Page History: 人工智能课程主页

Compare Page Revisions



« Older Revision - Back to Page History - Newer Revision »


Page Revision: 2018/02/16 18:04


(Back to homepage)

Information

  • 授课对象: 计算机系本科生
  • 教室: 仙林校区仙x-xxx
  • 时间: xxx
  • 教材: Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd edition), Pearson, 2011.
  • 助教: xxx
  • 总评: 课程作业 + 期末考试
  • 课程讨论QQ群:xxxxxx
  • 考试: xxxx

相关课程

建议同时选修“机器学习”、“数据挖掘”、“模式识别”课

作业

本次课程有四次作业,将基于GVGAI框架,请立即开始熟悉该框架:http://www.gvgai.net
  • 作业1: Bait游戏 - 关于搜索 截止日期: 3月xx日 20:00
  • 作业2: 黑白棋游戏 - 关于博弈 截止日期: 4月xx日 20:00
  • 作业3: Aliens游戏 - 关于监督学习 截止日期: 4月xx日 20:00
  • 作业4: PacMan游戏 - 关于强化学习 截止日期: 5月xx日 20:00
  • 作业5: PacMan游戏 - 实现AlphaZero 截止日期: 6月xx日 20:00

课程材料

  1. Introduction
  2. Search 1: Uninformed Search
  3. Search 2: Informed Search
  4. Search 3: Adversarial Search
  5. Search 4: Beyond Classical Search: Bandit, Monte-Carlo Tree Search, and General Search
  6. Search 5: Constraint Satisfaction Problems
  7. Knowledge 1: Propositional Logic
  8. Knowledge 2: First Order Logic
  9. Knowledge 3: SAT, Planning and Ontology
  10. Uncertainty 1: Probability & Bayesian Network
  11. Uncertainty 2: Inference in Bayesian Network
  12. Learning 1: Supervised Learning & Decision Trees
  13. Learning 2: Neural Networks
  14. Learning 3: Principles of Supervised Learning
  15. Learning 4: Linear Models
  16. Learning 5: Ensemble Learners
  17. Learning 6: Feature Processing
  18. Learning 7: Deep Learning
  19. Learning 8: Reinforcement learning
  20. Final: On Artificial Intelligence

slides are derived from Russell's in http://aima.cs.berkeley.edu/instructors.html

学术资源


The end