Artificial Intelligence, cs, Nanjing University Spring, 2015, Yang Yu

Lecture 15: Learning 3

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Learning
Decision tree learning Neural networks

Question:

why we can learn?

Classification

what can be observed:
on examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \quad y_{i}=f\left(\boldsymbol{x}_{i}\right)$
e.g. training error

$$
\epsilon_{t}=\frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)
$$

what is expected: over the whole distribution: generalization error

$$
\begin{aligned}
& \epsilon_{g}=\mathbb{E}_{x}[I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))] \\
& \left.=\int_{\mathcal{X}} p(x) I(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))\right] \mathrm{d} x
\end{aligned}
$$

Regression

what can be observed:
on examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \quad y_{i}=f\left(\boldsymbol{x}_{i}\right)$
e.g. training mean square error/MSE

$$
\epsilon_{t}=\frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

what is expected: over the whole distribution: generalization MSE

$$
\begin{aligned}
& \epsilon_{g}=\mathbb{E}_{x}(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))^{2} \\
& =\int_{\mathcal{X}} p(x)(h(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \mathrm{~d} x
\end{aligned}
$$

The version space algorithm

an abstract view of learning algorithms

remove the hypothesis that are inconsistent with the data, select a hypothesis according to learner's bias

The version space algorithm

 an abstract view of learning algorithmsthree components of a learning algorithm

Theories

The i.i.d. assumption:
all training examples and future (test) examples are drawn independently from an identical distribution, the label is assigned by a fixed ground-truth function

unknown but fixed distribution D

Bias-variance dilemma

Suppose we have 100 training examples but there can be different training sets

Start from the expected training MSE:

$$
E_{D}\left[\epsilon_{t}\right]=E_{D}\left[\frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}\right]=\frac{1}{m} \sum_{i=1}^{m} E_{D}\left[\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}\right]
$$

(assume no noise)

$$
\begin{aligned}
& E_{D}\left[(h(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]+E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right]+E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
& \quad+E_{D}\left[2\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)\right] \\
& =E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right]+E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

larger hypothesis space =>
lower bias but higher variance

hypothesis space

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

smaller hypothesis space =>
smaller variance but higher bias

hypothesis space

Bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space

$$
\{y=a+b x \mid a, b \in \mathbb{R}\}
$$

higher polynomials: moderate training error, moderate space
$\left\{y=a+b x+c x^{2}+d x^{3} \mid a, b, c, d \in \mathbb{R}\right\}$
even higher order: no training error, large space

$$
\left\{y=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5} \mid a, b, c, d, e, f \in \mathbb{R}\right\}
$$

Overfitting and bias-variance dilemma

$$
\begin{array}{cc}
E_{D}\left[\left(h(\boldsymbol{x})-E_{D}[h(\boldsymbol{x})]\right)^{2}\right] & E_{D}\left[\left(E_{D}[h(\boldsymbol{x})]-f(\boldsymbol{x})\right)^{2}\right] \\
\text { variance } & \text { bias^2 }
\end{array}
$$

high b

small v balanced \quad| low b |
| :--- |
| large v |

red: generalization error blue: training error
hypothesis space size (model complexity)

Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box

the error of picking a consistent hypothesis:
with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

smaller generalization error:

- more examples
- smaller hypothesis space

Generalization error

for one h
What is the probability of h is consistent
What is the probability of

$$
\epsilon_{g}(h) \geq \epsilon
$$

assume h is bad: $\epsilon_{g}(h) \geq \epsilon$
h is consistent with 1 example:

$$
P \leq 1-\epsilon
$$

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

Generalization error

h is consistent with \boldsymbol{m} example:

$$
P \leq(1-\epsilon)^{m}
$$

There are \boldsymbol{k} consistent hypotheses

Probability of choosing a bad one: h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$
 h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$
overall:
$\exists h: h$ can be chosen (consistent) but is bad

Generalization error

h_{1} is chosen and h_{1} is bad $P \leq(1-\epsilon)^{m}$ h_{2} is chosen and h_{2} is bad $P \leq(1-\epsilon)^{m}$
h_{k} is chosen and h_{k} is bad $P \leq(1-\epsilon)^{m}$

overall:

$\exists h$: h can be chosen (consistent) but is bad
Union bound: $P(A \cup B) \leq P(A)+P(B)$
$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

Generalization error

$P(\exists h$ is consistent but bad $) \leq k \cdot(1-\epsilon)^{m} \leq|\mathcal{H}| \cdot(1-\epsilon)^{m}$

$$
\begin{gathered}
\Downarrow \\
P\left(\epsilon_{g} \geq \epsilon\right) \leq \frac{|\mathcal{H}| \cdot(1-\epsilon)^{m}}{\delta}
\end{gathered}
$$

with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

Inconsistent hypothesis

What if the ground-truth hypothesis is NOT a box: non-zero training error

with probability at least $1-\delta$
$\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}$

- more examples
smaller generalization error: • smaller hypothesis space
- smaller training error

Hoeffding's inequality

X be an i.i.d. random variable
$X_{1}, X_{2}, \ldots, X_{m}$ be m samples

$$
X_{i} \in[a, b]
$$

$\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \leftarrow$ difference between sum and expectation

$$
P\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mathbb{E}[X] \geq \epsilon\right) \leq \exp \left(-\frac{2 \epsilon^{2} m}{(b-a)^{2}}\right)
$$

Generalization error

$$
\begin{gathered}
\text { for one } h \\
X_{i}=I\left(h\left(x_{i}\right) \neq f\left(x_{i}\right)\right) \in[0,1] \\
\frac{1}{m} \sum_{i=1}^{m} X_{i} \rightarrow \epsilon_{t}(h) \quad \mathbb{E}\left[X_{i}\right] \rightarrow \epsilon_{g}(h) \\
P\left(\epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq \exp \left(-2 \epsilon^{2} m\right) \\
P\left(\epsilon_{t}-\epsilon_{g} \geq \epsilon\right) \\
\leq P\left(\exists h \in|\mathcal{H}|: \epsilon_{t}(h)-\epsilon_{g}(h) \geq \epsilon\right) \leq \underline{|\mathcal{H}| \exp \left(-2 \epsilon^{2} m\right)}
\end{gathered}
$$

$$
\text { with probability at least } 1-\delta
$$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

Generalization error: Summary

assume i.i.d. examples consistent hypothesis case: with probability at least $1-\delta$

$$
\epsilon_{g}<\frac{1}{m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)
$$

inconsistent hypothesis case:

$$
\begin{aligned}
& \text { with probability at least } 1-\delta \\
& \qquad \epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{m}\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
\end{aligned}
$$

generalization error:
number of examples m
training error ϵ_{t}
hypothesis space complexity $\ln |\mathcal{H}|$

PAC-learning

Probably approximately correct (PAC): with probability at least $1-\delta$

$$
\epsilon_{g}<\epsilon_{t}+\sqrt{\frac{1}{2 m} \cdot\left(\ln |\mathcal{H}|+\ln \frac{1}{\delta}\right)}
$$

PAC-learnable: [valiant, 1984]
A concept class \mathcal{C} is PAC-learnable if exists a learning algorithm A such that

Leslie Valiant
Turing Award (2010) EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986) for all $f \in \mathcal{C}, \epsilon>0, \delta>0$ and distribution D

$$
P_{D}\left(\epsilon_{g} \leq \epsilon\right) \geq 1-\delta
$$

using $m=\operatorname{poly}(1 / \epsilon, 1 / \delta)$ examples and polynomial time.

Learning algorithms revisit

Decision Tree

Tree depth and the possibilities

features: n feature type: binary depth: $d<n$

How many different trees?
one-branch: $2^{d} \frac{n!}{(n-d)!}>2^{d} \frac{n^{n}}{(n-d)^{n} e^{n}}$
full-tree: $\quad 2^{2^{d}} \prod_{i=0}^{d-1} \frac{(n-i)!}{(n-d-i)!}$
the possibility of trees grows very fast with d

The overfitting phenomena

-- the divergence between infinite and finite samples

To make decision tree less complex
Pre-pruning: early stop

- minimum data in leaf
- maximum depth
- maximum accuracy

Post-pruning: prune full grown DT reduced error pruning

Reduced error pruning

1. Grow a decision tree
2. For every node starting from the leaves
3. Try to make the node leaf, if does not increase the error, keep as the leaf

DT boundary visualization

decision stump

max depth=2

max depth=12

Oblique decision tree

choose a linear combination in each node:
axis parallel:
$X_{1}>0.5$
oblique:
$0.2 X_{1}+0.7 X_{2}+0.1 X_{3}>0.5$
was hard to train

