Artificial Intelligence, cs, Nanjing University Spring, 2015, Yang Yu

Lecture 18: Learning 6

http://cs.nju.edu.cn/yuy/course_ai15.ashx

Previously...

Learning
Decision tree learning
Neural networks
Why we can learn
Linear models
Nearest neighbor classifier
Native Bayes classifier
Ensemble learning

The importance of features

The importance of features

weather

The importance of features

features determine the instance distribution
good features lead to better learning results

Feature processing

a good feature set is more important than a good classifier
feature selection
feature extraction

Feature selection

To select a set of good features from a given feature set

Improve learning performance reduce classification error

Reduce the time/space complexity of learning

Improve the interpretability
Better data visualization
Saving the cost of observing features

Feature selection

Evaluation criteria

classifier independent

$$
<x, f(x)>
$$

dependency based criteria
information based criteria
distance based criteria
classifier internal weighting
classifier dependent
$<x, f(x)>$
algorithm

Dependency based criteria

How a feature set is related with the class
correlation between a feature and the class correlation between two features search: select high correlated low redundant features

Information based criteria

How much a feature set provides information about the class

Information gain:
Entropy: $H(X)=-\sum_{i} p_{i} \ln \left(p_{i}\right)$
Entropy after split: $I\left(X ;\right.$ split) $=\sum_{j} \frac{\# \text { partition } j}{\# \text { all }} H($ partition $j)$ Information gain: $H(X)-I(X$;split $)$

A simple forward search

sequentially add the next best feature

1: $F=$ original feature sets, C is the class label
2: $S=\emptyset$
3: loop
4: $\quad a$
$a=$ the best correlated/informative feature in F
5: $\quad v=$ the correlation/IG of a
6: \quad if $v<\theta$ then
7: break
8: \quad end if
9: $\quad F=F /\{a\}$
10:

$$
S=S \cup\{a\}
$$

11: end loop
12: return S

A simple forward search

1: $F=$ original feature sets, C is the class label
2: $S=\emptyset$
3: loop
4: $\quad a=$ the best correlated/informative feature in F
5: $\quad v=$ the correlation/IG of a
6: \quad if $v<\theta$ then
7: break
8: \quad end if
9: $\quad F=F /\{a\}$
10: $\quad S=S \cup\{a\}$
11: \quad for $a^{\prime} \in F$ do
12: $\quad v^{\prime}=$ the correlation/IG of a^{\prime} to a
13: \quad if $v^{\prime}>\alpha \cdot v$ then $F=F /\left\{a^{\prime}\right\}$
14: end if
remove
redundant
features

15: end for

16: end loop
17: return S

Distance based criteria

Examples in the same class should be near Examples in different classes should be far

select features to optimize the distance

Distance based criteria

Relief: feature weighting based on distance

$$
\boldsymbol{w}=0
$$

1. random select an instance x
2. find the nearest same-class instance u (according to w)
3. find the nearest diff-class instance v (according w)
4. $\boldsymbol{w}=\boldsymbol{w}-|\boldsymbol{x}-\boldsymbol{u}|+|\boldsymbol{x}-\boldsymbol{v}|$
5. goto 1 for m times

select the features whose weights are above a threshold

Feature weighting from classifiers

Many classification algorithms perform feature selection and weighting internally
decision tree: select a set of features by recursive IG
random forest: weight features by the frequency of using a feature
linear model: a natural feature weighting
select features from these models' internal feature weighting
note the difference to FS for classification

Classifier dependent feature selection

$$
<x, f(x)>
$$

select features to maximize the performance of the following learning task
slow in speed
hard to search
hard to generalize the selection results
more accurate learning result

Classifier dependent feature selection

Sequential forward search:

 add features one-by-one$$
F=\text { original feature set }
$$

$$
S=\emptyset
$$

$$
\text { perf-so-far }=\text { the worst performance value }
$$

loop

$$
\text { for } a \in F \text { do }
$$

$$
v(a)=\text { the performance given features } S \cup\{a\}
$$

end for
$m a=$ the best feature
$m v=v(m a)$
if $m v$ is worse than perf-so-far then
break
end if
$S=S \cup m a$
perf-so-far $=m v$
end loop
return S

Classifier dependent feature selection

Sequential backward search:

 remove features one-by-one$$
\begin{aligned}
& F=\text { original feature set } \\
& \text { perf-so-far }=\text { the performance given features } F \\
& \text { loop } \\
& \quad \text { for } a \in F \text { do } \\
& \quad v(a)=\text { the performance given features } F /\{a\} \\
& \text { end for } \\
& m a=\text { the best feature to remove } \\
& m v=v(m a) \\
& \text { if } m v \text { is worse than perf-so-far then } \\
& \quad \text { break } \\
& \text { end if } \\
& F=F /\{m a\} \\
& \text { perf-so-far }=m v \\
& \text { end loop } \\
& \text { return } S
\end{aligned}
$$

Classifier dependent feature selection

forward
faster

backward
more accurate

Classifier dependent feature selection

 random init backwardforward
backward

combined forward-backward search

Feature extraction

disclosure the inner structure of the data to support a better learning performance
feature extraction construct new features
commonly followed by a feature selection
usually used for low-level features

Linear methods

Principal components analysis (PCA)

rotate the data to align the directions of the variance

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
z=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(Z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

find a unit \boldsymbol{w} to maximize the variance

$$
\max _{\boldsymbol{w}_{1}} \boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}-1\right)
$$

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

find a unit \boldsymbol{w} to maximize the variance

$$
\max _{\boldsymbol{w}_{1}} \boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}-1\right)
$$

$2 \boldsymbol{\Sigma} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{w}_{1}=0$, and therefore $\boldsymbol{\Sigma} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}$

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

find a unit \boldsymbol{w} to maximize the variance

$2 \boldsymbol{\Sigma} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{w}_{1}=0$, and therefore $\boldsymbol{\Sigma} \boldsymbol{w}_{1}=\boldsymbol{\alpha} \boldsymbol{w}_{1}$ $\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}=\alpha$

Linear methods

Principal components analysis (PCA)
the first dimension = the largest variance direction

$$
\begin{aligned}
& z=\boldsymbol{w}^{T} \boldsymbol{x} \\
& \operatorname{Var}\left(Z_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}
\end{aligned}
$$

find a unit \boldsymbol{w} to maximize the variance

$$
\max _{\boldsymbol{w}_{1}} \boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}-1\right)
$$

0
0

$2 \boldsymbol{\Sigma} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{w}_{1}=0$, and therefore $\boldsymbol{\Sigma} \boldsymbol{w}_{1}=\boldsymbol{\alpha} \boldsymbol{w}_{1}$ $\boldsymbol{w}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{1}=\boldsymbol{\alpha} \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}=\alpha$
w is the eigenvector with the largest eigenvalue

Linear methods

Principal components analysis (PCA)
the second dimension = the largest variance direction orthogonal to the first dimension

Linear methods

Principal components analysis (PCA)
the second dimension = the largest variance direction orthogonal to the first dimension

$$
\max _{\boldsymbol{w}_{2}} \boldsymbol{w}_{2}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2}-1\right)-\beta\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1}-0\right)
$$

Linear methods

Principal components analysis (PCA)
the second dimension = the largest variance direction orthogonal to the first dimension

$$
\begin{aligned}
& \max _{\boldsymbol{w}_{2}} \boldsymbol{w}_{2}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2}-1\right)-\beta\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1}-0\right) \\
& 2 \boldsymbol{\Sigma} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1}=0
\end{aligned}
$$

Linear methods

Principal components analysis (PCA)

the second dimension = the largest variance direction orthogonal to the first dimension

$$
\begin{aligned}
& \max _{\boldsymbol{w}_{2}} \boldsymbol{w}_{2}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2}-1\right)-\beta\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1}-0\right) \\
& 2 \boldsymbol{\Sigma} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1}=0 \\
& \beta=0 \quad \boldsymbol{\Sigma} \boldsymbol{w}_{2}=\alpha \boldsymbol{w}_{2}
\end{aligned}
$$

Linear methods

Principal components analysis (PCA)
the second dimension = the largest variance direction orthogonal to the first dimension

$$
\begin{aligned}
& \max _{\boldsymbol{w}_{2}} \boldsymbol{w}_{2}^{T} \boldsymbol{\Sigma} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2}-1\right)-\beta\left(\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1}-0\right) \\
& 2 \boldsymbol{\Sigma} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1}=0 \\
& \beta=0 \quad \boldsymbol{\Sigma} \boldsymbol{w}_{2}=\alpha \boldsymbol{w}_{2}
\end{aligned}
$$

Linear methods

Optdigits after PCA

Linear methods

(a) Scree graph for Optdigits

(b) Proportion of variance explained

Linear methods

Multidimensional Scaling (MDS)
keep the distance into a lower dimensional space
for linear transformation, W is an $\mathrm{n} * \mathrm{k}$ matrix
$\arg \min _{W} \sum_{i, j}\left(\left\|\boldsymbol{x}_{i}^{\top} W-\boldsymbol{x}_{j}^{\top} W\right\|-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|\right)^{2}$

Linear methods

from [Intro. ML]

Linear methods

Linear Discriminant Analysis (LDA)
find a direction such that the two classes are well separated

$$
z=\boldsymbol{w}^{T} \boldsymbol{x}
$$

m be the mean of a class
s^{2} be the variance of a class

maximize the criterion

$$
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

Linear methods

Linear Discriminant Analysis (LDA)

Linear methods

Linear Discriminant Analysis (LDA)

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
& =\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}
\end{aligned}
$$

Linear methods

Linear Discriminant Analysis (LDA)

$$
\begin{aligned}
&\left(m_{1}-m_{2}\right)^{2}=\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
&=\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
&=\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w} \\
& s_{1}^{2}=\sum_{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}-m_{1}\right)^{2} r^{t} \\
&=\sum_{t} \boldsymbol{w}^{T}\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w} \boldsymbol{r}^{t} \\
&=\boldsymbol{w}^{T} \mathbf{S}_{1} \boldsymbol{w}
\end{aligned}
$$

Linear methods

Linear Discriminant Analysis (LDA)

$$
\begin{aligned}
& \left(m_{1}-m_{2}\right)^{2}=\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
& =\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w} \\
& s_{1}^{2}=\sum_{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}-m_{1}\right)^{2} \boldsymbol{r}^{t} \\
& =\sum_{t} \boldsymbol{w}^{T}\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w} r^{t} \\
& =\boldsymbol{w}^{T} \mathbf{S}_{1} \boldsymbol{w} \quad \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}
\end{aligned}
$$

Linear methods

Linear Discriminant Analysis (LDA)

$$
\begin{aligned}
&\left(m_{1}-m_{2}\right)^{2}=\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
&=\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
&=\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w} \\
& s_{1}^{2}=\sum_{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}-m_{1}\right)^{2} \boldsymbol{r}^{t} \\
&=\sum_{t} \boldsymbol{w}^{T}\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w} r^{t} \\
&=\boldsymbol{w}^{T} \mathbf{S}_{1} \boldsymbol{w} \\
& s_{1}^{2}+s_{2}^{2}=\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w} \quad \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}
\end{aligned}
$$

The objective becomes:

$$
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}=\frac{\left|\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right|^{2}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}
$$

Linear methods

Linear Discriminant Analysis (LDA)

The objective becomes:

$$
\begin{array}{r}
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}=\frac{\left|\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right|^{2}}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}} \\
\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}}\left(2\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)-\frac{\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)}{\boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}} \mathbf{S}_{W} \boldsymbol{w}\right)=0
\end{array}
$$

Given that $\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) / \boldsymbol{w}^{T} \mathbf{S}_{W} \boldsymbol{w}$ is a constant, we have $\boldsymbol{w}=c \mathbf{S}_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$ just take $c=1$ and find \boldsymbol{w}

Linear methods

Example: Face recognition

PCA and LDA are commonly used to extract features for face recognition.

Basis of eigenface (PCA):

Basis of Fisherface (LDA):

Manifold learning

Manifold learning

Manifold learning

A low intrinsic dimensional data embedded in a high dimensional space
cause a bad distance measure

Manifold learning

ISOMAP

1. construct a neighborhood graph (kNN and ε-NN)
2. calculate distance matrix as the shortest path on the graph

3. apply MDS on the distance matrix

Manifold learning

Optdigits after Isomap (with neighborhood graph).

Manifold learning

Local Linear Embedding (LLE):

1. find neighbors for each instance
2. calculate a linear reconstruction for an instance

$$
\sum_{r}\left\|\boldsymbol{x}^{r}-\sum_{s} \mathbf{W}_{r s} \boldsymbol{X}_{(r)}^{s}\right\|^{2}
$$

3. find low dimensional instances preserving the reconstruction

$$
\sum_{r}\left\|\boldsymbol{z}^{r}-\sum_{s} \mathbf{W}_{r s} \boldsymbol{z}^{s}\right\|^{2}
$$

Manifold learning

Manifold learning

more manifold learning examples

Manifold learning

more manifold learning examples

Other feature extraction methods

Most feature extractions are case specific

Convolutional Neural Networks (CNN/LeNet) for general image feature extraction

A summary of approaches

