

Lecture 15: Learning 3

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Learning

Decision tree learning Neural networks

Question: why we can learn?

Classification

what can be observed:

on examples/training data:

$$\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$$
 $y_i = f(\boldsymbol{x}_i)$

e.g. training error

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m I(h(\boldsymbol{x}_i) \neq y_i)$$

what is expected:

over the whole distribution: generalization error

$$\epsilon_g = \mathbb{E}_x[I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))]$$
$$= \int_{\mathcal{X}} p(x)I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))]dx$$

Regression

what can be observed:

on examples/training data:

$$\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$$
 $y_i = f(\boldsymbol{x}_i)$

e.g. training mean square error/MSE

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2$$

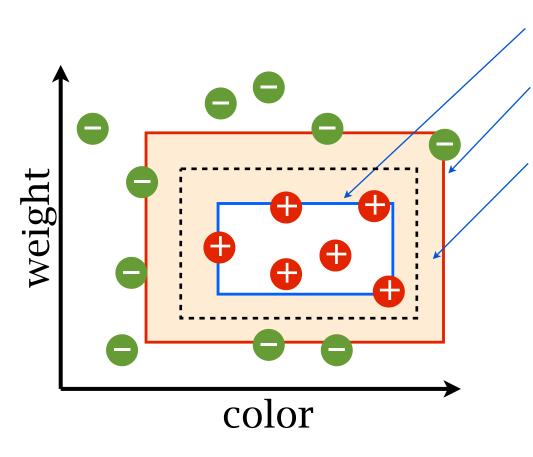
what is expected:

over the whole distribution: generalization MSE

$$\epsilon_g = \mathbb{E}_x (h(\boldsymbol{x}) \neq f(\boldsymbol{x}))^2$$
$$= \int_{\mathcal{X}} p(x) (h(\boldsymbol{x}) - f(\boldsymbol{x}))^2 dx$$

The version space algorithm

an abstract view of learning algorithms



S: most specific hypothesis

G: most general hypothesis

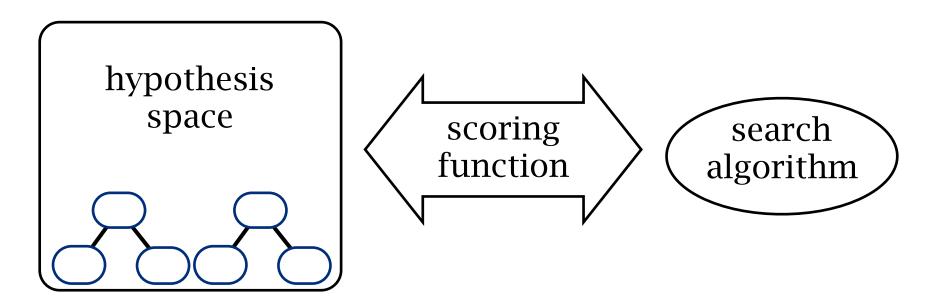
version space: consistent hypotheses [Mitchell, 1997]

remove the hypothesis that are inconsistent with the data, select a hypothesis according to learner's bias

The version space algorithm

an abstract view of learning algorithms

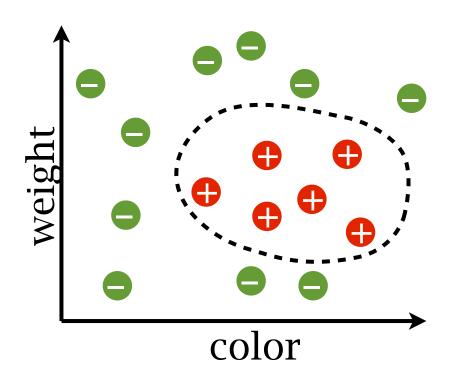
three components of a learning algorithm



Theories

The i.i.d. assumption:

all training examples and future (test) examples are drawn *independently* from an *identical distribution*, the label is assigned by a *fixed ground-truth function*



unknown but fixed distribution D

Suppose we have 100 training examples but there can be different training sets

Start from the expected training MSE:

$$E_D[\epsilon_t] = E_D\left[\frac{1}{m} \sum_{i=1}^m (h(\boldsymbol{x}_i) - y_i)^2\right] = \frac{1}{m} \sum_{i=1}^m E_D\left[(h(\boldsymbol{x}_i) - y_i)^2\right]$$

(assume no noise)

$$E_{D} \left[(h(\boldsymbol{x}) - f(\boldsymbol{x}))^{2} \right]$$

$$= E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})] + E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$

$$= E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$

$$+ E_{D} \left[2(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x})) \right]$$

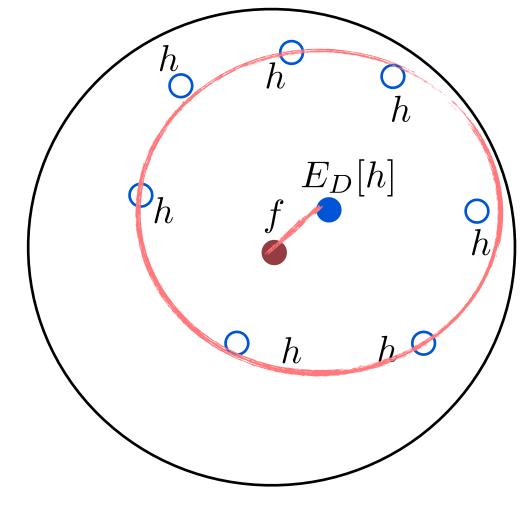
$$= E_{D} \left[(h(\boldsymbol{x}) - E_{D}[h(\boldsymbol{x})])^{2} \right] + E_{D} \left[(E_{D}[h(\boldsymbol{x})] - f(\boldsymbol{x}))^{2} \right]$$
variance bias^2

Wednesday, May 20, 15

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$ variance bias^2

larger hypothesis space lower bias but higher variance

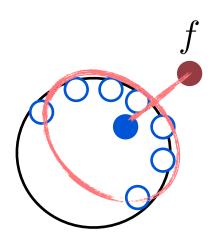


hypothesis space

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

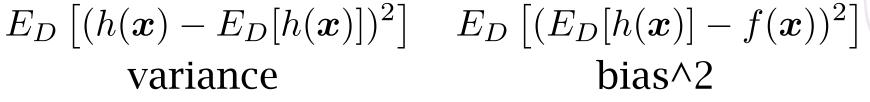
$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$ variance bias^2

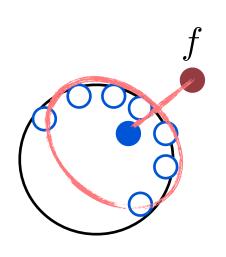
smaller hypothesis space smaller variance but higher bias

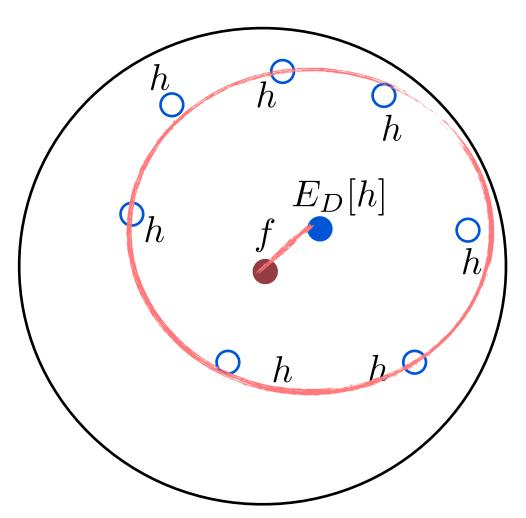


hypothesis space

variance

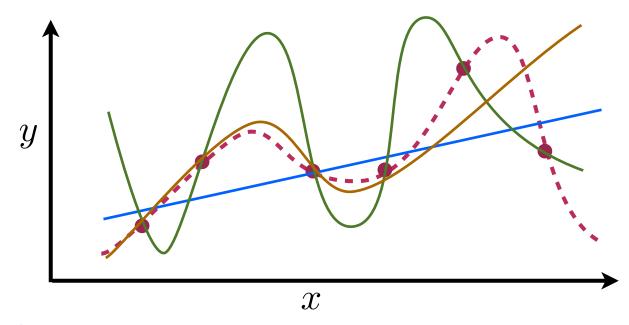






Overfitting and underfitting

training error v.s. hypothesis space size



linear functions: high training error, small space

$$\{y = a + bx \mid a, b \in \mathbb{R}\}$$

higher polynomials: moderate training error, moderate space

$$\{y = a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}$$

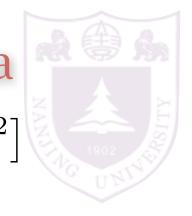
even higher order: no training error, large space

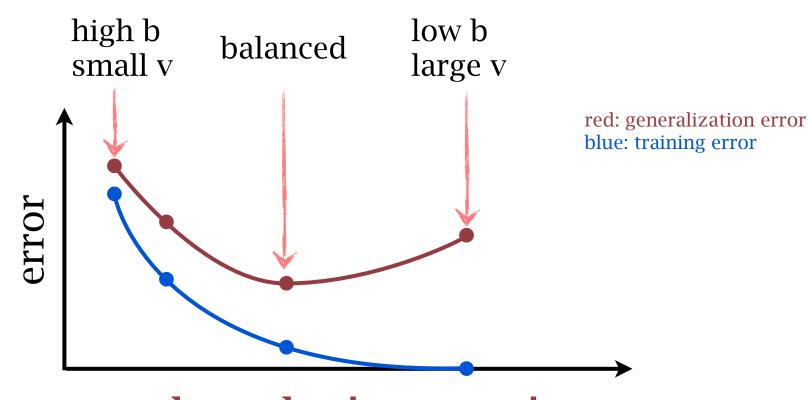
$$\{y = a + bx + cx^2 + dx^3 + ex^4 + fx^5 \mid a, b, c, d, e, f \in \mathbb{R}\}$$

Overfitting and bias-variance dilemma

$$E_D\left[(h(oldsymbol{x})-E_D[h(oldsymbol{x})])^2
ight]$$
 variance

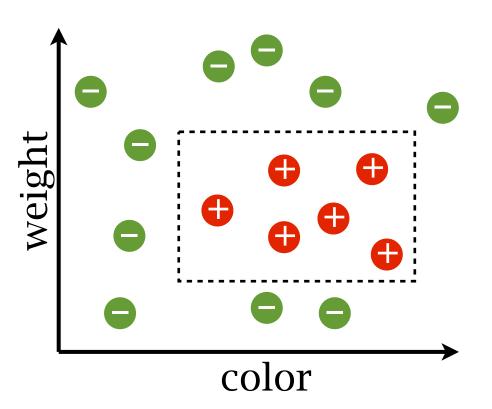
$$E_D\left[(h(\boldsymbol{x})-E_D[h(\boldsymbol{x})])^2\right]$$
 $E_D\left[(E_D[h(\boldsymbol{x})]-f(\boldsymbol{x}))^2\right]$ variance bias^2





hypothesis space size (model complexity)

assume i.i.d. examples, and the ground-truth hypothesis is a box



the error of picking a consistent hypothesis:

with probability at least $1 - \delta$ $\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$

smaller generalization error:

- more examples
- smaller hypothesis space

for one *h*

What is the probability of

$$h$$
 is consistent $\epsilon_g(h) \ge \epsilon$

assume h is **bad**: $\epsilon_g(h) \ge \epsilon$

h is consistent with 1 example:

$$P \le 1 - \epsilon$$

h is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

h is consistent with *m* example:

$$P \le (1 - \epsilon)^m$$

There are k consistent hypotheses \sim

Probability of choosing a bad one: h_1 is chosen and h_1 is bad $P \le (1 - \epsilon)^m$

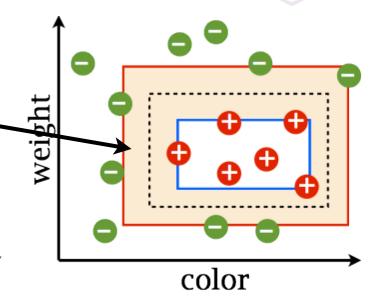
 h_2 is chosen and h_2 is bad $P \leq (1 - \epsilon)^m$

- - -

 h_k is chosen and h_k is bad $P \leq (1 - \epsilon)^m$

overall:

∃*h*: *h* can be chosen (consistent) but is bad



NANUAL 1902

UNIVERSAL DE LA COMPANIA DE LA COMPANI

 h_1 is chosen and h_1 is bad $P \leq (1 - \epsilon)^m$

 h_2 is chosen and h_2 is bad $P \leq (1 - \epsilon)^m$

 h_k is chosen and h_k is bad $P \leq (1 - \epsilon)^m$

overall:

∃*h*: *h* can be chosen (consistent) but is bad

Union bound: $P(A \cup B) \le P(A) + P(B)$

$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$

$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$

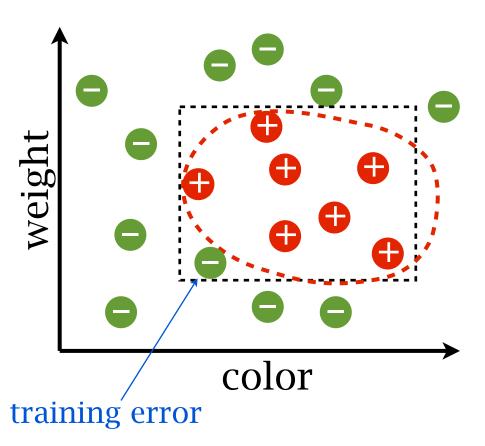
$$P(\epsilon_g \ge \epsilon) \le \frac{|\mathcal{H}| \cdot (1 - \epsilon)^m}{\delta}$$

with probability at least $1 - \delta$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error



with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

smaller generalization error:

- more examples
- smaller hypothesis space
- smaller training error

Hoeffding's inequality

X be an i.i.d. random variable X_1, X_2, \ldots, X_m be m samples

$$X_i \in [a, b]$$

$$\frac{1}{m} \sum_{i=1}^{m} X_i - \mathbb{E}[X] \leftarrow \text{ difference between sum and expectation}$$

$$P\left(\frac{1}{m}\sum_{i=1}^{m}X_{i} - \mathbb{E}[X] \ge \epsilon\right) \le \exp\left(-\frac{2\epsilon^{2}m}{(b-a)^{2}}\right)$$

for one
$$h$$

$$X_i = I(h(x_i) \neq f(x_i)) \in [0, 1]$$

$$\frac{1}{m} \sum_{i=1}^{m} X_i \to \epsilon_t(h) \qquad \qquad \mathbb{E}[X_i] \to \epsilon_g(h)$$

$$P(\epsilon_t(h) - \epsilon_g(h) \ge \epsilon) \le \exp(-2\epsilon^2 m)$$

$$P(\epsilon_t - \epsilon_g \ge \epsilon)$$

$$\leq P(\exists h \in |\mathcal{H}| : \epsilon_t(h) - \epsilon_g(h) \geq \epsilon) \leq |\mathcal{H}| \exp(-2\epsilon^2 m)$$

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m}} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

Generalization error: Summary

assume i.i.d. examples consistent hypothesis case:

with probability at least $1 - \delta$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

inconsistent hypothesis case:

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m}(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}$$

generalization error:

number of examples m training error ϵ_t hypothesis space complexity $\ln |\mathcal{H}|$

PAC-learning

Probably approximately correct (PAC):

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

PAC-learnable: [Valiant, 1984]

A concept class C is PAC-learnable if exists a learning algorithm A such that

for all $f \in \mathcal{C}$, $\epsilon > 0, \delta > 0$ and distribution D $P_D(\epsilon_g \le \epsilon) \ge 1 - \delta$

using $m = poly(1/\epsilon, 1/\delta)$ examples and polynomial time.

Leslie Valiant
Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986)

Learning algorithms revisit

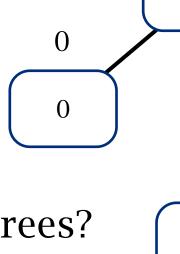
Decision Tree

Tree depth and the possibilities

feature type: binary

depth: *d*<*n*

full-tree:



f1

f2

f3

How many different trees?

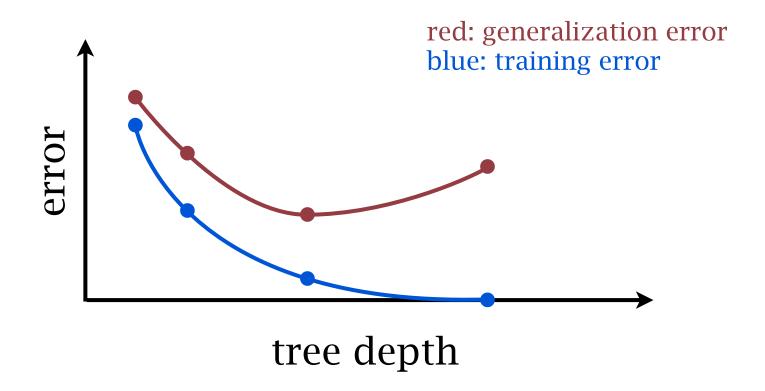
one-branch:
$$2^d \frac{n!}{(n-d)!} > 2^d \frac{n^n}{(n-d)^n e^n}$$

$$2^{2^d} \prod_{i=0}^{d-1} \frac{(n-i)!}{(n-d-i)!}$$

the possibility of trees grows very fast with *d*

The overfitting phenomena

-- the divergence between infinite and finite samples



Pruning

To make decision tree less complex

Pre-pruning: early stop

- minimum data in leaf
- maximum depth
- maximum accuracy

Post-pruning: prune full grown DT reduced error pruning

Reduced error pruning

- 1. Grow a decision tree
- 2. For every node starting from the leaves

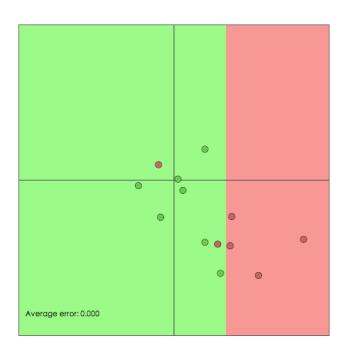
3. Try to make the node leaf, if does not increase the error,

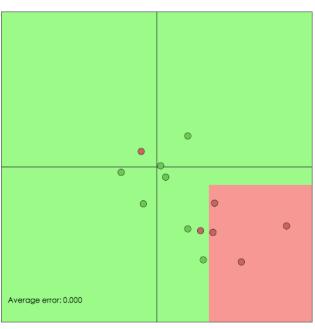
keep as the leaf

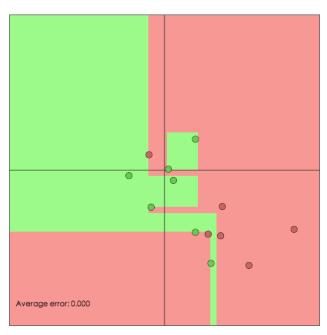
color not red red not weight sweet <100g >=100gnot preservation sweet good bad not sweet sweet

could split a validation set out from the training set to evaluate the error

DT boundary visualization







decision stump

max depth=2

max depth=12

Oblique decision tree

choose a linear combination in each node:

axis parallel:

$$X_1 > 0.5$$

oblique:

$$0.2 X_1 + 0.7 X_2 + 0.1 X_3 > 0.5$$

was hard to train

