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Previously...

Conditional Probability

Conditional Independence

Bayesian Network:  
a network of conditional independence



Constructing Bayesian networks  

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . ,Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) = Πn
i = 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i = 1P(Xi|Parents(Xi)) (by construction)
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Example  Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B,A, J, M) = P (E|A)? No
P (E|B,A, J, M) = P (E|A,B)? Yes
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Example: Car diagnosis  
Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick
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Compact conditional distributions  

Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨ Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.  
Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . . Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

⇒ P (X|U1 . . . Uj,¬Uj+1 . . .¬Uk) = 1 − Πj
i =1qi

Cold F lu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 × 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 × 0.1
T T F 0.88 0.12 = 0.6 × 0.2
T T T 0.988 0.012 = 0.6 × 0.2 × 0.1

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks  Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous child variables  Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P (Cost = c|Harvest = h, Subsidy? = true)

= N(ath + bt, σt)(c)

=
1

σt

√
2π

exp
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1

2
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⎜⎜⎝
c − (ath + bt)

σt

⎞

⎟⎟⎠

2
⎞

⎟⎟⎟⎠

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Continuous child variables
Continuous child variables

0
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0.1
0.15
0.2
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0.3
0.35

Cost
Harvest

P(Cost|Harvest,Subsidy?=true)

All-continuous network with LG distributions
⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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Discrete variable w/ continuous parents  Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” threshold:
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Probit distribution uses integral of Gaussian:
Φ(x) = ∫x

−∞ N(0, 1)(x)dx
P (Buys? = true | Cost = c) = Φ((−c + µ)/σ)

Chapter 14.1–3 26



Why the probit?  
Why the probit?

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject to noise

Buys?

Cost Cost Noise
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Discrete variable contd.  Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P (Buys? = true | Cost = c) =
1

1 + exp(−2−c+µ
σ )

Sigmoid has similar shape to probit but much longer tails:
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Inference in Bayesian networks



Inference tasks
Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge = empty, Lights = on, Starts= false)

Conjunctive queries: P(Xi,Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Exact inference

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
B E

J

A

M

P(B|j, m)
= P(B, j, m)/P (j, m)
= αP(B, j,m)
= α Σe Σa P(B, e, a, j, m)

Rewrite full joint entries using product of CPT entries:
P(B|j, m)
= α Σe Σa P(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B) Σe P (e) Σa P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference by enumeration



Enumeration algorithm  Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X ))

function Enumerate-All(vars,e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P (y | Pa(Y )) × Enumerate-All(Rest(vars),e)
else return

∑
y P (y | Pa(Y )) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y
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Evaluation tree  
Evaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e
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Inference by variable elimination  
Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j, m)
= αP(B)

︸ ︷︷ ︸
B

Σe P (e)
︸ ︷︷ ︸

E

Σa P(a|B, e)
︸ ︷︷ ︸

A

P (j|a)
︸ ︷︷ ︸

J

P (m|a)
︸ ︷︷ ︸

M
= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)fM(a)
= αP(B)ΣeP (e)ΣaP(a|B, e)fJ(a)fM(a)
= αP(B)ΣeP (e)ΣafA(a, b, e)fJ(a)fM(a)
= αP(B)ΣeP (e)fĀJM(b, e) (sum out A)
= αP(B)fĒĀJM(b) (sum out E)
= αfB(b)× fĒĀJM(b)
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Variable elimination: Basic operations  
Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Σxf1 × · · · × fk = f1 × · · · × fi Σx fi+1 × · · · × fk = f1 × · · · × fi × fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj, y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj, y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f(a, b, c)
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Variable elimination algorithm  

Variable elimination algorithm

function Elimination-Ask(X,e, bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . , Xn)

factors← [ ]; vars←Reverse(Vars[bn])
for each var in vars do

factors← [Make-Factor(var ,e)|factors]
if var is a hidden variable then factors←Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))
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Irrelevant variables  

Irrelevant variables

Consider the query P (JohnCalls|Burglary = true)
B E

J

A

M

P (J |b) = αP (b)
∑

e
P (e)

∑

a
P (a|b, e)P (J |a)

∑

m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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Irrelevant variables contd.  

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E
B E

J

A

M

For P (JohnCalls|Alarm = true), both
Burglary and Earthquake are irrelevant
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Complexity of exact inference  Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of variable elimination are O(dkn)

Multiply connected networks:
– can reduce 3SAT to exact inference ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L

L
1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D
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Approximate inference

Inference by stochastic simulationInference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S

Coin

0.52) Compute an approximate posterior probability P̂
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior
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About random number generation

How to generate a discrete distribution from the 
uniform distribution?

given U[0,1] 

generate A 30%, B 60%, C 10%



About random number generation

How to generate a continuous distribution from the 
uniform distribution?

given U[0,1] 

generate N(0,1)



About random number generation

How to generate a discrete distribution from a 
discrete distribution?

given A,B,C 33.33% 

generate A,B,C,D  25%



Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  Example
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Sampling from an empty network  

Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi))
given the values of Parents(Xi) in x

return x
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Sampling from an empty network contd.  Sampling from an empty network contd.

Probability that PriorSample generates a particular event
SPS(x1 . . . xn) = Πn

i = 1P (xi|parents(Xi)) = P (x1 . . . xn)
i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn

Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

That is, estimates derived from PriorSample are consistent

Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)
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Conditional Probability: Rejection samplingRejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(⟨8, 19⟩) = ⟨0.296, 0.704⟩

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling  

Analysis of rejection sampling

P̂(X|e) = αNPS(X, e) (algorithm defn.)
= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ P(X, e)/P (e) (property of PriorSample)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!
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Likelihood weighting  Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi | parents(Xi))
else xi← a random sample from P(Xi | parents(Xi))

return x, w
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting example  
Likelihood weighting example
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Likelihood weighting analysis  Likelihood weighting analysis

Sampling probability for WeightedSample is
SWS(z, e) = Πl

i = 1P (zi|parents(Zi))
Note: pays attention to evidence in ancestors only

Cloudy

RainSprinkler

 Wet
Grass

⇒ somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z, e) = Πm

i = 1P (ei|parents(Ei))

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i = 1P (zi|parents(Zi)) Πm

i = 1P (ei|parents(Ei))
= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC  Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi |mb(Zi))

given the values of MB(Zi) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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The Markov chain  The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see
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MCMC example contd.  
MCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(⟨31, 69⟩) = ⟨0.31, 0.69⟩

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling  
Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet
Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Summary  

Summary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:
– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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