Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 2:

Data, measurements, and visualization

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

What is data

Data are collected by mapping entities in the domain of interest to symbolic representation by means of some measurement procedure, which associates the value of a variable with a given property of an entity.
[D. Hand et al. , Principles of Data Mining]

Object and attribute

feature/property/attribute

Object and attribute

feature/property/attribute

Object and attribute

Object and attribute

Object and attribute

name	color	shape	weight	PoO	assortment	transport	preservation	growing	weather	taste
A1	red	round	200	Yantai	H	express	frozen	150	sunny	sweet

Data quality

	sufficient features								
	Name	Thread pitch (mm)	Minor diameter tolerance	Nominal diameter (mm)	Head shape	Price for 50 screws	Available at factory outlet?	Number in stock	Flat or Phillips head?
	M4	0.7	4 g	4	Pan	\$10.08	Yes	276	Flat
UT-1C1E1t	M5	0.8	4 g	5	Round	\$13.89	Yes	183	Both
	M6	1	5 g	6	Button	\$10.42	Yes	1043	Flat
210 11	M8	1.25	5 g	8	Pan	\$11.98	No	298	Phillips
	M10	1.5	6 g	10	Round	\$16.74	Yes	488	Phillips
Of	M12	1.75	7 g	12	Pan	\$18.26	No	998	Flat
a o O C ata set=	M14	2	7 g	14	Round	\$21.19	No	235	Phillips
11 niace	M16	2	8 g	16	Button	\$23.57	Yes	292	Both
	M18	2.1	8 g	18	Button	\$25.87	No	664	Both
cann ${ }^{\text {a }}$	M20	2.4	8 g	20	Pan	\$29.09	Yes	486	Both
a1111	M24	2.55	9 g	24	Round	\$33.01	Yes	982	Phillips
$10+0$	M28	2.7	10 g	28	Button	\$35.66	No	1067	Phillips
ala	M36	3.2	12 g	36	Pan	\$41.32	No	434	Both
	M50	4.5	15 g	50	Pan	\$44.72	No	740	Flat
				O1'		e			

garbage in garbage out

Types of attribute

- Nominal
- Ordinal
- Numerical
why should we care about the type proper description proper approach

Types of attribute

Nominal / categorical / discrete:

The values of the attribute are only symbols, which is used to distinguish each other.

- Finite number of candidates
- No order information
- No algebraic operation can be conducted

$$
\begin{aligned}
\text { e.g., }\{1,2,3\} & \\
& \sim\{\text { Red, Green, Blue }\} \\
& \sim\{\text { Milk, Bread, Coffee }\}
\end{aligned}
$$

Types of attribute

Ordinal:

The values of the attribute is to indicate certain ordering relationship resided in the attribute.

- Order is more important than value!
- No algebraic operation can be conducted except those related to sorting.

$$
\begin{aligned}
\text { e.g., } & \{1,2,3\} \\
& \sim\{\text { Fair, Good, Excellent }\} \\
& \sim\{\text { Irrelevant, Relevant, Highly relevant }\}
\end{aligned}
$$

Types of attribute

Numerical / real:

The values of the attribute is to indicate the quantity of some predefined unit.

- There should be a basic unit.
- The value is how many copies of the basic unit
- Some algebraic operation can be conducted w.r.t the meaning of the attribute

$$
\begin{array}{ll}
\text { e.g., } & 4 \mathrm{~km}=4 * 1 \mathrm{~km} \\
4 \mathrm{~km} \text { is twice as longer as } 2 \mathrm{~km}
\end{array}
$$

Data transformation

- Legitimate transformation
- Normalization
- Transformation of attribute type

Legitimate transformation

- Nominal scale:

Bijective mapping (=)

$$
\text { e.g., } 1 \rightarrow 4
$$

- Ordinal scale: Monotonic increasing ($<$) e.g., $\{1,2,3\} \rightarrow\{2,6,10\}$
- Ratio scale: Multiplication (*)

$$
\text { e.g., } 2 \rightarrow 20
$$

- Interval scale:

Affine (*, +)

$$
\text { e.g., } 2 \rightarrow 21
$$

Normalization

Normalization is to scale the (numerical) attribute values to some specified range

- min-max normalization

$$
v^{\prime}=\frac{v-L}{U-L}\left(U^{\prime}-L^{\prime}\right)+L^{\prime}
$$

out of bound risk

- z-score normalization

$$
\begin{array}{ll}
v^{\prime}=\frac{v-\mu}{\sigma} & \begin{array}{l}
\mu \\
\sigma^{2}--~ m e a n ~
\end{array} \\
\sigma^{2} \text { variance }
\end{array}
$$

- decimal scaling normalization
$v^{\prime}=\frac{v}{10^{j}} \quad j$ is the smallest integer such that $\max \left\{\left|v^{\prime}\right|\right\} \leq 1$

Transformation of attribute type

discretization:

 numerical --> nominal/ordinal
Natural partitioning (unsupervised):

The 3-4-5 rule: For the most significant digit,

- if it covers $\{3,6,7,9\}$ distinct values then divide it into 3 equi-width interval;
- if it covers $\{2,4,8\}$ distinct values then divide it into 4 equi-width interval;
- if it covers $\{1,5,10\}$ distinct values then divide it into 5 equi-width interval

Transformation of attribute type

discretization:
numerical --> nominal/ordinal
Entropy-based discretization (supervised):

Transformation of attribute type

discretization: numerical --> nominal/ordinal
Entropy-based discretization (supervised):

Entropy: $H(X)=-\sum_{i} p_{i} \ln \left(p_{i}\right) \quad p_{1}=\frac{\text { \#blue }}{\text { \#all }}$
Entropy after split:

$$
I(X ; \text { split })=\frac{\# \text { left }}{\# \text { all }} H(\text { left })+\frac{\# \text { right }}{\# \text { all }} H(\text { right })
$$

Information gain:

$$
\operatorname{Gain}(X ; \operatorname{split})=H(X)-I(X ; \text { split })>\theta
$$

Information Gain

$$
\begin{aligned}
I(y, b)= & D_{K L}(p(y, b) \| p(y) p(b)) \\
= & \int_{\mathcal{B}} \int_{\mathcal{Y}} p(y \mid b) p(b) \log p(y \mid b) \mathrm{d} y \mathrm{~d} b \\
& -\int_{\mathcal{B}} \int_{\mathcal{Y}} p(y, b) \log p(y) \mathrm{d} y \mathrm{~d} b \\
= & H_{y}-\sum_{b \in\{L, R\}} p(b) H_{y \mid b} .
\end{aligned}
$$

Transformation of attribute type

continuous-lization:
nominal --> continuous/ordinal

How to assign values to nominal symbols?

Transformation of attribute type

continuous-lization:
nominal --> continuous/ordinal

How to assign values to nominal symbols?

red	$->1$
orange	$->2$
green	$->8$
blue	$->10$

Similarity and distance

Similarity is an essential concept in DM distance is a commonly used similarity

What is distance

distance is a function of two objects satisfying

- Non-negativity:

$$
d(i, j) \geq 0, d(i, i)=0
$$

- Symmetry:

$$
d(i, j)=d(j, i)
$$

- Triangle inequality: $\quad d(i, j) \leq d(i, k)+d(k, j)$

Common similarity functions

Minkowski distance:
order p (p-norm) $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
d(\boldsymbol{x}, \boldsymbol{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

special cases:
$p=2$: Euclidean distance

$$
\begin{gathered}
\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \\
\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
\end{gathered}
$$

$p=1$: Manhattan distance

$$
p->+\infty:
$$

$$
\max _{i=1,2, \ldots, n}\left|x_{i}-y_{i}\right|
$$

Questions: what is the effect of normalization? what if $p<1$?

Common similarity functions

weighted Minkowski distance:

$$
d(\boldsymbol{x}, \boldsymbol{y})=\left(\sum_{i=1}^{n} w_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Mahalanobis distance:

$$
\begin{aligned}
& d(\boldsymbol{x}, \boldsymbol{y})=\left((\boldsymbol{x}-\boldsymbol{y})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{y})\right)^{\frac{1}{2}} \\
& \Sigma=\left[\begin{array}{cccc}
\mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right)\right] \\
\mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right)\right] \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right)\right] & \cdots & \mathrm{E}\left[\left(X_{n}-\mu_{n}\right)\left(X_{n}-\mu_{n}\right)\right]
\end{array}\right] .
\end{aligned}
$$

$\Sigma=I$: Euclidean distance

Σ is diagonal: normalized Euclidean $\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-y_{i}\right)^{2}}{\sigma_{i}^{2}}}$

Common similarity functions

Distances/similarities for binary strings:

- Hamming distance

$$
d(01010,01001)=2
$$

- Matching coefficient

$$
\operatorname{Sim}=\frac{n_{1,1}+n_{0,0}}{n_{1,1}+n_{0,0}+n_{1,0}+n_{0,1}}
$$

- Jaccard coefficient

$$
J=\frac{n_{1,1}}{n_{1,1}+n_{1,0}+n_{0,1}}
$$

$n_{0,0}$	$n_{0,1}$
$n_{1,0}$	$n_{1,1}$

- Dice coefficient

$$
D=\frac{2 n_{1,1}}{2 n_{1,1}+n_{1,0}+n_{0,1}}
$$

Common similarity functions

Dealing with nominal attributes

- convert to binary attributes

apple	$(0,0,1)$
orange	$(0,1,0)$
banana	$(1,0,0)$

- VDM (value difference metric)
\#instances having value x in class c

$$
\operatorname{VDM}(x, y)=\sum_{c=1}^{C}\left|\frac{N_{a, x, c}}{N_{a, x}}<\frac{N_{a, y, c}}{N_{a, y}}\right|_{\text {[Wison \& Martines, JAR'97] }}^{q}
$$

"China is like India more than Australia, since they both have large population."

Common similarity functions

Similarity for time series data:

Dynamic Time Wrapping (DTW): minimize the sum of distances of the matched points

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$y_{1}, y_{2}, \ldots, y_{m}$
$d\left(x_{i}, y_{j}\right)$

C)
$d(X, Y)=\sum_{i=1}^{T} d\left(x_{\phi_{i, x}}, y_{\phi_{i, y}}\right)$ minimize -> dynamic programming
pic from http://www.ibrahimkivanc.com/post/Dynamic-Time-Warping.aspx

Why visualization

Data visualization is an important way for identifying deep relationship

- Pros
- straight-forward
- usually interactive
- ideal for sifting through data to find unexpected relation
- Cons
- requires special people to read the results to find unexpected relation
- might not be good for large data sets, too many details may shade the interesting patterns
- The brain processes visual information 60,000 times faster than text.
- 90 percent of information that comes to the brain is visual.
- 40 percent of all nerve fibers connected to the brain are linked to the retina.

@DATA

october, normal, gt-norm, norm, yes, same-lst-yr, low-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker august, normal, gt-norm, norm, yes, same-Ist-two-yrs, scattered, severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker july, normal, gt-norm, norm, yes, same-lst-yr, scattered, severe, fungicide, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec -nde, dna, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
july, normal, gt-norm, norm, yes, same-lst-yt, scattered, severe, none, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-secnde, dna, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
october, normal, gt-norm, norm, yes, same-Ist-two-yrs, scattered, pot-severe, none, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker september, normal, gt-norm, norm, yes, same-Ist-sev-yrs, scattered, pot-severe, none, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, dna, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker september, normal, gt-norm, norm, yes, same-Ist-two-yrs, scattered, pot-severe, fungicide, $90-100$, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker august, normal, gt-norm, norm, no, same-lst-yr, scattered, pot-severe, none, It-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
october, normal, gt-norm, norm, yes, same-lst-sev-yrs, scattered, pot-severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker august, normal, gt-norm, norm, yes, same-lst-two-yrs, scattered, severe, none, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker october, normal, It-norm, gt-norm, yes, same-lst-yr, whole-field, pot-severe, fungicide, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
august, normal, It-norm, norm, no, same-lst-yr, whole-field, pot-severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
july, normal, lt-norm, norm, yes, same-lst-yr, upper-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot october, normal, lt-norm, norm, no, same-lst-sev-yrs, whole-field, pot-severe, fungicide, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
october, normal, It-norm, gt-norm, yes, same-lst-yr, whole-field, pot-severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
september, normal, It-norm, gt-norm, no, same-Ist-sev-yrs, whole-field, pot-severe, fungicide, It-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot october, normal, It-norm, gt-norm, no, diff-Ist-year, upper-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no,

@DATA

october, normal, gt-norm, norm, yes, same-lst-yr, low-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker august, normal, gt-norm, norm, yes, same-Ist-two-yrs, scattered, severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker july, normal, gt-norm, norm, yes, same-lst-yt, scattered, severe, fungicide, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec -nde, dna, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
july, normal, gt-norm, norm, yes, same-lst-yr, scattered, severe, none, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-secnde, dna, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
october, normal, gt-norm, norm, yes, same-lst-two-yrs, scattered, pot-severe, none, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, none, absent, norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker
september, normal, gt-norm, norm, yes, same-Ist-sev-yrs, scattered, pot-severe, none, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, dna, present, firm-and-dry, absent 'one, absent, norm, dy norm, absent, absent, norm, absent, norm, diaporthe-stem-canker september, normal, gt-norm, norm, yes, same-Ist-two-, ttered, pot-sey ingicide, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, above-sec-nde, brown, present, firm-and-dr) nt, none. , norm, dna, norm, absent, absent, norm, absent, norm, diaporthe-stem-canker k-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, aboveaugust, normal, gt-norm, norm, no, same-lst-yr, scattered, pu
sec-nde, brow

august, normal, gt-norm, norm, yes, same-lst-two-yrs, scatt severe, lt-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, above-sec-nde, brown, present, firm-and-dry, absent, n Jsent, norm, orm, absent, absent, norm, absent, norm, diaporthe-stem-canker october, normal, It-norm, gt-norm, yes, same-lst-yr, wl leld, pot-severe, it de, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absen!, absent, norm, absent, norm, charcoal-rot august, normal, lt-norm, norm, no, same-lst-yr, whole-field, pot-severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
july, normal, It-norm, norm, yes, same-lst-yr, upper-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot october, normal, It-norm, norm, no, same-lst-sev-yrs, whole-field, pot-severe, fungicide, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot
october, normal, It-norm, gt-norm, yes, same-lst-yr, whole-field, pot-severe, fungicide, 80-89, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot september, normal, It-norm, gt-norm, no, same-Ist-sev-yrs, whole-field, pot-severe, fungicide, It-80, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, yes, absent, tan, absent, absent, absent, black, present, norm, dna, norm, absent, absent, norm, absent, norm, charcoal-rot october, normal, It-norm, gt-norm, no, diff-Ist-year, upper-areas, pot-severe, none, 90-100, abnorm, abnorm, absent, dna, dna, absent, absent, absent, abnorm, no,

What to visualize

- Displaying single attribute/property mean, median, quartile, percentile, mode, variance, interquartile range, skewness

- Displaying the relationships between two attributes
- Displaying the relationships between multiple attributes
- Displaying important structure of data in a reduced number of dimensions

Displaying single attribute

histogram

Displaying single attribute

histogram

density

Displaying single attribute

histogram

density

Displaying single attribute

Displaying pair of attributes

Scatter plot

Displaying pair of attributes

Scatter plot

loess curve

Displaying pair of attributes

Scatter plot

loess curve

Displaying pair of attributes

Scatter plot

loess curve
ibers.
particular application

Displaying multiple attributes

trellis plot (conditional scatter plot)

Displaying multiple attributes

trellis plot (conditional scatter plot)

scatterplot matrix

Displaying multiple attributes

trellis plot (conditional scatter plot)

scatterplot matrix
parallel coordinates plot

Displaying multiple attributes

trellis plot (conditional scatter plot)

scatterplot matrix
parallel coordinates plot

time series

Displaying multiple attributes

Dimension reduction

- Principle Component Analysis (PCA)

Displaying multiple attributes

Dimension reduction

- Multi-dimensional Scaling (MDS)

Genetic distance

pic from http://www.nwfsc.noaa.gov/publications/techmemos/

Displaying multiple attributes

Dimension reduction

- Manifold learning

Fig. 3. The "Swiss roll" data set, illustrating how Isomap exploits geodesic paths for nonlinear dimensionality reduction. (A) For two arbitrary points (circled) on a nonlinear manifold, their Euclidean distance in the highdimensional input space (length of dashed line) may not accurately reflect their intrinsic similarity, as measured by geodesic distance along the low-dimensional manifold (length of solid curve). (B) The neighborhood graph G constructed in step one of Isomap (with $K=7$ and $N=$

B

C

1000 data points) allows an approximation (red segments) to the true geodesic path to be computed efficiently in step two, as the shortest path in G. (C) The two-dimensional embedding recovered by Isomap in step three, which best preserves the shortest path distances in the neighborhood graph (overlaid). Straight lines in the embedding (blue) now represent simpler and cleaner approximations to the true geodesic paths than do the corresponding graph paths (red).

Displaying link relationship

pic from http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/

min－max和z－score规范化谁会有数据出界的风险？

基于信息熵（entropy）的离散化方法是否需要监督信息 （supervised or unsupervised）？

当 $\mathrm{p}=0.5$ 时Minkowski距离 $\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{0.5}\right)^{2}$ 是否仍然
是距离（distance）？

