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ABSTRACT
In E-commerce platforms such as Amazon and TaoBao, ranking
items in a search session is a typical multi-step decision-making
problem. Learning to rank (LTR) methods have been widely ap-
plied to ranking problems. However, such methods often consider
different ranking steps in a session to be independent, which con-
versely may be highly correlated to each other. For better utiliz-
ing the correlation between different ranking steps, in this paper,
we propose to use reinforcement learning (RL) to learn an opti-
mal ranking policy which maximizes the expected accumulative
rewards in a search session. Firstly, we formally define the concept
of search session Markov decision process (SSMDP) to formulate
the multi-step ranking problem. Secondly, we analyze the property
of SSMDP and theoretically prove the necessity of maximizing ac-
cumulative rewards. Lastly, we propose a novel policy gradient al-
gorithm for learning an optimal ranking policy, which is able to
deal with the problem of high reward variance and unbalanced
reward distribution of an SSMDP. Experiments are conducted in
simulation and TaoBao search engine.The results demonstrate that
our algorithm performs much better than the state-of-the-art LTR
methods, with more than 40% and 30% growth of total transaction
amount in the simulation and the real application, respectively.
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1 INTRODUCTION
Over past decades, shopping online has become an important part
of people’s daily life, requiring the E-commerce giants like Ama-
zon, eBay and TaoBao to provide stable and fascinating services for
hundreds of millions of users all over the world. Among these ser-
vices, commodity search is the fundamental infrastructure of these
E-commerce platforms, affording users the opportunities to search
commodities, browse product information and make comparisons.
For example, every day millions of users choose to purchase com-
modities through TaoBao search engine.

In this paper, we focus on the problem of ranking items in large-
scale item search engines, which refers to assigning each item a
score and sorting the items according to their scores. Generally, a
search session between a user and the search engine is a multi-step
ranking problem as follows:

(1) the user inputs a query in the blank of the search engine,
(2) the search engine ranks the items related to the query and

displays the top K items (e.g., K = 10) in a page,
(3) the user makes some operations (e.g., click items, buy some

certain item or just request a new page of the same query)
on the page,

(4) when a new page is requested, the search engine reranks
the rest of the items and display the top K items.

These four steps will repeat until the user buys some items or just
leaves the search session. Empirically, a successful transaction al-
ways involves multiple rounds of the above process.

The operations of users in a search session may indicate their
personal intentions and preference on items. From a statistical view,
these signals can be utilized to learn a ranking function which sat-
isfies the users’ demand. This motivates the marriage of machine
learning and information retrieval, namely the learning to rank
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(LTR) methods [9, 19], which learns a ranking function by clas-
sification or regression from training data. The major paradigms
of supervised LTR methods are pointwise [16, 22], pairwise [4, 5],
and listwise [6]. Recently, online learning techniques such as re-
gret minimization [2, 12, 15] have been introduced into the LTR
domain for directly learning from user signals. Compared with
offline LTR, online LTR avoids the mismatch between manually
curated labels, user intent [32] and the expensive cost of creat-
ing labeled data sets. Although rigorous mathematical models are
adopted for problem formalization [12, 32, 33] and guarantees on
regret bounds are established, most of those works only consider
a one-shot ranking problem, which means that the interaction be-
tween the search engine and each user contains only one round of
ranking-and-feedback activity. However, in practice, a search ses-
sion often contains multiple rounds of interactions and the sequen-
tial correlation between each roundmay be an important factor for
ranking, which has not been well investigated.

In this paper, we consider themulti-step sequential ranking prob-
lem mentioned above and propose a novel reinforcement learning
(RL) algorithm for learning an optimal ranking policy. The major
contributions of this paper are as follows.
• We formally define the concept of search session Markov

decision process (SSMDP) to formulate the multi-step rank-
ing problem, by identifying the state space, reward function
and state transition function.
• We theoretically prove thatmaximizing accumulative rewards

is necessary, indicating that the different ranking steps in a
session are tightly correlated rather than independent.
• We propose a novel algorithm named deterministic policy

gradient with full backup estimation (DPG-FBE), designed
for the problem of high reward variance and unbalanced re-
ward distribution of SSMDP, which could be hardly dealt
with even for existing state-of-the-art RL algorithms.
• We empirically demonstrate that our algorithm performs

much better than online LTR methods, with more than 40%
and 30% growth of total transaction amount in the simula-
tion and the TaoBao application, respectively.

The rest of the paper is organized as follows. Section 2 intro-
duces the background of this work.The problem description, analy-
sis of SSMDP and the proposed algorithm are stated in Section 3, 4, 5,
respectively. The experimental results are shown in Section 6, and
Section 7 concludes the paper finally.

2 BACKGROUND
In this section, we briefly review some key concepts of reinforce-
ment learning and the related work in the online LTR domain. We
start from the reinforcement learning part.

2.1 Reinforcement Learning
Reinforcement learning (RL) [28] is a learning technique that an
agent learns from the interactions between the environment by
trial-and-error. The fundamental mathematical model of reinforce-
ment learning is Markov decision process (MDP).

Definition 2.1 (Markov Decision Process). AMarkov decision pro-
cess is a tupleM = ⟨S,A,R,P,γ ⟩, where S is the state space,A

is the action space of the agent, R : S ×A ×S → R is the reward
function, P : S × A × S → [0, 1] is the state transition function
and γ ∈ [0, 1] is the discount rate.

The objective of an agent in an MDP is to find an optimal policy
whichmaximizes the expected accumulative rewards starting from
any state s (typically under the infinite-horizon discounted setting),
which is defined by V ∗(s) = maxπ Eπ

{∑∞
k=0

γkrt+k
���st = s

}
,

where π : S × A → [0, 1] denotes any policy of the agent, Eπ
stands for expectation under policy π , t is the current time step, k
is a future time step, and rt+k is the immediate reward at the time
step (t + k). This goal is equivalent to finding the optimal state-
action value Q∗(s,a) = maxπ Eπ

{∑∞
k=0

γkrt+k
���st = s,at = a

}
for any state-action pair (s,a). In finite-horizon setting with a time
horizon T , the objective of an agent can be reinterpreted as the
finding the optimal policy which maximizes the expected T -step
discounted return Eπ

{∑T
k=0

γkrt+k
���st = s

}
or undiscounted re-

turn Eπ
{∑T

k=0
rt+k

���st = s
}
1 in the discounted and undiscounted

reward cases, respectively.
An optimal policy can be found by computing the optimal state-

value function V ∗ or the optimal state-action value function Q∗.
Early methods such as dynamic programming [28] and temporal-
difference learning [30] rely on a table to store and compute the
value functions. However, such tabular methods cannot scale up in
large-scale state/action space problems due to the curse of dimen-
sionality. Function approximation is widely used to address the
scalability issues of RL. By using a parameterized function (e.g.,
linear functions [20], neural networks [21, 25]) to represent the
value function or the policy (a.k.a value function approximation
and policy gradient method respectively), the learning problem is
transformed to optimizing the function parameters according to re-
ward signals. In recent years, policy gradient methods [24, 26, 29]
have drawn much attention in the RL domain. The explicit param-
eterized representation of policy enables the learning agent to di-
rectly search in the policy space and avoids the policy degradation
problem of value function approximation.

2.2 Related Work
Early attempt of online LTR can be dated back to the evaluation
of RankSVM in online settings [9]. As claimed by Hofmann et al.,
balancing exploitation and exploration should be a key ability of
online LTR methods [8]. The theoretical results in the online learn-
ing community (typically in the bandit problem domain) [2, 15]
provide rich mathematical tools for online LTR problem formaliza-
tion and algorithms for efficient exploration, which motivates a lot
of online LTR methods. In general, these methods can be divided
into two groups.The first is to learn the best ranking function from
a function space [8, 32]. For example, Yue and Joachims [32] define
a dueling bandit problem in which actions are pairwise compar-
isons between documents and the goal is to learn a parameterized
retrieval function which has sublinear regret performance.The sec-
ond groups of online LTRmethods directly learn the best list under
some model of user interactions [23, 27], which can be treated as
an assumption on how users act to a ranked list. Representative

1The undiscounted return is a special case in discount setting with γ = 1.



Figure 1: A typical search session in TaoBao. A user starts a session from a query, and hasmultiple actions to choose, including
clicking into an item description, buying an item, turning to the next page, and leaving the session.

models include the cascade model [12, 13, 17, 34], the dependent-
click model [10], and the position-based model [14]. Since no sin-
gle model can entirely capture the behavior of all users, Zoghi et al.
[33] recently propose a stochastic click learning framework for on-
line LTR in a broad class of click models.

Our work in this paper is more similar to the first group of on-
line LTR methods which learn ranking functions. However, while
most of previous works consider a one-shot ranking problem, we
focus on learning a ranking policy in a multi-step ranking prob-
lem, which contains multiple rounds of interactions and typically
occurs in E-commerce scenarios.

3 PROBLEM FORMULATION
As we mentioned in previous sections, in E-commerce platforms
such as TaoBao and TMall, ranking items given a query is a multi-
step decision-making problem, where the search engine should
take a ranking action whenever an item page is requested by a
user. Figure (1) shows a typical search session between the search
engine and a mobile app user in TaoBao. In the beginning, the user
inputs a query “Cola” into the blank of the search engine and clicks
the “Search” button. Then the search engine takes a ranking ac-
tion and shows the top items related to “Cola” in page 1. The user
browses the displayed items and clicks some of them for the de-
tails. When no items interest the user or the user wants to check
more items for comparisons, the user requests a new item page.
The search engine again takes a ranking action and displays page
2. After a certain number of such ranking rounds, the search ses-
sion will finally end when the user purchases items or just leaves
the search session.

3.1 Search Session Modeling
Before we formulate the multi-step ranking problem as an MDP,
we define some concepts to formalize the contextual information
and user behaviours in a search session, which are the basis for
defining the state and state transitions of our MDP.

Definition 3.1 (TopK List). For an item setD, a ranking function
f , and a positive integer K (1 ≤ K ≤ |D|), the top K list LK (D, f )
is an ordered item list (I1,I2, ...,IK ) which contains the top K
items when applying the rank function f to the item setD, where
Ik (1 ≤ k ≤ K ) is the item in position k and for any k ′ ≥ k , it is
the case that f (Ik ) > f (Ik ′).

Definition 3.2 (Item Page). For each step t (t ≥ 1) during a ses-
sion, the item page pt is the top K list LK (Dt−1,at−1) resulted by
applying the ranking action at−1 of the search engine to the set of
unranked itemsDt−1 in the last decision step (t−1). For the initial
step t = 0,D0 = D. For any decision step t ≥ 1,Dt = Dt−1 \pt .

Definition 3.3 (Item Page History). In a search session, let q be
the input query. For the initial decision step t = 0, the initial item
page history h0 = q. For each later decision step t ≥ 1, the item
page history up to t is ht = ht−1 ∪ {pt }, where ht−1 is the item
page history up to the step (t − 1) and pt is the item page of step t .

The item page history ht contains all information the user ob-
serves at the decision step t (t ≥ 0). Since the item set D is fi-
nite, there are at most ⌈ |D |K ⌉ item pages, and correspondingly at
most ⌈ |D |K ⌉ decision steps in a search session. In TaoBao and TMall,
users may choose to purchase items or just leave at different steps
of a session. If we treat all possible users as an environment which
samples user behaviors, this would mean that after observing any
item page history, the environment may terminate a search session
with a certain probability of transaction conversion or abandon-
ment. We formally define such two types of probability as follows.

Definition 3.4 (Conversion Probability). For any item page his-
tory ht (t > 0) in a search session, let B(ht ) denote the conversion
event that a user purchases an item after observing ht . The conver-
sion probability of ht , which is denoted by b(ht ), is the averaged
probability that B(ht ) occurs when ht takes place.

Definition 3.5 (Abandon Probability). For any item page history
ht (t > 0) in a search session, let L(ht ) denote the abandon event
that a user leaves the search session after observing ht . The aban-
don probability of ht , which is denoted by l(ht ), is the averaged
probability that L(ht ) occurs when ht takes place.

Since ht is the direct result of the agent’s action at−1 in the
last item page history ht−1, the conversion probability b(ht ) and
the abandon probability l(ht ) define how the state of the environ-
ment (i.e., the user population) will change after at−1 is taken in
ht−1: (1) terminating the search session by purchasing an item in
ht with probability b(ht ); (2) leaving the search session from ht
with probability l(ht ); (3) continuing the search session from ht
with probability (1 − b(ht ) − l(ht )). For convenience, we also de-
fine the continuing probability of an item page history.



Definition 3.6 (Continuing Probability). For any item page his-
tory ht (t ≥ 0) in a search session, let C(ht ) denote the continua-
tion event that a user continues searching after observing ht . The
continuing probability of ht , which is denoted by c(ht ), is the av-
eraged probability that C(ht ) occurs when ht takes place.

Obviously, for any item page history h, it holds that c(h) = 1 −
b(h) − l(h). Specially, the continuation event of the initial item
page history h0 which only contains the query q is a sure event
(i.e., c(h0) = 1) as neither a conversion event nor a abandon event
can occur before the first item page is displayed.

3.2 Search Session MDP
Now we are ready to define the instantiated Markov decision pro-
cess (MDP) for the multi-step ranking problem in a search session,
which we call a search session MDP (SSMDP).

Definition 3.7 (Search Session MDP). Let q be a query, D be the
set of items related to q, andK (K > 0) be the number of items that
can be displayed in a page, the search session MDP (SSMDP) with
respect to q, D and K is a tupleM = ⟨T ,H ,S,A,R,P⟩, where

* T = ⌈ |D |K ⌉ is the maximal decision step of a search session,
* H =

∪T
t=0Ht is the set of all possible item page histories,

Ht is the set of all item page histories up to t (0 ≤ t ≤ T ).
* S = HC

∪HB
∪HL is the state space,HC = {C(ht )|∀ht ∈

Ht , 0 ≤ t < T } is the nonterminal state set that contains all
continuation events, HB = {B(ht )|∀ht ∈ Ht , 0 < t ≤ T }
and HL = {L(ht )|∀ht ∈ Ht , 0 < t ≤ T } are two terminal
state sets which contain all conversion events and all aban-
don events, respectively.

* A is the action space which contains all possible ranking
functions of the search engine.

* R : HC × A × S → R is the reward function.
* P : HC ×A×S → [0, 1] is the state transition function. For
any step t (0 ≤ t < T ), any item page history ht ∈ Ht , any
action a ∈ A, let ht+1 = (ht ,LK (Dt ,a)). The transition
probability from the nonterminal state C(ht ) to any state
s ′ ∈ S after taking action a is

P(C(ht ),a, s ′) =



b(ht+1) if s ′ = B(ht+1),

l(ht+1) if s ′ = L(ht+1),

c(ht+1) if s ′ = C(ht+1),

0 otherwise.

(1)

In an SSMDP, the agent is the search engine and the environ-
ment is the population of all possible users. The states of the en-
vironment are indication of user status in the corresponding item
page histories (i.e., contiuation, abandonment, or transaction con-
version). The action space A can be set differently (e.g., discrete
or continuous) according to specific ranking tasks. The state tran-
sition function P is directly based on the conversion probability
and abandon probability. The reward function R highly depends
on the goal of a specific task, we will discuss our reward setting in
Section 4.2.

4 ANALYSIS OF SSMDP
Before we apply the search session MDP (SSMDP) model in prac-
tice, some details need to be further clarified. In this section, we

first identify the Markov property of the states in an SSMDP to
show that SSMDP is well defined. Then we provide a reward func-
tion setting for SSMDP, based on which we perform an analysis
on the reward discount rate and show the necessity for a search
engine agent to maximize long-time accumulative rewards.

4.1 Markov Property
The Markov property means that a state is able to summarize past
sensations compactly in such a way that all relevant information
is retained [28]. Formally, the Markov property refers to that for
any state-action sequence s0,a0, s1,a1, s2, ..., st−1,at−1, st experi-
enced in an MDP, it holds that

Pr(st |s0,a0, s1,a1, ..., st−1,at−1) = Pr(st |st−1,at−1). (2)

That is to say, the occurring of the current state st is only con-
ditional on the last state-action pair (st−1,at−1) rather than the
whole sequence. Now we show that the states of a search session
MDP (SSMDP) also have the Markov property.

Proposition 4.1. For the search session MDPM = ⟨T ,H ,S,
A,R,P⟩ defined in Definition 3.7, any state s ∈ S is Markovian.

Proof. We only need to prove that for any step t (0 ≤ t ≤ T )
and any possible state-action sequence s0,a0, s1,a1, ..., st−1,at−1, st
with respect to t , it holds that

Pr(st |s0,a0, s1,a1, ..., st−1,at−1) = Pr(st |st−1,at−1).

Note that all states except st in the sequence s0,a0, s1,a1, ..., st−1,
at−1, st must be non-terminal states. According to the state defini-
tion, for any step t ′ (0 < t ′ < t ), there must be an item page history
ht ′ corresponding to the state st ′ such that st ′ = C(h(t ′)). So the
state-action sequence can be rewritten as C(h0),a0,C(h1),a1, ...,
C(ht−1),at−1, st . For any step t ′ (0 < t ′ < t ), it holds that

ht ′ = (ht ′−1,LK (Dt ′−1,at ′−1)),

where LK (Dt ′−1,at ′−1) is the top K list (i.e., item page) with re-
spect to the unranked item set Dt ′−1 and ranking action at ′−1 in
step (t ′ − 1). Given ht ′−1, the unranked item set Dt ′−1 is deter-
ministic. Thus, ht ′ is the necessary and unique result of the state-
action pair (C(ht ′−1),at ′−1).Therefore, the event (C(ht ′−1),at ′−1)
can be equivalently represented by the eventht ′ , and the following
derivation can be conducted:

Pr(st |s0,a0, s1,a1, ..., st−1,at−1)
=Pr(st |C(h0),a0,C(h1),a1, ...,C(ht−1),at−1)
=Pr(st |h1,h2, ...,ht−1,C(ht−1),at−1)
=Pr(st |ht−1,C(ht−1),at−1)
=Pr(st |C(ht−1),at−1)
=Pr(st |st−1,at−1).

The third step of the derivation holds because for any step t ′ (0 <
t ′ < t ), ht ′−1 is contained in ht ′ . Similarly, the fourth step holds
because C(ht−1) contains the occurrence of ht−1. □

4.2 Reward Function
In a search sessionMDPM = ⟨T ,H ,S,A,R,P⟩, the reward func-
tion R of is a quantitative evaluation of the action performance in



each state. Specifically, for any nonterminal state s ∈ HC , any ac-
tion a ∈ A, and any other state s ′ ∈ S, R(s,a, s ′) is the expected
value of the immediate rewards that numerically characterize the
user feedback when action a is taken in s and the state is changed
to s ′. Therefore, we need to translate user feedback to numeric re-
ward values that a learning algorithm can understand.

In the online LTR domain, user clicks are commonly adopted as
a reward metric [10, 14, 33] to guide learning algorithms. How-
ever, in E-commerce scenarios, successful transactions between
users (who search items) and sellers (whose items are ranked by
the search engine) are more important than user clicks. Thus, our
reward setting is designed to encourage more successful transac-
tions. For any decision step t (0 ≤ t < T ), any item page history
ht ∈ Ht , and any action a ∈ A, let ht+1 = (ht ,LK (Dt ,a)). Re-
call that after observing the item page history ht+1, a user will
purchase an itemwith a conversion probabilityb(ht+1). Although
different users may choose different items to buy, from a statisti-
cal view, the deal prices of the transactions occurring inht+1 must
follow an underlying distribution. We usem(ht+1) to denote the
expected deal price of ht+1. Then for the nonterminal state C(ht )
and any state s ′ ∈ S, the reward R(C(ht ),a, s ′) is set as follows:

R(C(ht ),a, s ′) =

m(ht+1) if s ′ = B(ht+1),

0 otherwise,
(3)

where B(ht+1) is the terminal state which represents the conver-
sion event of ht+1. The agent will receive a positive reward from
the environment only when its ranking action leads to a success-
ful transaction. In all other cases, the reward is zero. It should be
noted that the expected deal price of any item page history is most
probably unknown beforehand. In practice, the actual deal price of
a transaction can be directly used as the reward signal.

4.3 Discount Rate
Thediscount rateγ is an important parameter of anMDPwhich de-
fines the importance of future rewards in the objective of the agent
(defined in Section 2.1). For the search session MDP (SSMDP) de-
fined in this paper, the choice of the discount rate γ brings out a
fundamental question: “Is it necessary for the search engine agent
to consider future rewards when making decisions?” We will find
out the answer and determine an appropriate value of the discount
rate by analyzing how the objective of maximizing long-time ac-
cumulative rewards is related to the goal of improving the search
engine’s economic performance.

LetM = ⟨T ,H ,S,A,R,P⟩ be a search session MDP with re-
spect to a query q, an item set D and an integer K (K > 0). Given
a fixed deterministic policy π : S → A of the agent2, denote the
item page history occurring at step t (0 ≤ t ≤ T ) under π by hπt .
We enumerate all possible states that can be visited in a search ses-
sion under π in Figure 2. For better illustration, we show all item
page histories (marked in red) in the figure. Note that they are not
the states of the SSMDPM. Next, we will rewrite C(hπt ), c(hπt ),
b(hπt ), andm(hπt ) as Cπ

t , cπt , bπt , andmπ
t for simplicity.

2More accurately, the policy π is a mapping from the nonterminal state set HC to
the action space A. Our conclusion in this paper also holds for stochastic policies,
but we ommit the discussion due to space limitation.

…

B(hπ

1
) B(hπ

2
)

L(hπ

2
)L(hπ

1
)

B(hπ

T−1
)

L(hπ

T−1
) L(hπ

T
)

B(hπ

T
)

C(hπ

1
) C(hπ

2
) C(hπ

T−1
)h

π

1 h
π

2 h
π

T−1
h
π

T

b(hπ

1
) b(hπ

2
) b(hπ

T−1
) b(hπ

T
)

l(hπ

T
)l(hπ

T−1
)l(hπ

2
)l(hπ

1
)

C(hπ

0
)

Figure 2: All states that can be visited under policy π . The
black circles are nonterminal states and the black squares
are terminal states. The red circles are item page histories.
The solid black arrow starting from each nonterminal state
represents the execution of the policy π . The dotted arrows
from each item page history are state transitions, with the
corresponding transition probabilities marked in blue.

Without loss of generality, we assume the discount rate of the
SSMDPM is γ (0 ≤ γ ≤ 1). Denote the state value function (i.e.,
expected accumulative rewards) under γ by V π

γ . For each step t

(0 ≤ t < T ), the state value of the nonterminal state Cπ
t is

V π
γ (Cπ

t ) = E
π
{ T−t∑
k=1

γk−1rt+k
���Cπ
t
}

= Eπ
{
rt+1 + γrt+2 + · · ·+ γT−t−1rT

���Cπ
t
}
,

(4)

where for any k (1 ≤ k ≤ T − t ), rt+k is the immediate reward re-
ceived at the future step (t +k) in the item page history hπt+k . Ac-
cording to the reward function in Equation (3), the expected value
of the immediate reward rt+k under π is

Eπ
{
rt+k

}
= bπt+km

π
t+k , (5)

where mπ
t+k = m(hπt+k ) is the expected deal price of the item

page history hπt+k . However, since V π
γ (Cπ

t ) is the expected dis-
counted accumulative rewards on condition of the state Cπ

t , the
probability that the item page history hπt+k is reached whenCπ

t is
visited should be taken into account. Denote the reaching proba-
bility from Cπ

t to hπt+k by Pr(Cπ
t → hπt+k ), it can be computed as

follows according to the state transition function in Equation (1):

Pr(Cπ
t → hπt+k ) =


1.0 k = 1,

Πk−1
j=1c

π
t+j 1 < k ≤ T − t .

(6)

The reaching probability from Cπ
t to hπt+1 is 1 since hπt+1 is the

directly result of the state action pair (Cπ
t ,π(C

π
t )). For other fu-

ture item page histories, the reaching probability is the product of
all continuing probabilities along the path from Cπ

t+1 to Cπ
t+k−1.

By taking Equations (5) and (6) into Equation (4), V π
γ (Cπ

t ) can be
further computed as follows:

V π
γ (Cπ

t ) = E
π
{
rt+1

���Cπ
t
}
+ γEπ

{
rt+2

���Cπ
t
}
+ · · ·

+ γk−1Eπ
{
rt+k

���Cπ
t
}
+ · · ·+ γT−t−1Eπ

{
rT

���Cπ
t
}

=
T−t∑
k=1

γk−1Pr(Cπ
t → hπt+k )b

π
t+km

π
t+k

= bπt+1m
π
t+1 +

T−t∑
k=2

γk−1
((
Πk−1
j=1c

π
t+j

)
bπt+km

π
t+k

)
.

(7)



With the conversion probability and the expected deal price of each
item page history in Figure 2, we can also derive the expected gross
merchandise volume (GMV) lead by the search engine agent in a
search session under the policy π as follows:

Eπgmv = bπ1m
π
1 + cπ1 b

π
2m

π
2 + · · ·+

(
ΠT
k=1c

π
k

)
bπTm

π
T

= bπ1m
π
1 +

T∑
k=2

(
Πk−1
j=1c

π
j

)
bπkm

π
k .

(8)

By comparing Equations (7) and (8), it can be easily found that
Eπдmv = V π

γ (Cπ
0 ) when the discount rate γ = 1. That is to say,

when γ = 1, maximizing the expected accumulative rewards di-
rectly leads to the maximization of the expected GMV. However,
when γ < 1, maximizing the value functionV π

γ cannot necessarily
maximize Eπдmv since the latter is an upper bound of V π

γ (Cπ
0 ).

Proposition 4.2. LetM = ⟨T ,H ,S,A,R,P⟩ be a search ses-
sion MDP. For any deterministic policy π : S → A and any discount
rate γ (0 ≤ γ ≤ 1), it is the case that V π

γ (C(h0)) ≤ Eπдmv , where
V π
γ is state value function defined in Equation (4), C(h0) is the ini-
tial nonterminal state of a search session, Eπдmv is the expected gross
merchandise volume (GMV) of π defined in Equation (8). Only when
γ = 1, we have V π

γ (C(h0)) = E
π
дmv .

Proof. The proof is trivial since the difference between Eπдmv

and V π
γ (C(h0)), namely ∑Tk=2

(1 − γk−1)
(
Πk−1
j=1c

π
j

)
bπkm

π
k , is al-

ways positive when γ < 1. □

Now we can give the answer to the question proposed in the
beginning of this section: considering future rewards in a search
session MDP is necessary since maximizing the undiscounted ex-
pected accumulative rewards can optimize the performance of the
search engine in the aspect of GMV. The sequential nature of our
multi-step ranking problem requires the ranking decisions at dif-
ferent steps to be optimized integratedly rather than independently.

5 ALGORITHM
In this section, we propose a policy gradient algorithm for learn-
ing an optimal ranking policy in a search session MDP (SSMDP).
We resort to the policy gradient method since directly optimizing
a parameterized policy function addresses both the policy repre-
sentation issue and the large-scale action space issue of an SSMDP.
Now we briefly review the policy gradient method in the context
of SSMDP. LetM = ⟨T ,H ,S,A,R,P⟩ be an SSMDP, πθ be the
policy function with the parameter θ . The objective of the agent is
to find an optimal parameter which maximizes the expectation of
the T -step returns along all possible trajectories

J(θ) = Eτ∼ρθ
{
R(τ )

}
= Eτ∼ρθ

{ T−1∑
t=0

rt
}
, (9)

where τ is a trajectory like s0,a0, r0, s1,a1, ..., sT−1,aT−1, rT−1, sT
and follows the trajectory distribution ρθ under the policy parame-
ter θ , R(τ ) = ∑T−1t=0 rt is theT -step return of the trajectory τ . Note
that if the terminal state of a trajectory is reached in less than T
steps, the sum of the rewards will be truncated in that state. The

gradient of the target J(θ) with respect to θ is

∇θ J(θ) = Eτ∼ρθ
{ T−1∑
t=0

∇θ logπθ (st ,at )RTt (τ )
}
, (10)

where RTt (τ ) =
∑T−1
t ′=t rt ′ is the sum of rewards from step t to the

terminal step T in the trajectory τ . This gradient leads to the well-
known REINFORCE algorithm [31]. The policy gradient theorem
proposed by Sutton et al. [29] provides a framework which gener-
alizes the REINFORCE algorithm. In general, the gradient of J(θ)
can be written as

∇θ J(θ) = Eτ∼ρθ
{ T∑
t=0

∇θ logπθ (st ,at )Qπθ (st ,at )
}
,

where Qπθ is the state-action value function under the policy πθ .
If πθ is deterministic, the gradient of J(θ) can be rewritten as

∇θ J(θ) = Eτ∼ρθ
{ T−1∑
t=0

∇θπθ (st )∇aQπθ (st ,a)
���a=πθ (st )

}
.

Silver et al. [26] show that the deterministic policy gradient is
the limiting case of the stochastic policy gradient as policy vari-
ance tends to zero. The value function Qπθ can be estimated by
temporal-difference learning (e.g., actor-critic methods [28]) aided
by a function approximator Qw with the parameterw which min-
imizes the mean squared error MSE(w) = | |Qw −Qπθ | |2.

5.1 The DPG-FBE Algorithm
Instead of using stochastic policy gradient algorithms, we rely on
the deterministic policy gradient (DPG) algorithm [26] to learn an
optimal ranking policy in an SSMDP since from a practical view-
point, computing the stochastic policy gradient may require more
samples, especially if the action space has many dimensions. How-
ever, we have to overcome the difficulty in estimating the value
function Qπθ , which is caused by the high variance and unbal-
anced distribution of the immediate rewards in each state. As in-
dicated by Equation (3), the immediate reward of any state-action
pair (s,a) is zero or the expected deal pricem(h) of the item his-
tory page h resulted by (s,a). Firstly, the reward variance is high
because the deal pricem(h) normally varies over a wide range. Sec-
ondly, the immediate reward distribution of (s,a) is unbalanced
because the conversion events lead by (s,a) occur much less fre-
quently than the two other cases (i.e., abandon and continuation
events) which produce zero rewards. Note that the same problem
also exists for the T -step returns of the trajectories in an SSMDP
since in any possible trajectory, only the reward of the last step
may be nonzero. Therefore, estimating Qπθ by Monte Carlo eval-
uation or temporal-difference learning may cause inaccurate up-
date of the value function parameters and further influence the
optimization of the policy parameter.

Our way for solving the above problem is similar to the model-
based reinforcement learning approaches [3, 11], which maintain
an approximate model of the environment to help with perform-
ing reliable updates of value functions. According to the Bellman
Equation [28], the state-action value of any state-action pair (s,a)



under any policy π is

Qπθ (s,a) =
∑
s ′∈S

P(s,a, s ′)
(
R(s,a, s ′) +max

a′
Qπθ (s ′,a′)

)
, (11)

The right-hand side of Equation (11) can be denoted byTQπθ (s,a),
where T is the Bellman operator with respect to the policy πθ .
Let h′ be the next item page history resulted by (s,a). Only the
statesC(h′), B(h′), and L(h′) can be transferred to from (s,a)with
nonzero probability. Among these three states, only B(h′) involves
a nonzero immediate reward andC(h′) involves a nonzeroQ-value.
So the above equation can be simplified to

Qπθ (s,a) = b(h′)m(h′) + c(h′)max
a′

Qπθ (C(h′),a′) , (12)

where b(h′), c(h′), andm(h′) are the conversion probability, con-
tinuing probability and expected deal price of h′, respectively. Nor-
mally, the value function Qπθ can be approximated by a param-
eterized function Qw with an objective of minimizing the mean
squared error (MSE)

MSE(w) = | |Qw −Qπθ | |2 =
∑
s ∈S

∑
a∈A

(
Qw (s,a) −Qπθ (s,a)

)2
.

The derivative of MSE(w) with respect to the parameterw is

∇wMSE(w) =
∑
s ∈S

∑
a∈A

(
Qπθ (s,a) −Qw (s,a)

)
∇wQw (s,a).

However, since Qπθ (s,a) is unknown, we cannot get the accurate
value of∇wMSE(w). Oneway for solving this problem is to replace
Qπθ with TQw and approximately compute ∇wMSE(w) by∑
s∈S

∑
a∈A

(
b(h′)m(h′) + c(h′)max

a′
Qw (s′, a′) −Qw (s, a)

)
∇wQw (s, a),

where s ′ = C(h′) is the state of continuation event of h′. Every
time a state-action pair (s,a) as well as its next item page history
h′ is observed,w can be updated in a full backup manner:

∆w ← αw∇wQw (s,a)
(
b(h′)m(h′)+c(h′)Qw (s ′,a′)−Qw (s,a)

)
,

where αw is a learning rate and a′ = πθ (s
′). With this full backup

updatingmethod, the sampling errors caused by immediate rewards
or returns can be avoided. Furthermore, the computational cost of
full backups in our problem is almost equal to that of one-step sam-
ple backups (e.g., Q-learning [30]).

Our policy gradient algorithm is based on the deterministic pol-
icy gradient theorem [26] and the full backup estimation of the Q-
value functions. Unlike previous works which entirely model the
reward and state transition functions [3, 11], we only need to build
the conversion probability model b(·), the continuing probability
model c(·), and the expected deal price modelm(·) of the item page
histories in an SSMDP. These models can be trained using online
or offline data by any possible statistical learning method. We call
our algorithm Deterministic Policy Gradient with Full Backup Es-
timation (DPG-FBE) and show its details in Algorithm 1.

As shown in this table, the parameters θ andw will be updated
after any search session between the search engine agent and users.
Exploration (at line 3) can be done by, but not limited to, ϵ-greedy
(in discrete action case) or adding random noise to the output of
πθ (in continuous action case). Although we have no assumptions
on the specific models used for learning the actor πθ and the critic
Qw in Algorithm 1, nonlinear models such as neural networks are

Algorithm 1: Deterministic Policy Gradient with Full Backup
Estimation (DPG-FBE)
Input: Learning rate αθ and αw , pretrained conversion probability

model b , continuing probability model c , and expected deal
price modelm of item page histories

1 Initialize the actor πθ and the critic Qw with parameter θ and w ;
2 foreach search session do
3 Use πθ to sample a ranking action at each step with exploration;
4 Get the trajectory τ of the session with its final step index t ;
5 ∆w ← 0, ∆θ ← 0;
6 for k = 0, 1, 2, ..., t − 1 do
7 (sk , ak , rk , sk+1)← the sample tuple at step k ;
8 hk+1 ← the item page history of sk ;
9 if sk+1 = B(hk+1) then

10 Update the models b , c , andm with the samples
(hk+1, 1), (hk+1, 0), and (hk+1, rk ), respectively;

11 else
12 Update the models b and c with the samples (hk+1, 0)

and (hk+1, 1), respectively;
13 s′ ← C(hk+1), a′ ← πθ (s′);
14 pk+1 ← b(hk+1)m(hk+1);
15 δk ← pk+1 + c(hk+1)Qw (s′, a′) −Qw (sk , ak );
16 ∆w ← ∆w + αwδk∇wQw (sk , ak );
17 ∆θ ← ∆θ + αθ∇θ πθ (sk )∇aQw (sk , ak );
18 w ← w +∆w/t, θ ← θ +∆θ/t ;

preferred due to the large state/action space of an SSMDP. To solve
the convergence problem and ensure a stable learning process, a
replay buffer and target updates are also suggested [18, 21].

6 EXPERIMENTS
In this section, we conduct two groups of experiments: a simulated
experiment in which we construct an online shopping simulator
and test our algorithm DPG-FBE as well as some state-of-the-art
online learning to rank (LTR) algorithms, and a real application
in which we apply our algorithm in TaoBao, one of the largest E-
commerce platforms in the world.

6.1 Simulation
The online shopping simulator is constructed based on the statis-
tical information of items and user behaviors in TaoBao. An item
is represented by a n-dim (n > 0) feature vector x = (x1, ...,xn)

⊤

and a ranking action of the search engine is a n-dim weight vec-
tor µ = (µ1, ..., µn)

⊤. The ranking score of the item x under the
ranking action µ is the inner product x⊤µ of the two vectors. We
choose 20 important features related to the item category of dress
(e.g., price and quality) and generate an item set D by sampling
1000 items from a distribution approximated with all the items
of the dress category. Each page contains 10 items so that there
are at most 100 ranking rounds in a search session. In each rank-
ing round, the user operates on the current item page (such as
clicks, abandonment, and purchase) are simulated by a user be-
havior model, which is constructed from the user behavior data of
the dress items in TaoBao. The simulator outputs the probability of
each possible user operation given the recent item pages examined
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Figure 3: The learning performance of the DDPG-FBE algo-
rithm in the simulation experiment

by the user. A search session will end when the user purchases one
item or leaves.

Our implementation of the DPG-FBE algorithm is a deep RL ver-
sion (DDPG-FBE) which adopts deep neural networks (DNN) as
the policy and value function approximators (i.e., actor and critic).
We also implement the deep DPG algorithm (DDPG) [18].The state
of environment is represented by a 180-dim feature vector extracted
from the last 4 item pages of the current search session. The ac-
tor and critic networks of the two algorithms have two full con-
nected hidden layers with 200 and 100 units, respectively. We
adopt relu and tanh as the activation functions for the hidden lay-
ers and the output layers of all networks. The network parameters
are optimized by Adam with a learning rate of 10−5 for the ac-
tor and 10−4 for the critic. The parameter τ for the soft target up-
dates [18] is set to 10−3. We test the performance of the two algo-
rithms under different settings of the discount rate γ . Five online
LTR algorithms, point-wise LTR, BatchRank [33], CascadeUCB1
[12], CascadeKL-UCB [12], and RankedExp3 [23] are implemented
for comparison. Like the two RL algorithms, the point-wise LTR
method implemented in our simulation also learns a parameter-
ized function which outputs a ranking weight vector in each state
of a search session. We choose DNN as the parameterized function
and use the logistic regression algorithm to train the model, with
an objective function that approximates the goal of maximizing
GMV. The four other online LTR algorithms are regret minimiza-
tion algorithms which are based on variants of the bandit problem
model.The test of each algorithm contains 100, 000 search sessions
and the transaction amount of each session is recorded. Results are
averaged over 50 runs and are shown in Figures 3, 4, and 5.

Now let us first examine the figure of DDPG-FBE. It can be found
that the performance of DDPG-FBE is improved as the discount
rate γ increases. The learning curve corresponding to the setting
γ = 0 (the green one) is far below other curves in Fig. 3, which
indicates the importance of delay rewards. The theoretical result
in Section 4 is empirically verified since the DDPG-FBE algorithm
achieves the best performance when γ = 1, with 2% growth of
transaction amount per session compared to the second best per-
formance. Note that in E-commerce scenarios, even 1% growth is
considerable. The DDPG algorithm also performs the best when
γ = 1, but it fails to learn as well as the DDPG-FBE algorithm.
As shown in Fig. 4, all the learning curves of DDPG are under
the value 40. The point-wise LTR method also outputs a ranking
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Figure 4: The learning performance of the DDPG algorithm
in the simulation experiment

5 10 15 20

Search Session (x 5000)

10

15

20

25

30

35

T
ra

n
sa

ct
io

n
A

m
o
u

n
t

P
e
r

S
e
ss

io
n

PointWise LTR

BatchRank

CascadeUCB1

CascadeKL-UCB

RankedExp3

Figure 5: The learning performance of five online LTR algo-
rithms in the simulation experiment

weight vector while the other four online LTR algorithms can di-
rectly output a ranked item list according to their own ranking
mechanisms. However, as we can observe in Fig. 5, the transaction
amount lead by each of the algorithms is much smaller than that
lead by DDPG-FBE and DDPG.This is not surprising since none of
these algorithms are designed for the multi-step ranking problem
where the ranking decisions at different steps should be optimized
integratedly.

6.2 Application
We apply our algorithm in TaoBao search engine for providing on-
line realtime ranking service. The searching task in TaoBao is char-
acterized by high concurrency and large data volume. In each sec-
ond, the TaoBao search engine should respond to hundreds of thou-
sands of users’ requests in concurrent search sessions and simul-
taneously deal with the data produced from user behaviours. On
sale promotion days such as the TMall Double 11 Global Shopping
Festival3, both the volume and producing rate of the data would be
multiple times larger than the daily values.

In order to satisfy the requirement of high concurrency and
the ability of processing massive data in TaoBao, we design a data
stream-driven RL ranking system for implementing our algorithm
DPG-FBE. As shown in Figure 6, this system contains five major
components: a query planner, a ranker, a log center, a reinforce-
ment learning component, and an online KV system. The work
3This refers to November the 11-th of each year. On that day, most sellers in TaoBao
and TMall carry out sale promotion and billions of people in the world join in the
online shopping festival
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Figure 6: RL ranking system of TaoBao search engine

flow of our system mainly consists of two loops. The first one is an
online acting loop (in the right bottom of Figure 6), in which the in-
teractions between the search engine and TaoBao users take place.
The second one is a learning loop (on the left of the online act-
ing loop in Figure 6) where the training process happens. The two
working loops are connected through the log center and the online
KV system, which are used for collecting user logs and storing the
ranking policy model, respectively. In the first loop, every time a
user requests an item page, the query planner will extract the state
feature, get the parameters of the ranking policy model from the
online KV system, and compute a ranking action for the current
state (with exploration).The ranker will apply the computed action
to the unranked items and display the top K items (e.g., K = 10)
in an item page, where the user will give feedback. In the mean-
while, the log data produced in the online acting loop is injected
into the learning loop for constructing training data source. In the
log center, the user logs collected from different search sessions
are transformed to training samples like (s,a, r , s ′), which are out-
put continuously in the form of data stream and utilized by our
algorithm to update the policy parameters in the learning compo-
nent. Whenever the policy model is updated, it will be rewritten to
the online KV system. Note that the two working loops in our sys-
temwork in parallel but asynchronously, because the user log data
generated in any search session cannot be utilized immediately.

The linear ranking mode used in our simulation is also adopted
in this TaoBao application.The ranking action of the search engine
is a 27-dim weight vector. The state of the environment is repre-
sented by a 90-dim feature vector, which contains the item page
features, user features and query features of the current search
session. We add user and query information to the state feature
since the ranking service in TaoBao is for any type of users and
there is no limitation on the input queries. We still adopt neural
networks as the policy and value function approximators. How-
ever, to guarantee the online realtime performance and quick pro-
cessing of the training data, the actor and critic networks have
much smaller scale than those used in our simulation, with only
80 and 64 units in each of their two fully connected hidden layers,
respectively. We implement DDPG and DDPG-FBE algorithms in
our system and conduct one-week A/B test to compare the two

algorithms. In each day of the test, the DDPG-FBE algorithm can
lead to 2.7% ∼ 4.3%more transaction amount than the DDPG algo-
rithm 4.TheDDPG-FBE algorithmwas also used for online ranking
service on the TMall Double 11 Global Shopping Festival of 2016.
Compared with the baseline algorithm (an LTR algorithm trained
offline), our algorithm achieved more than 30% growth in GMV at
the end of that day.

7 CONCLUSIONS
In this paper, we propose to use reinforcement learning (RL) for
ranking control in E-commerce searching scenarios. Our contri-
butions are as follows. Firstly, we formally define the concept of
search session Markov decision process (SSMDP) to formulate the
multi-step ranking problem in E-commerce searching scenarios.
Secondly, we analyze the property of SSMDP and theoretically
prove the necessity of maximizing accumulative rewards. Lastly,
we propose a novel policy gradient algorithm for learning an op-
timal ranking policy in an SSMDP. Experimental results in simu-
lation and TaoBao search engine show that our algorithm perform
much better than the state-of-the-art LTR methods in the multi-
step ranking problem, with more than 40% and 30% growth in
gross merchandise volume, respectively. In the future, we will also
try to handle more challenges, such as the dynamic environment
[7], arised in the recommendation system applications.
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