Artificial Intelligence, cs, Nanjing University Spring, 2018, Yang Yu

Lecture 5: Search 4

http://cs.nju.edu.cn/yuy/course_ai18.ashx

Previously...

Path-based search
Uninformed search
Depth-first, breadth first, uniform-cost search
Informed search
Best-first, A* search

Adversarial search
Alpha-Beta search

Beyond classical search

Bandit search
Tree search: Monte-Carlo Tree Search
General search:
Gradient decent Metaheuristic search

Bandit

Multiple arms
Each arm has an expected reward, but unknown, with an unknown distribution

Maximize your award in fixed trials

Simplest strategies

Two simplest strategies
Exploration-only:
for T trails and K arms, try each arm T / K times
problem? waste on suboptimal arms

Exploitation-only:

1. try each arm once
2. try the observed best arm $T-K$ times
problem? risk of wrong best arm

Balance the exploration and exploitation：

with ε probability，try a random arm with $1-\varepsilon$ probability，try the best arm
ε controls the balance

```
输入: 摇臂数 K;
    奖赏函数 R;
        尝试次数 T;
    探索概率 }\epsilon\mathrm{ .
过程:
    1: r=0;
    2: }\foralli=1,2,\ldotsK:Q(i)=0,\operatorname{count}(i)=0
    3: for }t=1,2,\ldots,T\mathrm{ do
    4: if rand()<\epsilon then
5: }k=从\mp@code{从 1,2,\ldots,K 中以均匀分布随机选取
        else
            k=arg max }\mp@subsup{\boldsymbol{m}}{i}{}Q(i
        end if
        v=R(k);
        r=r+v;
        Q(k)=\frac{Q(k)\times\operatorname{count}(k)+w}{\operatorname{count}(k)+1};
        count}(k)=\operatorname{count}(k)+1
13: end for
输出: 累积奖赏r
```


Softmax

Balance the exploration and exploitation：

Choose arm with probability

$$
\begin{equation*}
P(k)=\frac{e^{\frac{Q(k)}{\tau}}}{\sum_{i=1}^{K} e^{\frac{Q(v)}{\tau}}}, \tag{16.4}
\end{equation*}
$$

τ controls the balance

```
输入: 摇臂数 \(K\);
    奖赏函数 \(R\);
    尝试次数 \(T\);
    温度参数 \(\tau\).
过程:
1: \(r=0\);
2: \(\forall i=1,2, \ldots K: Q(i)=0, \operatorname{count}(i)=0\);
3: for \(t=1,2, \ldots, T\) do
4: \(k=从 1,2, \ldots, K\) 中根据式(16.4)随机选取
5: \(\quad v=R(k)\);
6: \(\quad r=r+v\);
7: \(\quad Q(k)=\frac{Q(k) \times \operatorname{count}(k)+v}{\operatorname{count}(k)+1}\);
8: \(\quad \operatorname{count}(k)=\operatorname{count}(k)+1\);
9: end for
输出: 累积奖赏 \(r\)
```


Upper-confidence bound

Balance the exploration and exploitation:
Choose arm with the largest value of
average reward + upper confidence bound

$$
Q(k)+\sqrt{\frac{2 \ln n}{n_{k}}},
$$

Use bandit to search

Use bandit to search

use many roll-outs to estimate the average cost of each arm

arm selection: UCB

From bandit to tree

grow a tree
update the values along the path

Monte-Carlo Tree Search

also called Upper-Confidence Tree (UCT)

Gradually grow the search tree:

- Iterate Tree-Walk
- Building Blocks
- Select next action

Bandit phase

- Add a node

Grow a leaf of the search tree

- Select next action bis

Random phase, roll-out

- Compute instant reward

Evaluate

- Update information in visited nodes
Propagate

Kocsis Szepesvári, 06

- Returned solution:
- Path visited most often

Monte-Carlo Tree Search

Example:

Pic from https://en.wikipedia.org/wiki/Monte_Carlo_tree_search\#cite_note-Kocsis-Szepesvari-5

Monte-Carlo Tree Search

```
public
```

private TreeNode select() {
TreeNode selected = null;
double bestValue = Double.MIN vALUE;
for (TreeNode c : children) {
double uctValue = c.totvalue / (c.nvisits + epsilon) +
Math.sqrt(Math.log(nvisits+1) / (c.nvisits + epsilon)) +
r.nextDouble() * epsilon;
// small random number to break ties randomly in unexpanded nodes
if (uctvalue > bestValue) {
selected = c;
bestValue = uctValue;
}
}
return selected;
}

```
}
```

 cur \(=\) cur.select ();
 totvalue \(+=\) value;
 visited. add (cur) ;
 \}
cur. expand () ;
TreeNode newNode $=$ cur.select();
visited. add (newNode) ;
double value $=$ rollout (newNode);
for (TreeNode node : visited) \{
// would need extra logic for n-player game
node.updatestats (value);
\}
\}

Monte-Carlo Tree Search

optimal? Yes, after infinite tries
compare with alpha-beta pruning no need of heuristic function

Monte-Carlo Tree Search

Improving random rollout

Monte-Carlo-based

1. Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
2. Compute $r=$ Win(black)
3. The outcome of the tree-walk is r

Improvements ?

- Put stones randomly in the neighborhood of a previous stone
- Put stones matching patterns
- Put stones optimizing a value function
prior knowledge

Silver et al. 07

General solution space search

Greedy idea in continuous space

Suppose we want to site three airports in Romania:

- 6-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$
sum of squared distances from each city to nearest airport

Greedy idea in continuous space

discretize and use hill climbing

Greedy idea in continuous space

gradient decent

- 6 -D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport

Gradient methods compute

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x}+\alpha \nabla f(\mathbf{x})$

Greedy idea in continuous space

gradient decent

- 6 -D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
- objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)=$ sum of squared distances from each city to nearest airport

Sometimes can solve for $\nabla f(\mathbf{x})=0$ exactly (e.g., with one city). Newton-Raphson $(1664,1690)$ iterates $\mathbf{x} \leftarrow \mathbf{x}-\mathbf{H}_{f}^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x})=0$, where $\mathbf{H}_{i j}=\partial^{2} f / \partial x_{i} \partial x_{j}$

2-order method

Taylor's series:

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2} f^{\prime \prime}(a)+\cdots=\sum_{i=0}^{\infty} \frac{(x-a)^{i}}{i!} f^{(i)}(a) .
$$

Greedy idea

1st and 2nd order methods may not find global optimal solutions

they work for convex functions

Meta-heuristics

"problem independent
"black-box
"zeroth-order method

and usually inspired from nature phenomenon

Simulated annealing

temperature from high to low
when high temperature, form the shape when low temperature, polish the detail

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
function Simulated-AnNEALING(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do $T \leftarrow$ schedule $[t]$
if $T=0$ then return current next \leftarrow a randomly selected successor of current the neighborhood range $\Delta E \leftarrow \operatorname{VALUE}[$ next $]$ - Value [current] shrinks with T if $\Delta E>0$ then current \leftarrow next the probability of accepting else current \leftarrow next only with probability $e^{\Delta E / T}$ a bad solution decreases with T

Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

Local beam search

Idea: keep k states instead of 1 ; choose top k of all their successors
Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them
Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones
Observe the close analogy to natural selection!

Genetic algorithm

a simulation of Darwin's evolutionary theory

over-reproduction with diversity nature selection

Genetic algorithm

Encode a solution as a vector,
$P o p \leftarrow n$ randomly drawn solutions from \mathcal{X}
2: for $\mathrm{t}=1,2, \ldots$ do
3: \quad Pop $^{m} \leftarrow\{$ mutate $(s) \mid \forall s \in \operatorname{Pop}\}$, the mutated solutions
4: $\quad \operatorname{Pop}^{c} \leftarrow\left\{\operatorname{crossover}\left(s_{1}, s_{2}\right) \mid \exists s_{1}, s_{2} \in\right.$ Pop $\left.^{m}\right\}$, the recombined solutions
5: \quad evaluate every solution in $P_{o p}{ }^{c}$ by $f(s)\left(\forall s \in P_{o p}{ }^{c}\right)$
6: $\quad P o p^{s} \leftarrow$ selected solutions from $P o p$ and $P o p^{c}$
7: $\quad P o p \leftarrow$ Pop s
8: \quad terminate if meets a stopping criterion
9: end for

Genetic algorithm

Fitness Selection Pairs Cross-Over

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

Example

Encode a solution as a vector with length n each element of the vector can be chosen from $\{1, \ldots, V\}$ parameters: mutation probability p_{m}, crossover probability p_{c}
$P o p=$ randomly generate n solutions from $\{1, \ldots, V\}^{n}$
for $t=1,2, \ldots$ do
Pop ${ }^{m}=$ emptyset, $P o p^{c}=$ emptyset
for $i=1$ to n
let x be the i-th solution in Pop for $j=1$ to n : with probability p_{m}, change x_{j} by a random value from $\{1, \ldots, V\}$ add x into Pop m
end for
for $i=1$ to n
let x be the i-th solution in Pop ${ }^{m}$
let x ' be a randomly selected solution from Pop ${ }^{m}$
with probability p_{c}, exchange a random part of x with x,
add x into $P o p^{c}$
end for
evaluate solutions in $P o p^{c}$, select the best n solutions from Pop and Popc to Pop
terminal if a good solution is found
17: end for

An evolutionary of virtual life

$$
5
$$

Properties of meta-heuristics

zeroth order
do not need differentiable functions

convergence

will find an optimal solution if $P\left(x^{*} \mid x\right)>0$ or $P\left(x->x_{1}->\ldots->x_{k}->x^{*}\right)>0$
a missing link

search from samples

Too many meta-heuristics

grey wolf optimizer 2010 gravitational search algorithm river formation dynamics	brainstorm algorithm fireworks algorithm bat algorithm intelligent water drops algorithm artificial bee colony algorithms
2000 differential evolution memetic algorithms cultural algorithms	particle swarm optimization algorithms ant colony optimization algorithms artificial immune systems tabu search simulated annealing
1980 1970 1960	evolutionary strategies evolutionary programming genetic algorithms

Example

hard to apply traditional optimization methods but easy to test a given solution

Representation:

represented as a vector of parameters
Fitness:

test by simulation/experiment

Example

Series 700

Series N700

Technological overview of the nexl generetion Shinkensen high-speed train Beriey N700

M. Ueno ${ }^{1}$, S. Usuit , H. Tanaka ${ }^{1}$, A. Watanabe ${ }^{2}$

Abstract

In Merch 2005 Centrad Jepen Reilwary Company \{NR Centrel) Inas completed prololype
 weves end olle issues relaled to errvironmenlal compalixitity such as exlemal noise. To cambal this, an ato double wing-lype las been atoples for nase shape (Fig. 3). This rofe: hape, whict bocses liwe mos: appropriate aerodynaric pe-formance, has bsen new y deaduped for railway calling stock ufing the latent armlytial testriqua (i.e. genelita algoxithms) watd in Jowslop the main win-5 of airplanes. The shage resemblas a bird in flight, suagesting a faelirg ciboldnesg and soend

On the Tokgido Shinkansen Ine, Series N700 cars save 19% enercy then Series 700 cers , despite a 30% inceate in tive oulpul of their raction equipment for higher-exeed operation 'Fig. 4).

This is a result of adopling the asrodyramically excallert nose shape redaced runing resistence thanks to the crastically moothened car body end under-flocr equipmen., effective
this nose ... has been newly developed ... using the latest analytical technique (i.e. genetic algorithms)

N700 cars save 19\% energy ... 30\% increase in the output... This is a result of adopting the ... nose shape

Example

Different Environment Properties

Nondeterministic actions

In the erratic vacuum world, the Suck action works as follows:

- When applied to a dirty square the action cleans the square and sometimes cleans up dirt in an adjacent square, too.
- When applied to a clean square the action sometimes deposits dirt on the carpet.

almost all real-world problems are nondeterministic how do you solve this problem?

AND-OR tree search

OR node: different actions (as usual) AND node: different transitions

Depth-first AND-OR tree search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.Initial-STATE, problem, [])
function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem.ACTIONS(state) do
plan \leftarrow AND-SEARCH $($ RESULTS (state, action $)$, problem, $[$ state \mid path $])$
if plan \neq failure then return [action | plan]
return failure
function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s_{i} in states do
plan $_{i} \leftarrow \mathrm{OR}-\operatorname{SEARCH}\left(s_{i}\right.$, problem, path $)$
if plan $_{i}=$ failure then return failure
return [if s_{1} then plan $_{1}$ else if s_{2} then plan $_{2}$ else \ldots if s_{n-1} then plan $_{n-1}$ else plan n_{n}]

Search with no observations

search in belief (in agent's mind)

Constraint satisfaction problems (CSPs)

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box" -any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables X_{i} with values from domain D_{i}
goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

Tasmania

Variables $W A, N T, Q, N S W, V, S A, T$
Domains $D_{i}=\{$ red, green, blue $\}$
Constraints: adjacent regions must have different colors
e.g., $W A \neq N T$ (if the language allows this), or

$$
(W A, N T) \in\{(\text { red, green }),(\text { red, blue }),(\text { green }, \text { red }),(\text { green }, \text { blue }), \ldots\}
$$

Example: Map-Coloring

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
$\{W A=$ red,$N T=$ green, $Q=$ red,$N S W=$ green $, V=r e d, S A=$ blue, $T=$ green $\}$

Varieties of CSPs

Discrete variables
finite domains; size $d \Rightarrow O\left(d^{n}\right)$ complete assignments
\diamond e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete) infinite domains (integers, strings, etc.)
\diamond e.g., job scheduling, variables are start/end days for each job
\diamond need a constraint language, e.g., StartJob ${ }_{1}+5 \leq$ StartJob $_{3}$
\diamond linear constraints solvable, nonlinear undecidable
Continuous variables
\diamond e.g., start/end times for Hubble Telescope observations
\diamond linear constraints solvable in poly time by LP methods

Varieties of CSPs

Unary constraints involve a single variable, e.g., $S A \neq$ green

Binary constraints involve pairs of variables, e.g., $S A \neq W A$

Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment
\rightarrow constrained optimization problems

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-valued variables

Constraint graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Convert higher-order to binary

A higher-order constraint can be converted to binary constraints with a hidden-variable
variable: $\mathrm{A}, \mathrm{B}, \mathrm{C}$ domain: $\{1,2,3\}$ constraint: $\mathrm{A}+\mathrm{B}=\mathrm{C}$
all possible assignments: $(\mathrm{A}, \mathrm{B}, \mathrm{C})=(1,1,2),(1,2,3),(2,1,3)$
hidden-variable: h with domain: $\{1,2,3\}$
the constraint graph:

constraint:
$\mathrm{h}=1, \mathrm{C}=2$
$\mathrm{h}=2, \mathrm{C}=3$
$h=3, C=3$

Example: Cryptarithmetic

$$
\begin{array}{r}
T W O \\
+\quad \text { TWO } \\
\hline F O U R
\end{array}
$$

Variables: FTUWRO $X_{1} X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints

$$
\text { alldiff(} F, T, U, W, R, O)
$$

auxiliary variables

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
\diamond Initial state: the empty assignment, $\}$
\diamond Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
\Rightarrow fail if no legal assignments (not fixable!)
\diamond Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
\Rightarrow use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) $b=(n-\ell) d$ at depth ℓ, hence $n!d^{n}$ leaves!!!!

Backtracking search

Variable assignments are commutative, i.e., [$W A=$ red then $N T=$ green $]$ same as $[N T=$ green then $W A=$ red $]$

Only need to consider assignments to a single variable at each node $\Rightarrow \quad b=d$ and there are d^{n} leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for $n \approx 25$

Backtracking search

function BACKTRACKING-SEARCH $(c s p)$ returns solution/failure return Recursive-Backtracking ($\}, c s p)$
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add $\{$ var $=$ value $\}$ to assignment
result \leftarrow RECURSIVE-BACKTRACKING (assignment, csp)
if result \neq failure then return result
remove $\{$ var $=$ value $\}$ from assignment
return failure

Backtracking search example

Improving backtracking efficiency

backtracking is uninformed make it more informed

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

$N T$ and $S A$ cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ Remove-First $(q u e u e)$
if Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ then for each X_{k} in Neighbors $\left[X_{i}\right]$ do add $\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff succeeds removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$ then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed
$O\left(n^{2} d^{3}\right)$, can be reduced to $O\left(n^{2} d^{2}\right)$ (but detecting all is NP-hard)

Problem Structure

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph
Suppose each subproblem has c variables out of n total
Worst-case solution cost is $n / c \cdot d^{c}$, linear in n
E.g., $n=80, d=2, c=20$
$2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$ $4 \cdot 2^{20}=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O\left(n d^{2}\right)$ time

Compare to general CSPs, where worst-case time is $O\left(d^{n}\right)$
This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent $\left(\operatorname{Parent}\left(X_{j}\right), X_{j}\right)$
3. For j from 1 to n, assign X_{j} consistently with $\operatorname{Parent}\left(X_{j}\right)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O\left(d^{c} \cdot(n-c) d^{2}\right)$, very fast for small c

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints operators reassign variable values

Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic: choose value that violates the fewest constraints i.e., hillclimb with $h(n)=$ total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n)=$ number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

CSPs are a special kind of problem:
states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking $=$ depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
Iterative min-conflicts is usually effective in practice

