Page History: 人工智能课程主页
Compare Page Revisions
Page Revision: 2018/02/16 18:04
(
Back to homepage)
Information
- 授课对象: 计算机系本科生
- 教室: 仙林校区仙x-xxx
- 时间: xxx
- 教材: Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd edition), Pearson, 2011.
- 助教: xxx
- 总评: 课程作业 + 期末考试
- 课程讨论QQ群:xxxxxx
- 考试: xxxx
相关课程
建议同时选修“
机器学习”、“
数据挖掘”、“
模式识别”课
作业
本次课程有四次作业,将基于GVGAI框架,请立即开始熟悉该框架:
http://www.gvgai.net
- 作业1: Bait游戏 - 关于搜索 截止日期: 3月xx日 20:00
- 作业2: 黑白棋游戏 - 关于博弈 截止日期: 4月xx日 20:00
- 作业3: Aliens游戏 - 关于监督学习 截止日期: 4月xx日 20:00
- 作业4: PacMan游戏 - 关于强化学习 截止日期: 5月xx日 20:00
- 作业5: PacMan游戏 - 实现AlphaZero 截止日期: 6月xx日 20:00
课程材料
- Introduction
- Search 1: Uninformed Search
- Search 2: Informed Search
- Search 3: Adversarial Search
- Search 4: Beyond Classical Search: Bandit, Monte-Carlo Tree Search, and General Search
- Search 5: Constraint Satisfaction Problems
- Knowledge 1: Propositional Logic
- Knowledge 2: First Order Logic
- Knowledge 3: SAT, Planning and Ontology
- Uncertainty 1: Probability & Bayesian Network
- Uncertainty 2: Inference in Bayesian Network
- Learning 1: Supervised Learning & Decision Trees
- Learning 2: Neural Networks
- Learning 3: Principles of Supervised Learning
- Learning 4: Linear Models
- Learning 5: Ensemble Learners
- Learning 6: Feature Processing
- Learning 7: Deep Learning
- Learning 8: Reinforcement learning
- Final: On Artificial Intelligence
slides are derived from Russell's in http://aima.cs.berkeley.edu/instructors.html学术资源