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Previously...

Uninformed search 

Informed search

Depth-first, breadth first, uniform-cost search

Best-first, A* search

Path-based search

Adversarial search

Alpha-Beta search



Beyond classical search

Bandit search 

Tree search: Monte-Carlo Tree Search 

General search:  
Gradient decent 
Metaheuristic search



Bandit

Multiple arms 
Each arm has an expected reward,  
    but unknown, with an unknown distribution 

Maximize your award in fixed trials 



Simplest strategies

Exploration-only:
for T trails and K arms, try each arm T/K times

Two simplest strategies

Exploitation-only:

1. try each arm once 
2. try the observed best arm T-K times

problem?

problem?

waste on suboptimal arms

risk of wrong best arm



ε-greedy

Balance the exploration and exploitation:

with ε probability, try a random arm 
with 1-ε probability, try the best arm

ε controls the balance



Softmax

Balance the exploration and exploitation:

Choose arm with probability 

τ controls the balance



Q(k)

Upper-confidence bound

Balance the exploration and exploitation:

Choose arm with the largest value of

average reward + upper confidence bound

UCB

2.5%



Use bandit to search

Example: Romania
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762 a roll-out

use many roll-outs to 
estimate the average cost 
of each arm 

arm selection: UCB

O R



From bandit to tree

Abrad

Z S T
grow a tree 

update the values along 
the path

z

O R



Monte-Carlo Tree Search
Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

also called Upper-Confidence Tree (UCT)



Monte-Carlo Tree Search

Pic from https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#cite_note-Kocsis-Szepesvari-5

Example:

rollout

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#


Monte-Carlo Tree Search

codes from http://mcts.ai/code/java.html

http://mcts.ai/code/java.html


Monte-Carlo Tree Search

optimal?  Yes, after infinite tries 

compare with alpha-beta pruning 
    no need of heuristic function



Monte-Carlo Tree Search
Random phase � Roll-out policy

Monte-Carlo-based Brügman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?

I Put stones randomly in the neighborhood of a previous stone

I Put stones matching patterns prior knowledge

I Put stones optimizing a value function Silver et al. 07

Improving random rollout



General solution space search



Greedy idea in continuous space
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Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13
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discretize and use hill climbing



Greedy idea in continuous space

gradient decent

Continuous state spaces
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1-order method
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Theoretical Computer Science Cheat Sheet

Series
Taylor’s series:

f(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2
f ′′(a) + · · · =

∞
∑

i=0

(x − a)i

i!
f (i)(a).
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Ordinary power series:
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∞
∑
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aix
i.

Exponential power series:
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∞
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ai
xi

i!
.

Dirichlet power series:
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∞
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i=1
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ix
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Binomial theorem:
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(

n

k

)

xn−kyk.

Difference of like powers:

xn − yn = (x − y)
n−1
∑
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For ordinary power series:
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j=0 ai then
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1

1 − x
A(x).
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∑
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i
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ajbi−j

⎞

⎠ xi.

God made the natural numbers;
all the rest is the work of man.
– Leopold Kronecker

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport
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to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
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2-order method



Greedy idea

1st and 2nd order methods may not find global 
optimal solutionsHill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima

Chapter 4, Sections 3–4 7

they work for convex functions



Meta-heuristics

“problem independent 
“black-box 
“zeroth-order method 
...

and usually inspired from nature phenomenon



Simulated annealing

temperature from high to low

when high temperature, form the shape 
when low temperature, polish the detail



Simulated annealingSimulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current←next
else current←next only with probability e∆ E/T

Chapter 4, Sections 3–4 8

the neighborhood range 
shrinks with T

the probability of accepting 
a bad solution decreases 
with T



Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Simulated_annealing


Local beam search

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Chapter 4, Sections 3–4 10



Genetic algorithm

a simulation of Darwin’s evolutionary theory

over-reproduction with diversity 
nature selection

parent	
population

offspring	
solutions

reproduction

evaluated	
offspring	
solutions

selection evaluation

random initialization



Genetic algorithm

Encode a solution as a vector,
1: Pop n randomly drawn solutions from X
2: for t=1,2,. . . do
3: Popm  {mutate(s) | 8s 2 Pop}, the mutated solutions
4: Popc  {crossover(s1, s2) | 9s1, s2 2 Popm}, the recombined solutions
5: evaluate every solution in Popc by f(s)(8s 2 Popc)
6: Pops  selected solutions from Pop and Popc

7: Pop Pops

8: terminate if meets a stopping criterion
9: end for



Genetic algorithmGenetic algorithms

= stochastic local beam search + generate successors from pairs of states

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Chapter 4, Sections 3–4 11

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs ̸= evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 3–4 12



Example
Encode a solution as a vector with length n
each element of the vector can be chosen from {1,...,V }

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

parameters: mutation probability pm, crossover probability pc

Pop = randomly generate n solutions from {1,...,V }n

for t=1,2, ... do
Popm=emptyset, Popc=emptyset 
for i = 1 to n

let x be the i-th solution in Pop
for j = 1 to n: with probability pm, change xj by a random value from {1,...,V }
add x into Popm

end for
for i = 1 to n

let x be the i-th solution in Popm

let x’ be a randomly selected solution from Popm

with probability pc, exchange a random part of x with x’
add x into Popc

end for
evaluate solutions in Popc, select the best n solutions from Pop and Popc to Pop
terminal if a good solution is found

end for



An evolutionary of virtual life



Properties of meta-heuristics

zeroth order

convergence

a missing link

observation simulation observation applicationprinciple

P( x* | x )>0will find an optimal solution if 
or P( x -> x1 -> ... -> xk -> x* )>0

do not need differentiable functions

search from samples



Too many meta-heuristics

genetic algorithms1960

1970

1980

1990

2000

2010

evolutionary programming

evolutionary strategies

ant colony optimization algorithms

particle swarm optimization algorithms

artificial bee colony algorithms

artificial immune systems

simulated annealing

bat algorithm
grey wolf optimizer

gravitational search algorithm
river formation dynamics

differential evolution

fireworks algorithm
brainstorm algorithm

cultural algorithms

intelligent water drops algorithm

tabu search

memetic algorithms

http://en.wikipedia.org/wiki/Memetic_algorithms


Example

parameterize

represented as a vector of parameters

Representation:

hard	to	apply	traditional	optimization	methods	
but	easy	to	test	a	given	solution

xi

test by simulation/experiment

f(xi)

Fitness:



Example

Series 700

Series N700

this nose ... has been newly developed ... using the latest 
analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the output... This is a 
result of adopting the ... nose shape



Example

hard	to	apply	traditional	optimization	methods	
but	easy	to	test	a	given	solution

NASA ST5 satellite

evolved antennas resulted 
in 93% efficiency

QHAs(⼈人⼯工设计) 38% 
efficiency



Different Environment Properties



Nondeterministic actions

134 Chapter 4. Beyond Classical Search

1 2
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Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:ERRATIC VACUUM

WORLD

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.9

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function
that returns a single state, we use a RESULTS function that returns a set of possible outcome
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in
the set {5, 7}—the dirt in the right-hand square may or may not be vacuumed up.

We also need to generalize the notion of a solution to the problem. For example, if we
start in state 1, there is no single sequence of actions that solves the problem. Instead, we
need a contingency plan such as the following:

[Suck, if State = 5 then [Right, Suck] else [ ]] . (4.3)

Thus, solutions for nondeterministic problems can contain nested if–then–else statements;
this means that they are trees rather than sequences. This allows the selection of actions
based on contingencies arising during execution. Many problems in the real, physical world
are contingency problems because exact prediction is impossible. For this reason, many
people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.
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people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.
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Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:ERRATIC VACUUM

WORLD

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.9

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function
that returns a single state, we use a RESULTS function that returns a set of possible outcome
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in
the set {5, 7}—the dirt in the right-hand square may or may not be vacuumed up.

We also need to generalize the notion of a solution to the problem. For example, if we
start in state 1, there is no single sequence of actions that solves the problem. Instead, we
need a contingency plan such as the following:

[Suck, if State = 5 then [Right, Suck] else [ ]] . (4.3)

Thus, solutions for nondeterministic problems can contain nested if–then–else statements;
this means that they are trees rather than sequences. This allows the selection of actions
based on contingencies arising during execution. Many problems in the real, physical world
are contingency problems because exact prediction is impossible. For this reason, many
people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.

almost all real-world problems are nondeterministic 

how do you solve this problem?



AND-OR tree search
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4.3.2 AND–OR search trees

The next question is how to find contingent solutions to nondeterministic problems. As in
Chapter 3, we begin by constructing search trees, but here the trees have a different character.
In a deterministic environment, the only branching is introduced by the agent’s own choices
in each state. We call these nodes OR nodes. In the vacuum world, for example, at an OROR NODE

node the agent chooses Left or Right or Suck. In a nondeterministic environment, branching
is also introduced by the environment’s choice of outcome for each action. We call these
nodes AND nodes. For example, the Suck action in state 1 leads to a state in the set {5, 7},AND NODE

so the agent would need to find a plan for state 5 and for state 7. These two kinds of nodes
alternate, leading to an AND–OR tree as illustrated in Figure 4.10.AND–OR TREE

A solution for an AND–OR search problem is a subtree that (1) has a goal node at every
leaf, (2) specifies one action at each of its OR nodes, and (3) includes every outcome branch
at each of its AND nodes. The solution is shown in bold lines in the figure; it corresponds
to the plan given in Equation (4.3). (The plan uses if–then–else notation to handle the AND

branches, but when there are more than two branches at a node, it might be better to use a case

LeftSuck

RightSuck

RightSuck

6 

GOAL

8 

GOAL

7 

1 

2 5 

1 

LOOP

5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL

8 4 

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State
nodes are OR nodes where some action must be chosen. At the AND nodes, shown as circles,
every outcome must be handled, as indicated by the arc linking the outgoing branches. The
solution found is shown in bold lines.

OR node:  different actions (as usual) 
AND node: different transitions

a solution is not a path 
but a tree



Depth-first AND-OR tree search
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function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem .INITIAL-STATE,problem , [ ])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure
if problem .GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem .ACTIONS(state) do

plan ←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan ̸= failure then return [action | plan ]

return failure

function AND-SEARCH(states ,problem ,path) returns a conditional plan, or failure
for each si in states do

plan i ← OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic
environments. It returns a conditional plan that reaches a goal state in all circumstances. (The
notation [x | l] refers to the list formed by adding object x to the front of list l.)

construct.) Modifying the basic problem-solving agent shown in Figure 3.1 to execute con-
tingent solutions of this kind is straightforward. One may also consider a somewhat different
agent design, in which the agent can act before it has found a guaranteed plan and deals with
some contingencies only as they arise during execution. This type of interleaving of searchINTERLEAVING

and execution is also useful for exploration problems (see Section 4.5) and for game playing
(see Chapter 5).

Figure 4.11 gives a recursive, depth-first algorithm for AND–OR graph search. One
key aspect of the algorithm is the way in which it deals with cycles, which often arise in
nondeterministic problems (e.g., if an action sometimes has no effect or if an unintended
effect can be corrected). If the current state is identical to a state on the path from the root,
then it returns with failure. This doesn’t mean that there is no solution from the current state;
it simply means that if there is a noncyclic solution, it must be reachable from the earlier
incarnation of the current state, so the new incarnation can be discarded. With this check, we
ensure that the algorithm terminates in every finite state space, because every path must reach
a goal, a dead end, or a repeated state. Notice that the algorithm does not check whether the
current state is a repetition of a state on some other path from the root, which is important for
efficiency. Exercise 4.5 investigates this issue.

AND–OR graphs can also be explored by breadth-first or best-first methods. The concept
of a heuristic function must be modified to estimate the cost of a contingent solution rather
than a sequence, but the notion of admissibility carries over and there is an analog of the A∗

algorithm for finding optimal solutions. Pointers are given in the bibliographical notes at the
end of the chapter.



Search with no observations
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Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensor-
less vacuum world. Each shaded box corresponds to a single belief state. At any given point,
the agent is in a particular belief state but does not know which physical state it is in. The
initial belief state (complete ignorance) is the top center box. Actions are represented by
labeled links. Self-loops are omitted for clarity.

inside the belief states and develop incremental belief-state search algorithms that build up
INCREMENTAL

BELIEF-STATE

SEARCH

the solution one physical state at a time. For example, in the sensorless vacuum world, the
initial belief state is {1, 2, 3, 4, 5, 6, 7, 8}, and we have to find an action sequence that works
in all 8 states. We can do this by first finding a solution that works for state 1; then we check
if it works for state 2; if not, go back and find a different solution for state 1, and so on. Just
as an AND–OR search has to find a solution for every branch at an AND node, this algorithm
has to find a solution for every state in the belief state; the difference is that AND–OR search
can find a different solution for each branch, whereas an incremental belief-state search has
to find one solution that works for all the states.

The main advantage of the incremental approach is that it is typically able to detect
failure quickly—when a belief state is unsolvable, it is usually the case that a small subset of
the belief state, consisting of the first few states examined, is also unsolvable. In some cases,

search in belief (in agent’s mind)
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Constraint satisfaction problems (CSPs) Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Chapter 5 3



Example: Map-Coloring 
Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA ̸= NT (if the language allows this), or
(WA, NT ) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 5 4



Example: Map-Coloring 
Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red,NT = green,Q = red,NSW = green, V = red, SA = blue, T = green}

Chapter 5 5



Varieties of CSPs  

Varieties of CSPs

Discrete variables
finite domains; size d ⇒ O(dn) complete assignments

♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)

♦ e.g., job scheduling, variables are start/end days for each job
♦ need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in poly time by LP methods

Chapter 5 7



Varieties of CSPs  

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA ̸= green

Binary constraints involve pairs of variables,
e.g., SA ̸= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment

→ constrained optimization problems

Chapter 5 8



Real-world CSPs 
Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10



Constraint graph  
Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5 6



Convert higher-order to binary

A higher-order constraint can be converted to binary 
constraints with a hidden-variable

variable: A, B, C   domain: {1,2,3}    constraint: A+B=C

A B C

h

hidden-variable: h  with   domain: {1,2,3}

all possible assignments: (A,B,C) = (1,1,2), (1,2,3), (2,1,3)

(each value corresponds 
to an assignment)

the constraint graph:

constraint:  
h=1, C=2 
h=2, C=3 
h=3, C=3

fr
om

 th
e d

ef
in

iti
on

 o
f h



Example: Cryptarithmetic 
Example: Cryptarithmetic

OWTF U R
+

OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U,W, R, O)
O + O = R + 10 · X1, etc.

Chapter 5 9

hidden variables 

auxiliary variables



Standard search formulation (incremental) Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }

♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b = (n − ℓ)d at depth ℓ, hence n!dn leaves!!!!

Chapter 5 11



Backtracking search 

Backtracking search

Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Chapter 5 12



Backtracking search 

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment

var←Select-Unassigned-Variable(Variables[csp],assignment, csp)
for each value in Order-Domain-Values(var,assignment, csp) do

if value is consistent with assignment given Constraints[csp] then

add {var = value} to assignment

result←Recursive-Backtracking(assignment, csp)
if result ≠ failure then return result

remove {var = value} from assignment

return failure

Chapter 5 13



Backtracking search exampleBacktracking example

Chapter 5 17



Improving backtracking efficiency 

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 5 18

backtracking is uninformed 
make it more informed



Minimum remaining values  

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Chapter 5 19



Degree heuristic 

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Chapter 5 20



Least constraining value 

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 5 21



Forward checking 

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 5 25



Constraint propagation 

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 5 26



Arc consistency 

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27



Arc consistency 

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Chapter 5 29



Arc consistency Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5 30



Arc consistency Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)
if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff succeeds
removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj

then delete x from Domain[Xi]; removed← true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)

Chapter 5 31



Problem Structure
Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n = 80, d = 2, c = 20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

Chapter 5 33



Tree-structured CSPs 
Tree-structured CSPs

A
B

C
D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34



Algorithm for tree-structured CSPs 

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A
B

C
D

E

F
A B C D E F

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Chapter 5 35



Nearly tree-structured CSPs 
Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n − c)d2), very fast for small c

Chapter 5 36



Iterative algorithms for CSPs 
Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Chapter 5 37



Example: 4-Queens 
Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

Chapter 5 38



Performance of min-conflicts 
Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
   ratio
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Summary
Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice
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