Artificial Intelligence, cs, Nanjing University Spring, 2017, Yang Yu

Lecture 8: Knowledge 2

http://cs.nju.edu.cn/yuy/course_ai17.ashx

function Hybrid-Wumpus-AgEnt (percept) returns an action
inputs: percept, a list, [stench,breeze, glitter,bump,scream]
persistent: $K B$, a knowledge base, initially the atemporal "wumpus physics" t, a counter, initially 0 , indicating time plan, an action sequence, initially empty
Tell($K B$, Make-Percept-Sentence (percept, t))
Tell the $K B$ the temporal "physics" sentences for time t
safe $\leftarrow\left\{[x, y]: \operatorname{AsK}\left(K B, O K_{x, y}^{t}\right)=\right.$ true $\}$
if $\operatorname{AsK}\left(K B\right.$, Glitter $\left.^{t}\right)=$ true then plan $\leftarrow[$ Grab $]+$ PLAN-RoUTE $($ current,$\{[1,1]\}$, safe $)+[$ Climb $]$
if plan is empty then
unvisited $\leftarrow\left\{[x, y]: \operatorname{AsK}\left(K B, L_{x, y}^{t^{\prime}}\right)=\right.$ false for all $\left.t^{\prime} \leq t\right\}$
plan $\leftarrow \operatorname{PLAN}-\operatorname{RoUTE}($ current, unvisited \cap safe, safe)
if plan is empty and $\operatorname{Ask}\left(K B\right.$, HaveArrow $\left.{ }^{t}\right)=$ true then possible_wumpus $\leftarrow\left\{[x, y]: \operatorname{Ask}\left(K B, \neg W_{x, y}\right)=\right.$ false $\}$ plan \leftarrow PLAN-SHOT (current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe $\leftarrow\left\{[x, y]: \operatorname{Ask}\left(K B, \neg O K_{x, y}^{t}\right)=\right.$ false $\}$
plan \leftarrow PLAN-ROUTE (current, unvisited \cap not_unsafe, safe)
if plan is empty then
plan $\leftarrow \operatorname{PLAN}-\operatorname{RoUTE}($ current,$\{[1,1]\}$, safe $)+[$ Climb $]$
action $\leftarrow \operatorname{POP}($ plan $)$
Tell ($K B$, Make-Action-Sentence(action, t))
$t \leftarrow t+1$
return action
function PLAN-ROUTE (current, goals,allowed) returns an action sequence inputs: current, the agent's current position goals, a set of squares; try to plan a route to one of them allowed, a set of squares that can form part of the route
problem \leftarrow Route-Problem (current, goals,allowed)
return A*-Graph-SEARCH(problem)

Pros and cons of propositional logic

(2) Propositional logic is declarative: pieces of syntax correspond to facts
(3) Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
(2) Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
(2) Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
(2) Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares"
except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown degree of belief
Probability theory	facts	known interval value
Fuzzy logic	facts + degree of truth	kno

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,...
Predicates Brother, $>, \ldots$
Functions Sqrt, LeftLegOf,...
Variables $\quad x, y, a, b, \ldots$
Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
Equality
Quantifiers $\quad \forall \exists$

Atomic sentences

Atomic sentence $=\operatorname{predicate}^{\text {term }}{ }_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$

$$
\begin{aligned}
\text { Term }= & \text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or constant or variable }
\end{aligned}
$$

E.g., Brother(KingJohn, RichardTheLionheart)
$>($ Length $($ LeftLegOf(Richard $))$, Length(LeftLegOf(KingJohn $))$)

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)
$>(1,2) \vee \leq(1,2)$
$>(1,2) \wedge \neg>(1,2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations among them
Interpretation specifies referents for
constant symbols \rightarrow objects predicate symbols \rightarrow relations
function symbols \rightarrow functional relations
An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term ${ }_{n}$ are in the relation referred to by predicate

Models for FOL: Example

Consider the interpretation in which Richard \rightarrow Richard the Lionheart John \rightarrow the evil King John
Brother \rightarrow the brotherhood relation
Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:
For each number of domain elements n from 1 to ∞
For each k-ary predicate P_{k} in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

Universal quantification

$\forall\langle$ variables〉 〈sentence〉
Everyone at Berkeley is smart：
$\forall x \operatorname{At}(x$, Berkeley $) \Rightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking，equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn, Berkeley }) \Rightarrow \text { Smart }(\text { KingJohn })) \\
\wedge & (\text { At }(\text { Richard, Berkeley }) \Rightarrow \text { Smart }(\text { Richard })) \\
\wedge & (\text { At }(\text { Berkeley }, \text { Berkeley }) \Rightarrow \text { Smart }(\text { Berkeley })) \\
\wedge & \ldots
\end{aligned}
$$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \quad \operatorname{At}(x, \text { Berkeley }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

$\exists\langle$ variables $\rangle\langle$ sentence \rangle
Someone at Stanford is smart:
$\exists x \operatorname{At}(x, \operatorname{Stanford}) \wedge \operatorname{Smart}(x)$
$\exists x P \quad$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn }, \text { Stanford }) \wedge \operatorname{Smart}(\text { KingJohn })) \\
\vee & (\text { At }(\text { Richard }, \text { Stanford }) \wedge \text { Smart }(\text { Richard })) \\
\vee & (\text { At }(\text { Stanford }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Stanford })) \\
\vee & \ldots
\end{aligned}
$$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \operatorname{At}(x, \text { Stanford }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

$\forall x \forall y$ is the same as $\forall y \forall x$ (why??)
$\exists x \exists y$ is the same as $\exists y \exists x \quad$ (why??)
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other
$\forall x \operatorname{Likes}(x$, IceCream)

$$
\begin{aligned}
& \exists x \\
& \neg \operatorname{Likes}(x, \text { IceCream }) \\
& \neg \forall x \operatorname{Likes}(x, \text { Broccoli })
\end{aligned}
$$

$\exists x \operatorname{Likes}(x$, Broccoli)

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y \quad \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \quad \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent $(p s, y)$

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term m_{1} and term $_{2}$ refer to the same object
E.g., $1=2$ and $\forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqrt}(x))=x$ are satisfiable $2=2$ is valid
E.g., definition of (full) Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \quad \text { Parent }(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB, Percept $([$ Smell, Breeze, None $], 5))$
$\operatorname{Ask}(K B, \exists a \operatorname{Action}(a, 5))$
I.e., does $K B$ entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \leftarrow$ substitution (binding list)
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary, $y /$ Bill $\}$
$S \sigma=$ Smarter(Hillary, Bill)
Ask($K B, S$) returns some/all σ such that $K B \models S \sigma$

Knowledge base for the wumpus world

"Perception"
$\forall b, g, t \operatorname{Percept}([S m e l l, b, g], t) \Rightarrow S m e l t(t)$
$\forall s, b, t \operatorname{Percept}([s, b, G l i t t e r], t) \Rightarrow \operatorname{AtGold}(t)$
Reflex: $\forall t$ AtGold $(t) \Rightarrow$ Action $(G r a b, t)$
Reflex with internal state: do we have the gold already?
$\forall t \operatorname{AtGold}(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow \operatorname{Action}(G r a b, t)$
Holding (Gold, t) cannot be observed
\Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:
$\forall x, t \operatorname{At}($ Agent $, x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x)$
$\forall x, t$ At (Agent, $x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)$
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
$\operatorname{Result}(a, s)$ is the situation that results from doing a in s

Describing actions I

"Effect" axiom—describe changes due to action $\forall s$ AtGold $(s) \Rightarrow$ Holding (Gold, Result $(G r a b, s))$
"Frame" axiom—describe non-changes due to action
$\forall s$ HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))
Frame problem: find an elegant way to handle non-change
(a) representation-avoid frame axioms
(b) inference-avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveatswhat if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequenceswhat about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):
P true afterwards $\Leftrightarrow \quad$ an action made P true
$\vee \quad P$ true already and no action made P false]

For holding the gold:

$$
\begin{aligned}
& \forall a, s \operatorname{Holding}(\operatorname{Gold}, \text { Result }(a, s)) \Leftrightarrow \\
& \quad[(a=\operatorname{Grab} \wedge \text { AtGold }(s)) \\
& \quad \vee(\text { Holding }(\text { Gold }, s) \wedge a \neq \text { Release })]
\end{aligned}
$$

Making plans

Initial condition in KB :

$$
\begin{aligned}
& \text { At }\left(\text { Agent, }[1,1], S_{0}\right) \\
& \operatorname{At}\left(\text { Gold, }[1,2], S_{0}\right)
\end{aligned}
$$

Query: $\operatorname{Ask}(K B, \exists s$ Holding $($ Gold, $s))$
i.e., in what situation will I be holding the gold?

Answer: $\left\{s / \operatorname{Result}\left(G r a b, \operatorname{Result}\left(\right.\right.\right.$ Forward, $\left.\left.\left.S_{0}\right)\right)\right\}$
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_{0} and that S_{0} is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
PlanResult (p, s) is the result of executing p in s
Then the query $\operatorname{Ask}\left(K B, \exists p \operatorname{Holding}\left(\operatorname{Gold}, \operatorname{PlanResult}\left(p, S_{0}\right)\right)\right)$ has the solution $\{p /[$ Forward, Grab $]\}$

Definition of PlanResult in terms of Result:

$$
\begin{aligned}
& \forall s \text { PlanResult }([], s)=s \\
& \forall a, p, s \text { PlanResult }([a \mid p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))
\end{aligned}
$$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world
Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

A brief history of reasoning

450B.C.	Stoics
322B.c.	Aristotle
1565	Cardano
1847	Boole
1879	Frege
1922	Wittgenstein
1930	Gödel
1930	Herbrand
1931	Gödel
1960	Davis/Putnam
1965	Robinson

propositional logic, inference (maybe)
"syllogisms" (inference rules), quantifiers
probability theory (propositional logic + uncertainty)
propositional logic (again)
first-order logic
proof by truth tables
\exists complete algorithm for FOL
complete algorithm for FOL (reduce to propositional)
$\neg \exists$ complete algorithm for arithmetic
"practical" algorithm for propositional logic
"practical" algorithm for FOL—resolution

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v \alpha}{\operatorname{SuBST}(\{v / g\}, \alpha)}
$$

for any variable v and ground term g
E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greed}(x) \Rightarrow \operatorname{Evil}(x)$ yields

$$
\begin{aligned}
& \operatorname{King}(\text { John }) \wedge \operatorname{Greedy}(\text { John }) \Rightarrow \text { Evil }(\text { John }) \\
& \text { King }(\text { Richard }) \wedge \text { Greedy }(\text { Richard }) \Rightarrow \text { Evil }(\text { Richard }) \\
& \text { King }(\text { Father }(\text { John })) \wedge \operatorname{Greedy}(\text { Father }(\text { John })) \Rightarrow \text { Evil }(\text { Father }(\text { John }))
\end{aligned}
$$

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\operatorname{SuBST}(\{v / k\}, \alpha)}
$$

E.g., $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $)$ yields

$$
\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}, \text { John }\right)
$$

provided C_{1} is a new constant symbol, called a Skolem constant
Another example: from $\exists x d\left(x^{y}\right) / d y=x^{y}$ we obtain

$$
d\left(e^{y}\right) / d y=e^{y}
$$

provided e is a new constant symbol

Instantiation

UI can be applied several times to add new sentences; the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence; the new KB is not equivalent to the old,
but is satisfiable iff the old $K B$ was satisfiable

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forallx King (x)^Greedy(x) => Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

Instantiating the universal sentence in all possible ways, we have

```
King(John)^Greedy(John) => Evil(John)
King(Richard)}\wedgeGreedy(Richard) => Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to propositional inference

Claim: a ground sentence* is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailment Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositional KB

Idea: For $n=0$ to ∞ do create a propositional KB by instantiating with depth- n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed
Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

```
\(\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)\)
King(John)
\(\forall y\) Greedy \((y)\)
Brother(Richard, John)
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations With function symbols, it gets nuch much worse!

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and $\operatorname{Greedy}(y)$
$\theta=\{x / J o h n, y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John, x)	Knows(John, Jane)	\{x/Jane $\}$
Knows(John, x)	Knows(y, OJ)	$\{x / O J, y / J o h n\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y / J o h n, x / M o t h e r(J o h n)\}$
Knows(John, x)	Knows($x, O J$)	fail

Standardizing apart eliminates overlap of variables, e.g., Knows $\left(z_{17}, O J\right)$

Generalized Modus Ponens（GMP）

（前件推理）

$p_{1}{ }^{\prime}$ is $\operatorname{King}(\operatorname{John}) \quad p_{1}$ is $\operatorname{King}(x)$
$p_{2}{ }^{\prime}$ is $\operatorname{Greedy}(y) \quad p_{2}$ is $\operatorname{Greedy}(x)$
θ is $\{x / J o h n, y / J o h n\} q$ is $\operatorname{Evil}(x)$
$q \theta$ is $\operatorname{Evil}(J o h n)$
GMP used with KB of definite clauses（exactly one positive literal）
All variables assumed universally quantified

Soundness of GMP

Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime}, \quad\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models q \theta
$$

provided that $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i
Lemma: For any definite clause p, we have $p \models p \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and $2, q \theta$ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal
... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)$:
Owns (Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West

$$
\forall x \quad \operatorname{Missile}(x) \wedge O w n s(\text { Nono }, x) \Rightarrow \text { Sells }(\text { West }, x, \text { Nono })
$$

Missiles are weapons:

$$
\operatorname{Missile}(x) \Rightarrow W e a p o n(x)
$$

An enemy of America counts as "hostile":
$\operatorname{Enemy}(x$, America $) \Rightarrow \operatorname{Hostile}(x)$
West, who is American ...
American(West)
The country Nono, an enemy of America . . .
Enemy(Nono, America)

Forward chaining algorithm

function FOL-FC- $\operatorname{Ask}(K B, \alpha)$ returns a substitution or false

repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do

$$
\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)
$$

for each θ such that $\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta$
for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$
$q^{\prime} \leftarrow \operatorname{Subst}(\theta, q)$
if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do
add q^{\prime} to new
$\phi \leftarrow \operatorname{Unify}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog $=$ first-order definite clauses + no functions (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^{k}$ literals

May not terminate in general if α is not entailed
This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added literal
Matching itself can be expensive
Database indexing allows $O(1)$ retrieval of known facts e.g., query Missile(x) retrieves Missile $\left(M_{1}\right)$

Matching conjunctive premises against known facts is NP-hard
Forward chaining is widely used in deductive databases

Hard matching example

$$
\begin{aligned}
& \text { Diff(wa, nt) } \wedge \text { Diff }(w a, s a) \wedge \\
& \operatorname{Diff}(n t, q) \operatorname{Diff}(n t, s a) \wedge \\
& \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge \\
& \text { Diff(} n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \\
& \text { Diff(} v, s a) \Rightarrow \text { Colorable () } \\
& \text { Diff(Red, Blue) Diff(Red, Green) } \\
& \text { Diff(Green, Red) Diff(Green, Blue) } \\
& \text { Diff(Blue, Red) Diff(Blue, Green) }
\end{aligned}
$$

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function $\mathrm{FOL}-\mathrm{BC}-\mathrm{Ask}(K B$, goals, $\theta)$ returns a set of substitutions inputs: $K B$, a knowledge base
goals, a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution $\}$
local variables: answers, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SuBst}(\theta, \operatorname{First}($ goals $))$
for each sentence r in $K B$
where $\operatorname{StandardizE}-\operatorname{Apart}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
new_goals $\leftarrow\left[p_{1}, \ldots, p_{n} \mid \operatorname{REST}(\right.$ goals $\left.)\right]$
answers $\leftarrow \mathrm{FOL}-\mathrm{BC}-\mathrm{Ask}\left(K B\right.$, new_goals, $\left.\operatorname{Compose}\left(\theta^{\prime}, \theta\right)\right) \cup$ answers
return answers

Backward chaining example

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space!)
Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming

1. Identify problem
2. Assemble information
3. Tea break
4. Encode information in KB
5. Encode problem instance as facts
6. Ask queries
7. Find false facts

Ordinary programming Identify problem
Assemble information
Figure out solution
Program solution
Encode problem instance as data
Apply program to data
Debug procedural errors

Should be easier to debug Capital(NewYork, US) than $x:=x+2$!

Prolog systems

Basis: backward chaining with Horn clauses + bells \& whistles Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques \Rightarrow approaching a billion LIPS

$$
\begin{aligned}
& \text { Program }=\text { set of clauses }=\text { head }:- \text { literal }_{1}, \ldots \text { literal }_{n} . \\
& \quad \text { criminal }(X):-\operatorname{american}(X) \text {, weapon(Y), sells }(X, Y, Z) \text {, hostile }(Z) .
\end{aligned}
$$

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
Closed-world assumption ("negation as failure")
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails

Prolog examples

Depth-first search from a start state X :

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

No need to loop over S: successor succeeds for each
Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
    A=[1] B=[2]
    A=[1,2] B=[]
```


Prolog example

Let's try

member(1,[1,2,3,4,5])

query: grandfather(X,yuqing)?

male(di).

male(jianbo).
female(xin).
female(yuan).
female(yuqing).
father(jianbo,di).
father(di,yuqing).
mother(xin,di).
mother(yuan,yuqing).
grandfather(X,Y):-father(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),father(Z,Y).
daughter(X,Y):-father(X,Y),female(Y).

Resolution: brief summary

Full first-order version:

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where $\operatorname{Unify}\left(\ell_{i}, \neg m_{j}\right)=\theta$.
For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x) \\
& \operatorname{Rich}(\text { Ken })
\end{aligned} \frac{\text { Unhappy }(\text { Ken })}{}
$$

with $\theta=\{x / K e n\}$
Apply resolution steps to $C N F(K B \wedge \neg \alpha)$; complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \quad \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications

$$
\forall x \quad[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \quad \neg \exists x, p \equiv \forall x \neg p$:

$$
\begin{aligned}
& \forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
\end{aligned}
$$

Conversion to CNF

3. Standardize variables: each quantifier should use a different one
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \wedge over \vee :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Resolution proof: definite clauses

```
\negAmerican(x) v \negWeapon(y) v ᄀSells(x,y,z) v ᄀHostile(z) v Criminal(x)
```

ㄱ Criminal(West)

