Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 3: Machine Learning I Supervised Learning \& Decision Tree

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

Position

The desire of prediction

The desire of prediction

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

weather

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

weather

Predictive modeling

Find a relation between a set of variables (features) to target variables (labels).

Supervised learning/inductive learning

Find a relation between a set of variables (features) to target variables (labels) from finite examples.

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?

$$
\mathcal{X} \quad \rightarrow\{-1,+1\}
$$

ground-truth function f

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

$$
\begin{aligned}
& \text { (color, weight) } \rightarrow \text { sweet ? } \\
& \mathcal{X} \quad \rightarrow\{-1,+1\} \\
& \text { ground-truth function } f \\
& \text { examples/training data: } \\
& \left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} \\
& y_{i}=f\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

Classification

Features: color, weight Label: taste is sweet (positive/+) or not (negative/-)

(color, weight) \rightarrow sweet ?
ground-truth function f
examples/training data:
$\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\}$

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right)
$$

learning: find an f^{\prime} that is close to f

Regression

Features: color, weight Label: price [0,1]

Regression

Features: color, weight Label: price [0,1]

Regression

Features: color, weight Label: price [0,1]

learning: find an f^{\prime} that is close to f

Learning algorithms

Decision tree
Neural networks
Linear classifiers
Bayesian classifiers
Lazy classifiers

Ensemble methods
Handling big data

Why different classifiers? heuristics
viewpoint
performance

Learning algorithm components

Consider a very simple case

color

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

Consider a very simple case

color

\longrightarrow taste ?

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { not-sweet }, & \text { color } \neq \text { red }\end{cases}
$$

Consider a very simple case

color

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	not-sweet
4	not-red	not-sweet
5	not-red	not-sweet
6	half-red	not-sweet
7	red	sweet
8	not-red	not-sweet
9	not-red	not-sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$$
f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { not-sweet }, & \text { color } \neq \mathrm{red}\end{cases}
$$

perfect
but not realistic

Consider a very simple case

id	color	taste
1	red	sweet
2	red	sweet
3	half-red	sweet
4	not-red	sweet
5	not-red	not-sweet
6	half-red	sweet
7	red	not-sweet
8	not-red	not-sweet
9	not-red	sweet
10	half-red	not-sweet
11	red	sweet
12	half-red	not-sweet
13	not-red	not-sweet

what the f^{\prime} would be?

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet, } & \text { color }=\text { not-red }\end{cases}$ not perfect
but how good?

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet }, & \text { color }=\text { not-red }\end{cases}$

not-red

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet }, & \text { color }=\text { half-red } \\ \text { not-sweet, } & \text { color }=\text { not-red }\end{cases}$

1

2
$(1+2+2) / 13=0.3846$

Consider a very simple case

$f^{\prime}= \begin{cases}\text { sweet }, & \text { color }=\text { red } \\ \text { sweet, } & \text { color }=\text { half-red } \\ \text { not-sweet, }, & \text { color }=\text { not-red }\end{cases}$

1

2

not-sweet
training error:
$(1+2+2) / 13=0.3846$
information gain: entropy before split: $H(X)=-\sum_{i}$ ratio $\left.^{\text {(class }}\right)_{i} \ln$ ratio $\left(\right.$ class $\left._{i}\right)=0.6902$ entropy after split: $\quad I(X ;$ split $)=\sum_{i} \operatorname{ratio}^{\left(\text {splitit }_{i}\right) H\left(\text { split }_{i}\right)}$ information gain: $\quad=\frac{4}{13} 0.5623+\frac{4}{13} 0.6931+\frac{5}{13} 0.6730=0.6452$

$$
\operatorname{Gain}(X ; \text { split })=H(X)-I(X ; \text { split })=0.045
$$

A little more complex case

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

what the f^{\prime} would be?

compare features and use the better one
use color only -> known use weight only -> ?

A little more complex case

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

A little more complex case

for every split point

training error:
$(1+2) / 13=0.2307$
information gain:

$$
\begin{gathered}
H(X)=-\sum_{i}{\operatorname{ratio}\left(\text { class }_{i}\right) \ln \operatorname{ratio}\left(\text { class }_{i}\right)=0.6902}^{I(X ; \text { split })=\sum_{i}{\text { ratio }\left(\text { split }_{i}\right) H\left(\text { split }_{i}\right)}^{=} \frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385} \\
\operatorname{Gain}(X ; \operatorname{split})=H(X)-I(X ; \text { split })=0.1517
\end{gathered}
$$

A little more complex case

for every split point

training error:
$(1+2) / 13=0.2307$
information gain:
entropy before split: $H(X)=-\sum_{i}$ ratio $^{\left(\text {class }_{i}\right) \ln \text { ratio }\left(\text { class }_{i}\right)=0.6902}$
entropy after split: $I(X ;$ split $)=\sum_{i}{ }_{i}$ ratio $\left(\right.$ splitit $\left._{i}\right) H\left(\right.$ splitit $\left._{i}\right)$
information gain:

$$
=\frac{5}{13} 0.5004+\frac{8}{13} 0.5623=0.5385
$$

$$
\operatorname{Gain}(X ; \text { split })=H(X)-I(X ; \text { split })=0.1517
$$

A little more complex case

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

what the f^{\prime} would be?

color v.s. best split of weight
$f^{\prime}= \begin{cases}\text { sweet, } & \text { weight }>95 \\ \text { not-sweet, } & \text { weight } \leq 95\end{cases}$

A little more complex case

color

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	half-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

what the f^{\prime} would be?

color v.s. best split of weight
$f^{\prime}= \begin{cases}\text { sweet, } & \text { weight }>95 \\ \text { not-sweet, } & \text { weight } \leq 95\end{cases}$
training error v.s. info-gain non-generalizable feature

Training error v.s. Information gain

training error is less smooth

Training error v.s. Information gain

training error: 4

training error: 4
training error is less smooth

Training error v.s. Information gain

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5192$

training error: 4
information gain: $\mathrm{IG}=H(X)-0.5514$
training error is less smooth

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

the system may not know non-generalizable features
$$
\mathrm{IG}=H(X)-0
$$

Non-generalizable feature

id	color	weight	taste
1	red	110	sweet
2	red	105	sweet
3	half-red	100	sweet
4	not-red	93	sweet
5	not-red	80	not-sweet
6	ralf-red	98	sweet
7	red	95	not-sweet
8	not-red	102	not-sweet
9	not-red	98	sweet
10	half-red	90	not-sweet
11	red	108	sweet
12	half-red	101	not-sweet
13	not-red	89	not-sweet

$$
\begin{aligned}
& \text { the system may not know } \\
& \text { non-generalizable features } \\
& \qquad \mathrm{IG}=H(X)-0
\end{aligned}
$$

Gain ratio as a correction:

$$
\operatorname{Gain} \operatorname{ratio}(X)=\frac{H(X)-I(X ; \text { split })}{I V(\text { split })}
$$

$$
I V(\text { split })=H(\text { split })
$$

A regression case

\longrightarrow price ?

id	color	weight	price
1	red	110	12
2	red	105	10
3	half-red	100	10
4	not-red	93	15
5	not-red	80	5
6	half-red	98	8
7	red	95	8
8	not-red	102	9
9	not-red	98	6
10	half-red	90	7
11	red	108	11
12	half-red	101	12
13	not-red	89	6

what the f^{\prime} would be to minimize:

$$
M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}
$$

A regression case

id	color	weight	price	for color fe
1	red	110	12	
2	red	105	10	red
3	half-red	100	10	${ }^{2}$
4	not-red	93	15	$\begin{array}{ll}12 & 8\end{array}$
5	not-red	80	5	$\left(\begin{array}{rrr}10 & 8\end{array}\right)$
6	half-red	98	8	half-red not-red
7	red	95	8	5
8	not-red	102	9	10
9	not-red	98	6	$\left(\begin{array}{ll}8 & 7\end{array}\right) \quad\left(\begin{array}{lll}5 & 9 & 6\end{array}\right)$
10	half-red	90	7	$(12)\binom{5}{6}$
11	red	108	11	-
12	half-red	101	12	
13	not-red	89	6	

what is the prediction value of each color to minimize the mean square error?
$M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}$

A regression case

what is the prediction value of each color to minimize the mean square error?
$M S E=\frac{1}{n} \sum_{i}\left(f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)\right)^{2}$

A regression case

id	color	weight	price	for color feature:	
1	red	110	12		
2	red	105	10		not-red
3	half-red	100	10		
4	not-red	93	15		
5	not-red	80	5		
6	half-red	98	8		
7	red	95	8		
8	not-red	102	9	$\underbrace{8}_{9.25} \begin{array}{r} 10 \\ 12 \end{array})^{10.25}$	15
10	not-red	98 90	6		$\left(\begin{array}{ccc}5 & 9 & 6\end{array}\right)$
11	red	108	11		6
12	half-red	101	12		8.2
13	not-red	89	6		
		$f^{\prime}=$	$\begin{aligned} & 10.25, \\ & 9.25, \\ & 8.2, \end{aligned}$	$\begin{aligned} & \text { color }=\text { red } \\ & \text { color }=\text { half-red } \\ & \text { color }=\text { not-red } \end{aligned}$	

A regression case

for weight feature:
for any split:

choose the split with minimal MSE

Use multiple features

find a model by find the best feature/best split
but only one feature/split is used

Use multiple features

one feature model: decision stump

hierarchical model uses many features: decision tree

Decision tree model

Decision tree model

find a decision tree that matches the data

Top-down induction

function construct-node(data) :

1. feature, value \leftarrow split-criterion (data)
2. if feature is valid
3. subdata[] $\leftarrow \operatorname{split(data,~feature,~value)~}$
4. for each branch i
5. construct-node (subdata[i])
6. else
7. make a leaf
8. return

Decision tree learning algorithms

ID3: information gain

C4.5: gain ratio, handling missing values

Ross Quinlan

CART: gini index

Jerome H. Friedman

Gini index

Gini index (CART):
Gini: $\operatorname{Gini}(X)=1-\sum_{i} p_{i}^{2}$
Gini after split: $\frac{\text { \#left }}{\# \text { all }}$ Gini(left) $+\frac{\text { \#right }}{\text { \#all }}$ Gini(right)

Split-criterion: stop

Stop criterion: no feature to use

Classification: examples are pure of class
Regression: MSE small enough

DT boundary visualization

decision stump

max depth=2

max depth=12

Oblique decision tree

choose a linear combination in each node:
axis parallel:
$X_{1}>0.5$
oblique:
$0.2 X_{1}+0.7 X_{2}+0.1 X_{3}>0.5$
hard to train

Advantages

Fast to train
samples: m
features: n
feature splits: k depth: $d<n$

Fast to test
training time:
one node: $O(m k n)$
d depth tree: $O\left(2^{d} m k n\right)$
full tree: $\quad O\left(m^{2} k n\right)$
not all features are tested
Regression/Classification Multi-class
Comprehensibility
Nominal and numerical features
Non-parametric, non-metric

To make decision tree less complex
Pre-pruning: early stop

- minimum data in leaf
- maximum depth
- maximum accuracy

Post-pruning: prune full grown DT
reduced error pruning

Reduced error pruning

1. Grow a decision tree
2. For every node starting from the leaves
3. Try to make the node leaf, if does not increase the error, keep as the leaf

could split a validation set out from the training set to evaluate the error

监督学习的目标是否是最小化训练误差？

对于分类问题，当训练数据没有冲突时，决策树学习算法是否一定能取得 0 训练错误率？（冲突样本：两个完全相同的样本却被标记为不同类别）

决策树学习算法是否需要训练样本规范化 （normalization）？

