

Data Mining for M.Sc. students, CS, Nanjing University Fall, 2013, Yang Yu

Lecture 9: Machine Learning VII Neural Networks and Nearest Neighbors

http://cs.nju.edu.cn/yuy/course_dm13ms.ashx

Neural networks

Neuron / perceptron

output a function of sum of input

linear function: $f(\sum_{i} w_{i} x_{i}) = \sum_{i} w_{i} x_{i}$

threshold function:

$$f(\sum_{i} w_i x_i) = I(\sum_{i} w_i x_i > 0)$$

sigmoid function:

$$f(\sum_{i} w_i x_i) = \frac{1}{1 + e^{-\Sigma}}$$

[Minsky and Papert, Perceptrons, 1969]

Marvin Minsky Turing Award 1969

AI Winter

Multi-layer perceptrons

feed-forward network

sigmoid network with one hidden layer can approximate arbitrary function [Cybenko 1989]

$$\hat{y} = F(\boldsymbol{x})$$
 $f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$
gradient descent

error: $E(w) = (F(x) - y)^2$

 $\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i} x_{i}) = \frac{1}{1 + e^{-\Sigma}}$ gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$ $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$

update one weight: $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$

$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - y)^{2}$

$$\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$$
Hayer
$$\partial F(\boldsymbol{x})$$

update one weight: $\Delta w_{i,j} = -\eta^2$ weight of the laster layer $\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$

update one weight:

$$\hat{y} = F(\boldsymbol{x}) \quad f(\sum_{i} w_{i}x_{i}) = \frac{1}{1 + e^{-\Sigma}}$$
gradient descent
error: $E(\boldsymbol{w}) = (F(\boldsymbol{x}) - \boldsymbol{y})^{2}$
update one weight: $\Delta w_{i,j} = -\eta \frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}}$
weight of the laster layer
 $\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})} \frac{\partial F(\boldsymbol{x})}{\partial w_{i,j}}$

weight of the first layer 🤳

 $\frac{\partial E(\boldsymbol{w})}{\partial w_{i,j}} = \frac{\partial E(\boldsymbol{w})}{\partial F(\boldsymbol{x})}$

$\partial E(\boldsymbol{w})$ _	$\partial E(\boldsymbol{w})$	$\partial F(\boldsymbol{x})$	∂HL2	$\partial \mathrm{HL1}$
$\partial w_{i,j}$ –	$\overline{\partial F(\boldsymbol{x})}$	∂HL2	$\partial \mathrm{HL1}$	$\overline{\partial w_{i,j}}$

For each given training example (x, y), do

- 1. Input the instance **x** to the NN and compute the output value o_u of every output unit *u* of the network
- 2. For each network output unit k, calculate its error term δ_k

 $\delta_k \leftarrow o_k (1 - o_k) (y_k - o_k)$

3. For each hidden unit k, calculate its error term δ_h

$$\delta_h \leftarrow o_k(1 - o_k) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight w_{ji} which is the weight associated with the *i*-th input value to the unit *j*

Advantage and disadvantages

Smooth and nonlinear decision boundary

Slow convergence

Many local optima

Best network structure unknown

Hard to handle nominal features

Deep network

autoencoder:

[Hinton and Salakhutdinov, Science 2006]

what looks similar are similar

for classification:

Predict the label as that of the NN or the (weighted) majority of the k-NN

for regression:

Predict the label as that of the NN or the (weighted) average of the k-NN

Search for the nearest neighbor

Linear search

... 000000000

n times of distance calculations O(nk)

for retrieval:

Nearest neighbor classifier

Nearest neighbor classifier

 as classifier, asymptotically less than 2 times of the optimal Bayes error

- naturally handle multi-class
- no training time
- nonlinear decision boundary

slow testing speed for a large training data set

- have to store the training data
- sensitive to similarity function

construction: alternatively choose one dimension, make a split by the median value.

[image from http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html]

linear search on k-d tree:
 search(node,x):

1. if node is a leave, return the distance and the instance

- 2. compare *search*(left branch,x) and *search*(right branch,x)
- 3. return the instance with smaller distance

search(node,x):

- 1. if node is a leave, return the distance and the instance
- 2. if *out-of-best-range*, return infinity distance
- 2. compare *search*(left branch,x) and *search*(right branch,x)
- 3. return the instance with smaller distance

locality sensitive hashing: similar objects in the same bucket

locality sensitive hashing: similar objects in the same bucket

A LSH function family $\mathcal{H}(c, r, P_1, P_2)$ has the following properties for any $x_1, x_2 \in S$

if $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \leq r$, then $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \geq P_1$ similar objects should be hashed in the same bucket with high probability if $||\boldsymbol{x}_1 - \boldsymbol{x}_2|| \geq cr$, then $P_{h \in \mathcal{H}}(h(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)) \leq P_2$ dissimilar objects should be hashed in the same bucket with low probability Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements

 $||110101001, 110001100||_H = 3$

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements $\|110101001, 110001100\|_{H} = 3$

LSH functions: $\mathcal{H} = \{h_1, \ldots, h_n\}$ where $h_i(\boldsymbol{x}) = x_i$

Accelerate NN search: hashing

Binary vectors in Hamming space

objects: (1100101101) Hamming distance: count the number of positions with different elements $\|110101001, 110001100\|_{H} = 3$

LSH functions: $\mathcal{H} = \{h_1, \ldots, h_n\}$ where $h_i(\boldsymbol{x}) = x_i$

Real vectors with angle similarity

$$heta(m{x}_1,m{x}_2) = rccos rac{m{x}_1^{+}m{x}_2}{\|m{x}_1\|\|m{x}_2\|}$$

LSH functions: $\mathcal{H} = \{h_r\} (r \in \mathbb{B}^n)$ where $h_r(x) = \operatorname{sign}(r^\top x)$

多层神经网络为何能实现非线性分类?

BP算法能否收敛到全局最优解?

k近邻分类算法是否需要训练预测模型?