T2, Y2, T3,Y3) =
sum of squared distances from each city to nearest airport

] Oradea

Neamt

87

] lasi

. 92
Sibiu FagaM@
%0 T \ [JVaslui
Rimnicu Vilcea \

1%
Pitesti 211
i \
] JHirsova
X 6

101 .y 82 —Urziceni
) 8

Bucharest

Dobreta
= 90 o

—Crajo a@ . Eforie
[]Giurgiu



Greedy idea in continuous space

discretize and use hill climbing

] Oradea
@ Neamt @
= 87
] lasi
1— 8 92
Sibiu  ,,  Fagaras
[JVaslui
80
e e Rimnicu Vilcea
]
142
70 — 98 T
) 35 : _ Hirsova
[ JMehadia 101 S Urziceni
® 56
& 138 Bucharest
Dobreta [ 120 T
Craiova Eforie

[]Giurgiu



Greedy idea in continuous space
gradient decent

— 6-D state space defined by (21, 12), (22, 12), (23, y3)
— objective function f(x1, Yo, T2, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Gradient methods compute

_(of of of of of 9f
B 0y’ 3917 0xy’ @yz’ 0x3’ Y3

to increase/reduce f, e.g., by x <+ x + aV f(x)

VY



Greedy idea in continuous space
gradient decent

— 6-D state space defined by (21, 12), (22, 12), (23, y3)
— objective function f(x1, Yo, T2, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x «— x — H;l(X>Vf<X>
to solve V f(x) = 0, where H;; = 0% f /0x;0x;

Taylor’s series:




Greedy idea

1st and 2nd order methods may not find global
optimal solutions

they work for convex functions

Objectixe function ﬁlobal maximum

shoulder

local maximum
"flat" local maximum

»state space
current

state



Meta-heuristics

“problem independent
“black-box
“zeroth-order method

and usually inspired from nature phenomenon



Simulated annealing

temperature from high to low

when high temperature, form the shape
when low temperature, polish the detail



Simulated annealing

ldea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])

for t< 1 to oo do
T« schedule]t]
if T'= 0 then return current
next < a randomly selected successor of current the _neighl?orhOOd range
AFE«+ VALUE[nezt] — VALUE[current] shrinks with T

if AE > 0 then current«— next the probability of acceptir
else current <« next only with probability e® /T g bad solution decreases

Lo d

with T

g



Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing


http://en.wikipedia.org/wiki/Simulated_annealing

Local beam search

ldea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all £ states end up on same local hill
|dea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!



Genetic algorithm

a simulation of Darwin’s evolutionary theory

over-reproduction with diversity
nature selection

reproduction

random 1nitialization

parent
population

offspring
solutions

evaluated
offspring
solutions

selection evaluation



Genetic algorithm

Encode a solution as a vector,

1: Pop < n randomly drawn solutions from X

2: for t=1,2,... do

3: Pop™ < {mutate(s) | Vs € Pop}, the mutated solutions
4: Pop®© < {crossover(si, s2) | ds1, 82 € Pop™}, the recombined solutions
5 evaluate every solution in Pop® by f(s)(Vs € Pop®)

6: Pop® < selected solutions from Pop and Pop°

7: Pop < Pop?®

8: terminate if meets a stopping criterion

9: end for



24748552 | 24 31%
32752411::%§T§;;:
24415124.\;;7£i\‘
32543213 | 11 14%

Fitness Selection

GAs require states encoded as strings (GPs use programs)

Genetic algorithm

32752411

24748552

32752411

24415124

>~
>~

Pairs

32748552

3274412

24752411

24752411

32752124

320252124

24415411

Cross-Over

2441541[7]

Crossover helps iff substrings are meaningful components




Example

Encode a solution as a vector with length n
each element of the vector can be chosen from {1,...,V }
parameters: mutation probability pm, crossover probability pc

1: Pop =randomly generate n solutions from {1,...,V }»
2: fort=1,2, ...do
3: Popm=emptyset, Popc=emptyset

4: fori=1ton

5: let x be the i-th solution in Pop

6: for j = 1 to n: with probability p,,, change x; by a random value from {1,...,V }
7 add x into Pop™

8: end for

9: fori=1ton

10: let x be the i-th solution in Pop™

11: let x” be a randomly selected solution from Pop™

12: with probability p., exchange a random part of x with x’

13: add x into Pop¢

14: end for

15:  evaluate solutions in Pop¢, select the best n solutions from Pop and Pop<to Pop
16:  terminal if a good solution is found

17: end for



-
-~

-t

et

——

‘-’”-‘




Properties of meta-heuristics

zeroth order

do not need differentiable functions

convergence

will find an optimal solution if P( x* | x )>0

or P(x->x1->..>xk->Xx*)>0

a missing link

~
[observationj — [simulationj [observation
J

—)(principlej—)[applicationj




Too many meta-heuristics

A

2010

2000
differential evolution
particle swarm optimization algorithms

ant colony optimization algorithms

1990

memetic algorithms |, ;6 cial immune systems

cultural algorithms | tabu search .
simulated annealing

1980

1970 _ ,
evolutionary strategies

evolutionary programming

1960 |genetic algorithms



http://en.wikipedia.org/wiki/Memetic_algorithms

Example

hard to apply traditional optimization methods
but easy to test a given solution

Representation:

parameterize

Fitness:

> flw)

test by sitmulation/experiment




Example

Series 700

Technological overview of the neal generslion Shinkensen high-speed bruin Series N700
M. Usnc', S. Usui', H. Tanaka', A. Watanage®

'Cantean Japan Raiway Campany Tolyn, Japan, 2ile lapan Raiway Company, Osaka, Jdapan

Abstract

In Mercy 2005 Cenudd Japar Wilway Company R Canliel] bas compleled prololyps

‘mae ' '

weves sie ol meues relalec W emviroemenlal compalialile sudh as exlemal ooise. o

sl his, @0 aeo doulde wing Dype Fas baer adople: Tor case shape (Fig. 3). THS foss

shupe, whidh bowsts lwe s, aopropoale seodyner o pelomnce, has boen new g desdoped
Tor cailweay elling stock usdeg the ates aralylical lachnigee (e geastic algaithms) wsed o
davelop the main wings of airplanes. The shage resemblas a bird 1 flighs, sugoesting a faslirg

o hnldnman ane eaesd

On +he Tokeldo Sh nkersen ir:e. Saries NTOD save 19% enevcy then Sedes 700 cems,
despile 3 30% increacs in Lhe vulpul of Lweir acton equipment "o highe cosed ooeralion (ki

£'l,

This is a result of adopling he asrodyramically excaller: 1ose shape reducec nring
resistence thanks to the crasticslly smoothened car bedy end underfloc equipmer:, affecive

a

\_

this nose ... has been newly developed ... using the latest
nalytical technique (i.e. genetic algorithms)

~_ - - - -0/
%
N700 cars save 19% energy ... 30% increase in the output... This is a
result of adopting the ... nose shape

J




Example

NASA ST5 satellite R,

QHAs(ATi%1T) 38% evolved anfehﬁas resulted
efficiency in 93% efficiency

J

uswesboun 2o

Jason D. Loha Jot
035, USA

Carneggie Meloe Usrdversicy, Ml Sowop 23-21, Modlivn Faell, C

1derek S, Linden diindd emengincering.com
JEM Erygavsecing, 8683 Cliarry Lave, Lourel, MD 20707, USA N pifun Fell, CA 84035
1158

SINCE there are (Wo BNIENTAS ON 2ach SPACECcralt, ang rot LSt one, It 18 IMpPOrEm
o mesure e overel]l gaon putiern witly bwo erdesaws mowed o tee spuoecralt Fo
his, difteren: combirations of the two evolved antennas and the QILA were tried or
he the 15 mock-up and meesures in an anechowe chamber, With mwo QHAS S5 effl:
deney wens achusved, using & OHA widiae evolyed aodenoe: sesulied i B0% eficency
NG LEing Two gvasved antennas resulted in 9% ethclency llere eifdensy” means
oW much power 5 baing radated versus now much power 1s being eaten up in resis-
ance, with greater atficioncy resulting *n a stronger signal anc greater range. e 11




Different Environment Properties



Nondeterministic actions

In the erratic vacuum world, the Suck action works as follows:

e When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

e When applied to a clean square the action sometimes deposits dirt on the carpet.

= > =]

3R |02 3R |02

53 | =4 4 =4
0% 3R

5 d@ 6 d@

S S

7 |=H g =)

almost all real-world problems are nondeterministic
how do you solve this problem?



AND-OR tree search

OR node: different actions (as usual)
AND node: different transitions

Suck Right
7|~ 5| = o5 2] sz 7-%
GOAL Suck Right Left Suck

5 = 1 ;fg SR 6 1 4 % 8 =4 4 =
LOOP Loop Suck Left 1oop GOAL
. )

p: = a solution is not a path
GOAL LOOP but a tree




Depth-first AND-OR tree search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL-STATE, problem, [ ])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem.ACTIONS(state) do
plan «— AND-SEARCH(RESULTS(state, action), problem, [state | path))
if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do
plan, < OR-SEARCH(s;, problem, path)
if plan, = failure then return failure
return [if s; then plan, else if s; then plan, else .. .if s,_; then plan,_, else plan,,]




Search with no observations

search in belief (In agent’s mind)

y
1|=d | 3|=f N L= 2| |=4 =4
5|4 | 7|~ = 5| e 6| |=B =4
4| |4
S — : S
[0 —0
Y L v R /
5 d@ S 5 d@ L ’% 4 4
08R S =S S
2 [=0 = - ] —
R
A A
Y R
— L
6 S0
=1 S =0 - > 7 [=0 S
8 =) R




Constraint satistaction problems (CSPs)



Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables X, with values from domain D),

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms



Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
- \/\,—
Australia
New South Wales

%i?\

Tasmania

Variables WA, NT, ), NSW,V,SA, T
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}



Example: Map-Coloring

-

-

Tasm.ia

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT = green,QQ =red, NSW = green,V =red, SA="blue, T = green}



Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob, + 5 < StartJobs
> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
> linear constraints solvable in poly time by LP methods



Varieties of CSPs

Unary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,

e.g., SA#WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems



Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables



Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
@

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!



Convert higher-order to binary

A higher-order constraint can be converted to binary
constraints with a hidden-variable

variable: A, B, C domain: {1,2,3} constraint: A+B=C

all possible assignments: (A,B,C) = (1,1,2), (1,2,3), (2,1,3)

'\\/'

hidden-variable: h with domain: {1,2,3}

(each value corresponds

_ to an assignment)
the constraint graph:

&)




Example: Cryptarithmetic

ol H
0|0 O

W
W
U

+
F

%5 & %) ¢

Variables: FT U W R O X; X5 X;3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints

alldifi B, T, U, W, R, O)

auxiliary variables
O+ 0 =R+ 10 X, etc.



Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with n variables

= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — 0)d at depth 7, hence n!d" leaves!!!!



Backtracking search

Variable assignments are commutative, i.e.,

[WA=redthen NT = green] sameas [NT = greenthen W A =red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25



Backtracking search

function BACKTRACKING-SEARCH( csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE( VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS|[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure




Backtracking search example




Improving backtracking efficiency

backtracking is uninformed
make it more informed

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?



Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values




Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

\—L:_’ \iL:_’ \%L:_’ \%L%




Least constraining value _re

Terrnory

Sculh ‘. —
Ausiralia ——=1

| B South Vakes
h\

Vicdora 1
|

Tazmania

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

“ | Allows 1 value for SA
1~ — 4 <
* Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible



Northemn
Terrnory

Forward checking N

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Gl g

—
e ~
WA NT Q NSW v SA

L)
‘\.\

o
' Sculh
Ausiralia




Constraint propagation -
propag = l ~ O\

| l B South Vakes
-
T
| Victors
"
Tazmania

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

SSEA SSEA S

WA NT Q NSW v SA T
ENEENEENEENEENE|ENE|EYE
S| '"EEfEENE(EE| VEETE
I | Hjimw |l EErE| HENE

N'T and S A cannot both be bluel

Constraint propagation repeatedly enforces constraints locally



Arc consistency - l

Wiasion
Ausiein |

| S
| LM?A‘NUIWUW
l Vidora %
Simplest form of propagation makes each arc consistent
X — Y is consistent iff
for every value x of X there is some allowed v
o945
WA NT Q NSW v SA T
I | H] Im E[EEE] E[EEE

~<¢—



Arc consistenc | e l
y || frrrmars Quoensbvnd

| S, F—
| lM%uUIWUW
l Vior %
Simplest form of propagation makes each arc consistent
X — Y is consistent iff
for every value x of X there is some allowed 7
SR s e
WA NT Q NSW v SA T
I | H] [ DX H] E[EEE

\«

If X loses a value, neighbors of X need to be rechecked



Arc consistency _r

- -
Simplest form of propagation makes each arc consistent | N
| Victoria ".v
X — Y is consistent iff skt
for every value x of X there is some allowed
| ] ,‘\ | ,‘
SwEN SN
WA NT Q NSW v SA T
B B8 XXiE]  XEiB
—

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment



Arc consistency

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X7, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X;, X,)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES( X;, X,) returns true iff succeeds
removed < false
for each z in DoMAIN[X|]| do
if no value y in DOMAIN[X] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X,|; removed « true
return removed

O(n*d?), can be reduced to O(n*d*) (but detecting all is NP-hard)



Problem Structure

O
Q

Tasmania and mainland are independent subproblems
|dentifiable as connected components of constraint graph

Suppose each subproblem has ¢ variables out of n total
Worst-case solution cost is n/c - d€, linear in n

Eg., n=80,d=2, c=20

2%V = 4 billion years at 10 million nodes/sec

4-2?Y = 0.4 seconds at 10 million nodes/sec



Tree-structured CSPs

(8)—0.
© )

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?*) time

Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.



Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

ge @3

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X,), X,)

3. For j from 1 to n, assign X, consistently with Parent(X))



Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
D& O—@
o 1R @
=) (e
O O

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d° - (n — c)d?), very fast for small ¢



[terative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with A(n) = total number of violated constraints



Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks




Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R:

number of variables

CPU
time

-

|
critical
ratio




Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice



