Artificial Intelligence, cs, Nanjing University Spring, 2015, Yang Yu

Lecture 17: Learning 5

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Learning
Decision tree learning
Neural networks
Why we can learn
Linear models

Nearest Neighbor Classifier

Nearest neighbor

what looks similar are similar

Nearest neighbor

for classification:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) majority of the k-NN

Nearest neighbor

for regression:

1-nearest neighbor:

k-nearest neighbor:

Predict the label as that of the NN or the (weighted) average of the k-NN

Search for the nearest neighbor

Linear search

n times of distance calculations
$O(d n \ln k)$
d is the dimension, n is the number of samples

Nearest neighbor classifier

- as classifier, asymptotically less than 2 times of the optimal Bayes error
- naturally handle multi-class
- no training time
- nonlinear decision boundary
- slow testing speed for a large training data set
- have to store the training data
- sensitive to similarity function

Naive Bayes Classifier

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
f(x)=\underset{y}{\arg \max } P(y \mid \boldsymbol{x})
$$

Bayes rule

classification using posterior probability
for binary classification

$$
f(x)= \begin{cases}+1, & P(y=+1 \mid \boldsymbol{x})>P(y=-1 \mid \boldsymbol{x}) \\ -1, & P(y=+1 \mid \boldsymbol{x})<P(y=-1 \mid \boldsymbol{x}) \\ \text { random, }, & \text { otherwise }\end{cases}
$$

in general

$$
\begin{aligned}
f(x) & =\underset{y}{\arg \max } P(y \mid \boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y) / P(\boldsymbol{x}) \\
& =\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
\end{aligned}
$$

how the probabilities be estimated

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:

$$
P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)
$$

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

$P($ red \mid sweet $)=1$
$P($ half-red \mid sweet $)=0$
$P($ not-red \mid sweet $)=0$
$P($ sweet $)=4 / 13$
$P($ red \mid not-sweet $)=0$
$P($ half-red \mid not-sweet $)=4 / 9$
$P($ not-red \mid not-sweet $)=5 / 9$
$P($ not-sweet $)=9 / 13$

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)
$$

Consider a very simple case

Consider a very simple case

Consider a very simple case

perfect
but not realistic

Naive Bayes

$f(x)=\underset{y}{\arg \max } P(\boldsymbol{x} \mid y) P(y)$
estimation the a priori by frequency:
$P(y) \leftarrow \tilde{P}(y)=\frac{1}{m} \sum_{i} I\left(y_{i}=y\right)$
assume features are conditional independence given the class (naive assumption):

$$
\begin{aligned}
P(\boldsymbol{x} \mid y) & =P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right) \\
& =P\left(x_{1} \mid y\right) \cdot P\left(x_{2} \mid y\right) \cdot \ldots P\left(x_{n} \mid y\right)
\end{aligned}
$$

decision function:

$$
f(x)=\underset{y}{\arg \max } \tilde{P}(y) \prod_{i} \tilde{P}\left(x_{i} \mid y\right)
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2 \\
& \ldots
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$$
f(y \mid \text { color }=3, \text { weight }=3) \rightarrow
$$

$$
P(\text { color }=3 \mid y=y e s) P(\text { weight }=3 \mid y=\text { yes }) P(y=\text { yes })=0.5 \times 0.5 \times 0.4=0.1
$$

$$
P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
$$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?
3	4	yes
2	3	yes
0	3	no
3	2	no
1	4	no

$$
\begin{aligned}
& P(y=y e s)=2 / 5 \\
& P(y=n o)=3 / 5 \\
& P(\text { color }=3 \mid y=y e s)=1 / 2
\end{aligned}
$$

$f(y \mid$ color $=3$, weight $=3) \rightarrow$

$$
\begin{aligned}
& P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=\text { no })=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$f(y \mid$ color $=0$, weight $=1) \rightarrow$

Naive Bayes

color=\{0,1,2,3\} weight $=\{0,1,2,3,4\}$

color	weight	sweet?	
3	4	yes	$P(y=y e s)=2 / 5$
2	3	yes	$P(y=n o)=3 / 5$
0	3	no	$P($ color $=3 \mid y=$ yes $)=1 / 2$
3	2	no	-"
1	4	no	

$$
\begin{aligned}
& f(y \mid \text { color }=3, \text { weight }=3) \rightarrow \\
& \quad P(\text { color }=3 \mid y=\text { yes }) P(\text { weight }=3 \mid y=\text { yes }) P(y=y e s)=0.5 \times 0.5 \times 0.4=0.1 \\
& \quad P(\text { color }=3 \mid y=n o) P(\text { weight }=3 \mid y=n o) P(y=n o)=0.33 \times 0.33 \times 0.6=0.06
\end{aligned}
$$

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=y e s) P(\text { weight }=1 \mid y=y e s) P(y=y e s)=0
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=0
$$

Naive Bayes

color $=\{0,1,2,3\}$ weight $=\{0,1,2,3,4\}$

color	weight	sweet?			
3	4			color	sweet?
2	3	yes		0	yes
0	3	yes			1
3	2	no		yes	
1	4	no		2	yes

smoothed (Laplacian correction) probabilities:

$$
\begin{aligned}
& P(\text { color }=0 \mid y=y e s)=(0+1) /(2+4) \\
& P(y=y e s)=(2+1) /(5+2)
\end{aligned}
$$

for counting frequency, assume every event has happened once.

$$
f(y \mid \text { color }=0, \text { weight }=1) \rightarrow
$$

$$
P(\text { color }=0 \mid y=\text { yes }) P(\text { weight }=1 \mid y=\text { yes }) P(y=\text { yes })=\frac{1}{6} \times \frac{1}{7} \times \frac{3}{7}=0.01
$$

$$
P(\text { color }=0 \mid y=n o) P(\text { weight }=1 \mid y=n o) P(y=n o)=\frac{2}{7} \times \frac{1}{8} \times \frac{4}{7}=0.02
$$

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:

Naive Bayes

advantages:
very fast:
scan the data once, just count: $O(m n)$ store class-conditional probabilities: $O(n)$ test an instance: $O(c n)$ (c the number of classes) good accuracy in many cases
parameter free output a probability naturally handle multi-class
disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally

Ensemble Learning

How can we improve an algorithm

for free

one classifier with error 0.49

How can we improve an algorithm

for free

one classifier with error 0.49

three independent classifiers each with error 0.49
two out of three are wrong: 0.367353 three of them are wrong: 0.117649 majority of the three are wrong: 0.485002

Motivation theories

for binary classification, what if the classifiers give independent output and are little bit better than random guess?
each classifier has error 0.49 error of combining T classifiers:

Motivation theories

for binary classification, what if the classifiers give independent output and are little bit better than random guess?
each classifier has error 0.49 error of combining T classifiers:

$$
\begin{aligned}
& \sum_{t=\lceil T / 2\rceil}^{T}\binom{T}{t} \cdot 0.49^{t} \cdot 0.51^{T-t} \\
& \leq \frac{1}{2} e^{-2 T(0.5-0.49)^{2}}
\end{aligned}
$$

but independent classifiers are not achievable

The importance of diversity

not useful to combine identical base learners

The importance of diversity

good to combine different learners

Ensemble learning

combination of multiple classifiers/regressors

base learner
combined learner

Ensemble methods

Parallel ensemble

create diverse base learners by introducing randomness

Sequential ensemble
create base learners by complementarity

Parallel ensemble methods

Diversity generating categories:
Data Sample Manipulation
bootstrap sampling/Bagging
Input Feature Manipulation
random subspace
Output Representation Manipulation
flipping output/output smearing
Learning Parameter Manipulation
random initialization
Random Forests
combine two or more categories

Parallel ensemble methods

Data Sample Manipulation: Bagging

Base classifiers should be sensitive to sampling
» decision tree, neural network are good
» NB, linear classifier are not
Good for handling large data set

Parallel ensemble methods

Data Sample Manipulation: Bagging

Input: D : Data set $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$;
\mathfrak{L} : Base learning algorithm;
T : Number of base learners.

Process:

1. for $t=1, \ldots, T$:
2. $h_{t}=\mathfrak{L}\left(D, \mathcal{D}_{b s}\right) \quad \% \mathcal{D}_{b s}$ is the bootstrap distribution
3. end

Output: $H(\boldsymbol{x})=\max _{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}\left(h_{t}(\boldsymbol{x})=y\right)$

sample with replacement

Base classifiers should be sensitive to sampling
» decision tree, neural network are good
» NB, linear classifier are not
Good for handling large data set

Parallel ensemble methods

Input Feature Manipulation: Random subspace

Data should be rich in features
Good for handling high dimensional data

Parallel ensemble methods

Input Feature Manipulation: Random subspace

```
Input: \(D\) : Data set \(\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}\);
    \(\mathfrak{L}\) : Base learning algorithm;
    \(T\) : Number of base learners;
    \(d\) : Dimension of subspaces.
Process:
1. for \(t=1, \ldots, T\) :
2. \(\quad \mathcal{F}_{t}=R S(D, d) \quad \% \mathcal{F}_{t}\) is a set of \(d\) randomly selected features;
3. \(\quad D_{t}=\operatorname{Map}_{\mathcal{F}_{t}}(D) \quad \% D_{t}\) keeps only the features in \(\mathcal{F}_{t}\)
4. \(h_{t}=\mathfrak{L}\left(D_{t}\right) \quad\) \% Train a learner
5. end
```

Output: $H(\boldsymbol{x})=\max _{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}\left(h_{t}\left(\operatorname{Map}_{\mathcal{F}_{t}}(\boldsymbol{x})\right)=y\right)$

Data should be rich in features

Parallel ensemble methods

Output Representation Manipulation: Output flipping

May drastically reduce the accuracy of base learners

Parallel ensemble methods

Learning Parameter Manipulation: Random forest

Randomized decision tree
at each node

1. randomly select a subset of features
2. use select a feature (and split point) from the subset to split the data
decision tree: select the best split from ALL features/splits
(other variants are available)

every run produce a different tree

Parallel ensemble methods

Learning Parameter Manipulation: Random forest

Bagging of randomized decision tree

Parallel ensemble methods

Random forest

decision boundary of single decision tree

decision boundary of random forest

Parallel ensemble methods

Diversity generating categories:
Data Sample Manipulation
bootstrap sampling/Bagging
Input Feature Manipulation
random subspace
Output Representation Manipulation
flipping output/output smearing
Learning Parameter Manipulation
random initialization
Random Forests
obtain diversity by randomization

Parallel ensemble methods

Simple combination:

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=1}^{T} h_{t}(\boldsymbol{x}) \quad \text { (simple average for regression) } \\
& \underset{y}{\arg \max } \sum_{t=1}^{T} I\left(h_{t}(\boldsymbol{x})=y\right) \quad \text { (majority vote for classification) }
\end{aligned}
$$

Parallel ensemble methods

model-weighted combination: better model has higher weight

$$
\frac{1}{T} \sum_{t=1}^{T} w_{t} h_{t}(\boldsymbol{x}) \quad \text { (simple average for regression) }
$$

$\underset{y}{\arg \max } \sum_{t=1}^{T} w_{t} I\left(h_{t}(\boldsymbol{x})=y\right) \quad$ (majority vote for classification)

Parallel ensemble methods

instance-weighted combination: weight by the confidence of the model decision tree: the purity of the leave node
$\frac{1}{T} \sum_{t=1}^{T} w_{t}(\boldsymbol{x}) h_{t}(\boldsymbol{x}) \quad$ (simple average for regression)
$\underset{y}{\arg \max } \sum_{t=1}^{T} w_{t}(\boldsymbol{x}) I\left(h_{t}(\boldsymbol{x})=y\right)$ (majority vote for classification)

Sequential ensemble methods

Generate learners sequentially, focus on previous errors

so that the combination of learners will have a high accuracy

Sequential ensemble methods

Generate learners sequentially, focus on previous errors

so that the combination of learners will have a high accuracy

Sequential ensemble methods

Generate learners sequentially, focus on previous errors

so that the combination of learners will have a high accuracy

AdaBoost

Input: Data set $D=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$; Base learning algorithm \mathfrak{L}; Number of learning rounds T.

Process:

1. $\mathcal{D}_{1}(\boldsymbol{x})=1 / \mathrm{m}$. \% Initialize the weight distribution
2. for $t=1, \ldots, T$:
3. $\quad h_{t}=\mathfrak{L}\left(D, \mathcal{D}_{t}\right)$; \% Train a classifier h_{t} from D under distribution \mathcal{D}_{t}
4. $\quad \epsilon_{t}=P_{\boldsymbol{x} \sim \mathcal{D}_{t}}\left(h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x})\right)$; \% Evaluate the error of h_{t}
5. if $\epsilon_{t}>0.5$ then break
6. $\quad \alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right) ; \%$ Determine the weight of h_{t}
7. $\mathcal{D}_{t+1}(\boldsymbol{x})=\frac{\mathcal{D}_{t}(\boldsymbol{x})}{Z_{t}} \times \begin{cases}\exp \left(-\alpha_{t}\right) & \text { if } h_{t}(\boldsymbol{x})=f(\boldsymbol{x}) \\ \exp \left(\alpha_{t}\right) & \text { if } h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x})\end{cases}$
$=\frac{\mathcal{D}_{t}(\boldsymbol{x}) \exp \left(-\alpha_{t} f(\boldsymbol{x}) h_{t}(\boldsymbol{x})\right)}{Z_{t}}$ \% Update the distribution, where
$\% Z_{t}$ is a normalization factor which
$\%$ enables \mathcal{D}_{t+1} to be a distribution
8. end

Output: $H(\boldsymbol{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(\boldsymbol{x})\right)$

AdaBoost

fit an additive model, sequentially

$$
H(\boldsymbol{x})=\sum_{t=1}^{T} \alpha_{t} h_{t}(\boldsymbol{x})
$$

to minimize exponential loss

$$
\min e^{-y H(\boldsymbol{x})}
$$

by Newton-like method

AdaBoost

fit an additive model, sequentially

$$
H(\boldsymbol{x})=\sum_{t=1}^{T} \alpha_{t} h_{t}(\boldsymbol{x})
$$

to minimize exponential loss

$$
\min e^{-y H(\boldsymbol{x})}
$$

by Newton-like method

0/1 loss

AdaBoost

fit an additive model, sequentially

$$
H(\boldsymbol{x})=\sum_{t=1}^{T} \alpha_{t} h_{t}(\boldsymbol{x})
$$

to minimize exponential loss

$$
\min e^{-y H(\boldsymbol{x})}
$$

by Newton-like method

$$
0 / 1 \text { loss }
$$

Gradient boosting

fit an additive model, sequentially

$$
H(\boldsymbol{x})=\sum_{t=1}^{T} \alpha_{t} h_{t}(\boldsymbol{x})
$$

to minimize any loss by gradient decent

Gradient boosting

example: least square regression

$$
\min \frac{1}{m} \sum_{i=1}^{m}\left(H\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

1. fit the first base regressor

$$
\min \frac{1}{m} \sum_{i=1}^{m}\left(h_{1}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

then how to train the second base regressor ?
$\min \frac{1}{m} \sum_{i=1}^{m}\left(h_{1}\left(\boldsymbol{x}_{i}\right)+h_{2}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}$
gradient descent in function space

Gradient boosting

$\min \frac{1}{m} \sum_{i=1}^{m}\left(h_{1}\left(\boldsymbol{x}_{i}\right)+h_{2}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}$
gradient descent in function space

$$
h_{\text {new }} \leftarrow-\frac{\partial(H-f)^{2}}{\partial H}=-2(H-f)
$$

this function is not directly operable
operate through data

$$
\forall \boldsymbol{x}_{i}: \hat{y}_{i}=-2\left(H\left(\boldsymbol{x}_{i}\right)-y_{i}\right)
$$

fit h_{2} point-wisely
$h_{\text {new }}=\arg \min _{h} \frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-\hat{y}_{i}\right)^{2}$

Gradient boosting

Gradient boosting (for least square regression)

1. $h_{0}=0, H_{0}=h_{0}$
2. For $t=1$ to T
3. let $\forall \boldsymbol{x}_{i}: y_{i}=-2\left(H_{t-1}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)$
4. solve $h_{t}=\arg \min _{h} \frac{1}{m} \sum_{i=1}^{m}\left(h\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}$
(by some least square regression algorithm)
5. $H_{t}=H_{t-1}+\eta h_{t} \quad$ (usually set $\eta=0.01$)
6. next for

Output $H_{T}=\sum_{t=1}^{T} h_{t}$

Gradient boosting

Gradient boosting (for classification)

Gradient boosting

Gradient boosting (for classification)

0-1 loss
$\min I(y H(\boldsymbol{x}) \leq 0)$

Gradient boosting

Gradient boosting (for classification)
0-1 loss
$\min I(y H(\boldsymbol{x}) \leq 0)$
logistic regression $\min \log \left(1+e^{-y H(\boldsymbol{x})}\right)$

Gradient boosting

Gradient boosting (for classification)
0-1 loss
$\min I(y H(\boldsymbol{x}) \leq 0)$
logistic regression $\min \log \left(1+e^{-y H(\boldsymbol{x})}\right)$
perceptron
$\min \max \{-y H(\boldsymbol{x}), 0\}$

Gradient boosting

Gradient boosting (for classification)
0-1 loss
$\min I(y H(\boldsymbol{x}) \leq 0)$
logistic regression $\min \log \left(1+e^{-y H(\boldsymbol{x})}\right)$
perceptron
$\min \max \{-y H(\boldsymbol{x}), 0\}$
hinge loss
$\min \max \{1-y H(\boldsymbol{x}), 0\}$

Gradient boosting

Gradient boosting (for classification)
0-1 loss
$\min I(y H(\boldsymbol{x}) \leq 0)$
logistic regression $\min \log \left(1+e^{-y H(\boldsymbol{x})}\right)$
perceptron
$\min \max \{-y H(\boldsymbol{x}), 0\}$
hinge loss
$\min \max \{1-y H(\boldsymbol{x}), 0\}$ exponential loss

$\min e^{-y H(\boldsymbol{x})}$

More about ensemble

Hansen and Salamon [PAMI'90] reported an observation that combination of multiple BP-NN is better than the best single BP-NN

More about ensemble

for regression task:

 mean error of base regressors$$
\begin{aligned}
& \frac{1}{T} \sum_{t}\left(h_{t}-f\right)^{2} \\
& =\frac{1}{T} \sum_{t}\left(h_{t}-H+H-f\right)^{2} \\
& =\frac{1}{T} \sum_{t}\left(h_{t}-H\right)^{2}+\frac{1}{T} \sum_{t}(H-f)^{2}-2 \frac{1}{T} \sum_{t}\left(h_{t}-H\right)(H-f) \\
& =\frac{1}{T} \sum_{t}\left(h_{t}-H\right)^{2}+(H-f)^{2} \\
& \text { mean difference to the combined regressor }
\end{aligned}
$$

error of ensemble = accurate and diverse
mean error of base regressors

- mean difference base regressors to the ensemble

More about ensemble

for classification task:

$$
\operatorname{err}_{g}(f) \leq \operatorname{err}_{S}^{\theta}(f)+\frac{C}{\sqrt{m}}\left(\frac{\ln n \ln (m \sqrt{1 / n+(1-1 / n)(1-q)})}{\theta^{2}}+\ln \frac{1}{\delta}\right)^{1 / 2}
$$

pairwise diversity

Bias-variance analysis

low variance, high bias

low bias, high variance
parallel ensemble: reduce variance use unpruned decision trees
sequential ensemble: reduce bias and variance

More about ensemble

Boosting:

AdaBoost

More about ensemble

Boosting:

AdaBoost
(Gödel Prize 2003)

Applications

KDDCup: data mining competition organized by ACM SIGKDD

KDDCup 2009: to estimate the churn, appetency and up-selling probability of customers.

An Ensemble of Three Classifiers for KDD Cup 2009:
Expanded Linear Model, Heterogeneous Boosting, and Selective Naïve Bayes

Hung-Yi Lo, Kai-Wei Chang, Shang-Tse Chen, Tsung-Hsien Chiang, ChunSung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin, Hsuan-Tien Lin, Shou-de Lin \{р96023, B92084, B95100, в93009, B95108, B92085, в93038, d97944007, R97028, R97117, B94B02009, B93107, CJLIN, HTLIN, SDLIN\}@CSIE.NTU.EDU.TW Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

JMLR: Workshop and Conference Proceedings 1: 1-16
KDD Cup 2010

Feature Engineering and Classifier Ensemble for KDD Cup 2010

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie, Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, Jui-Yu Weng, En-Syu Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen Lo, Po Tzu Chang, Chieh Po, Chien-Yuan Wang, Yi-Hung Huang, Chen-Wei Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan

KDDCup 2011, KDDCup 2012, and foreseeably, 2013, 2014 ...

Applications

Netflix Price: if one participating team improves Netflix's own movie recommendation algorithm by 10% accuracy, they would win the grand prize of $\$ 1,000,000$.

