
An Analysis on Recombination in Multi-Objective
Evolutionary Optimization

Chao Qian, Yang Yu∗, Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China

Abstract

Evolutionary algorithms (EAs) are increasingly popular approaches to multi-objective optimization.

One of their significant advantages is that they can directly optimize the Pareto front by evolving a

population of solutions, where the recombination (also called crossover) operators are usually em-

ployed to reproduce new and potentially better solutions by mixing up solutions in the population.

Recombination in multi-objective evolutionary algorithms is, however, mostly applied heuristically.

In this paper, we investigate how from a theoretical viewpoint a recombination operator will affect

a multi-objective EA. First, we employ artificial benchmark problems: the Weighted LPTNO problem

(a generalization of the well-studied LOTZ problem), and the well-studied COCZ problem, for study-

ing the effect of recombination. Our analysis discloses that recombination may accelerate the filling

of the Pareto front by recombining diverse solutions and thus help solve multi-objective optimiza-

tion. Because of this, for these two problems, we find that a multi-objective EA with recombination

enabled achieves a better expected running time than any known EAs with recombination disabled.

We further examine the effect of recombination on solving the multi-objective minimum spanning

tree problem, which is an NP-Hard problem. Following our finding on the artificial problems, our

analysis shows that recombination also helps accelerate filling the Pareto front and thus helps find

approximate solutions faster.

Key words: Evolutionary algorithms, multi-objective optimization, recombination, crossover,

running time, computational complexity

∗Corresponding author
Email addresses: qianc@lamda.nju.edu.cn (Chao Qian), yuy@nju.edu.cn (Yang Yu), zhouzh@nju.edu.cn (Zhi-Hua

Zhou)

Preprint submitted for review September 5, 2013

1. Introduction

Multi-objective optimization [48] requires one to find a set of solutions called the optimal Pareto set,

because the objectives usually conflict with each other. Evolutionary algorithms (EAs), which are a

kind of stochastic metaheuristic optimization approach [4], are becoming increasingly popular for

multi-objective optimization [6]. EAs maintain a population of solutions, and iteratively improve

the population by reproducing new solutions from the population and updating the population

to contain the best-so-far solutions. Because EAs are population-based approaches, they have an

advantage of directly optimizing the Pareto front, instead of, e.g., running an algorithm many times

each for a Pareto optimal solution.

A characterizing feature of EAs is the recombination operator for reproducing new solutions. Re-

combination (also called crossover) operators take two or more individual solutions from the main-

tained population and mix them up to form new solutions. Thus, they are population-based opera-

tors and typically appear in multi-objective EAs (MOEAs), e.g. the popular NSGA-II [7]. The MOEAs

that use recombination operators have been successful in solving many real-world problems, e.g.,

electric power dispatch problem [1], multiprocessor system-on-chip design [15], aeronautical and

aerospace engineering [3], and multicommodity capacitated network design [25]. However, recom-

bination operators are understood only at the introductory level. Discovering the effect of recombi-

nation in MOEAs not only can enhance our understanding of this kind of nature-inspired operators,

but also be helpful for designing improved algorithms. This paper studies the effect of recombina-

tion from a theoretical viewpoint.

1.1. Related Work

The theoretical foundation of EAs has developed quickly in the past few decades, e.g. [12, 21, 51, 38].

Most of the previous analyses focused on EAs with mutation operators, while only a few include

recombination operators. We briefly review theoretical work on recombination operators.

Properties of recombination operators have been addressed in the scenario of single-objective op-

timization. Early empirical analyses include [31] and [47]. Later, running time analyses provided

a theoretical understanding of recombination operators. Several crossover-only evolutionary algo-

rithms were shown to be effective on the H-IFF problem which is difficult for any kind of mutation-

based EAs [50, 8]. Jansen and Wegener [22, 23] proved that crossover operators can be crucially im-

portant on some artificial problems. Crossover operators subsequently have been shown to be use-

ful in more cases. These include Ising models [16, 49], the TwoPaths instance class of the problem

2

of computing unique input-output sequences [30], some instance classes of the vertex cover prob-

lem [39], and the all-pairs shortest path problem [10, 9, 11]. Meanwhile, on the contrary, Richter et

al. [44] produced the Ignoble Trail functions where a crossover operator was shown to be harmful.

Recently, Kötzing et al. [27] found that crossover with ideal diversity can lead to drastic speedups on

the OneMax and Jump problems, and they also analyzed how crossover probability and population

size affect population diversity. The analysis approaches for recombination have been developed

such as the switch analysis approach [52, 53] that compares the running time of an EA turning re-

combination on and off. While all these studies are in the scenario of single-objective optimization,

the results are difficult to generalize to the scenario of multi-objective optimization. In particular,

multi-objective optimization aims at finding a set of optimal and non-dominated solutions rather

than a single optimal solution, where the situation becomes more complex and is untouched.

Early analyses of multi-objective EAs concentrate on the conditions under which MOEAs can find

the Pareto optimal solutions given unlimited time, e.g., [20, 45, 46]. For running time analyses, stud-

ies on two bi-objective pseudo-Boolean functions the LOTZ and COCZ problems extended respec-

tively from the well-studied LeadingOnes and OneMax problems [12] have led to some disclosure

of limited time behaviors of MOEAs. Note that none of these previously analyzed MOEAs uses re-

combination operators. We rename the previous MOEAs in Table 1 for a clearer presentation. Table

2 lists the previous analyses results of these MOEAs for the two problems.

Original name Unified name Explanation

SEMO [28] MOEAonebit A simple MOEA with one-bit mutation

GSEMO [18] MOEAbitwise A simple MOEA with bit-wise mutation

FEMO [28] MOEAonebit
fair A modification of SEMO so that every solution has equal

total reproduction chance

GEMO [29] MOEAonebit
greedy A modification of SEMO so that only new born solutions

dominating some current solutions have reproduction chance

Table 1: Unified names of the previously analyzed MOEAs in this paper.

The recent work by Neumann and Theile [35] is, to the best of our knowledge, the first and only

work analyzing crossover operators in MOEAs. They proved that a crossover operator can speed

up evolutionary algorithms for the multi-criteria all-pairs-shortest-path problem. As discovered

through their analysis, the crossover operator can be helpful in the interplay with the mutation

operator, such that good solutions can be evolved efficiently.

We also note that there are studies that analyze MOEAs for solving single-objective problems, e.g.,

[36, 17, 34]. However, we concern ourselves with multi-objective problems.

3

1.2. Our Contribution

Multi-objective optimization aims at finding a set of optimal solutions with different balances of

the objectives, which was not involved in the analysis for single-objective optimization. This paper

extends our preliminary work [40] to investigate whether recombination operators can have any

effect on solving the multi-objective optimization tasks.

We study the effect of recombination by comparing the performance of MOEAs using the diagonal

multi-parent crossover [14] to that using only mutation. We derive the expected running time of

the MOEAs using recombination together with the one-bit mutation and the bit-wise mutation,

denoted respectively as MOEAonebit
recomb and MOEAbitwise

recomb. The one-bit mutation implies a kind of local

search, and the bit-wise mutation is regarded as a global search. We further indicate the probability

of applying the recombination by using the subscript following “recomb”, e.g., MOEAonebit
recomb,0.5 uses

the recombination with probability 0.5 and MOEAonebit
recomb,0 does not use the recombination. Since

EAs are a kind of metaheuristic optimization approach, i.e., they are problem-independent, a typical

way to study EAs theoretically is to use model problems to disclose the properties of EAs. In this

paper, we first extend our preliminary work [40] to employ two artificial multi-objective problems:

the Weighted LPTNO (Weighted Leading Positive Ones Trailing Negative Ones) problem and the well-

studied COCZ (Count Ones Count Zeros) problem, for analyzing MOEAs. Note that Weighted LPTNO

is generalized from the well-studied LOTZ (Leading Ones Trailing Zeros) problem. We then study

MOEAs for the multi-objective minimum spanning tree (MST) problem, an NP-Hard problem [2,

13], which is more representative of real-world problems.

For the artificial problems, we derive the expected running time ofMOEAonebit
recomb,0.5 andMOEAbitwise

recomb,0.5.

We respectively compare them to that of MOEAonebit
recomb,0 and MOEAbitwise

recomb,0 as well as previously ana-

lyzed MOEAs without recombination on the LOTZ and COCZ problems. Their expected running time

is listed in Table 2. From the results, we can conclude that, among the MOEAs with one-bit mu-

tation, MOEAonebit
recomb,0.5 achieves the best performance, which is faster than the other mutation only

MOEAs; among the MOEAs with bit-wise mutation, MOEAbitwise
recomb,0.5 is also better than the other mu-

tation only MOEAs. We further carry out experiments to compensate for the theoretical bounds in

Table 2 that are not tight, e.g., where only the upper bound is known for the MOEAonebit on COCZ.

The empirical observations suggest that, for the MOEAs whose exact asymptotic running time com-

plexities are unknown, their running time is close to the derived upper bounds. Thus, the empirical

observations confirm that MOEAonebit
recomb,0.5 and MOEAbitwise

recomb,0.5 are the best among the compared

MOEAs.

Through the analysis of MOEAonebit
recomb and MOEAbitwise

recomb for the artificial problems, we discover that

the recombination operator works in the studied situation by accelerating the filling of the Pareto

4

mutation MOEA LOTZ COCZ

MOEAonebit Θ(n3) [28] O(n2 lnn) [29]

MOEAonebit
fair O(n2 lnn) [28] Ω(n2), O(n2 lnn) [29]

one-bit MOEAonebit
greedy O(n2 lnn) [29] Θ(n2) [29]

MOEAonebit
recomb,0 Θ(n3) Ω(n2), O(n2 lnn)

MOEAonebit
recomb,0.5 Θ(n2) Θ(n lnn)

MOEAbitwise O(n3) [18] O(n2 lnn)

bit-wise MOEAbitwise
recomb,0 Ω(n2), O(n3) Ω(n lnn), O(n2 lnn)

MOEAbitwise
recomb,0.5 Θ(n2) Θ(n lnn)

Table 2: Expected running time bounds of several MOEAs on LOTZ and COCZ, where the first column denotes the used muta-

tion operator by the MOEAs in the corresponding row.

front through recombining the diverse optimal solutions that have been found. It is worth noting

that this mechanism is different from that analyzed in [35], where the crossover operator works by

its interplay with mutation. Moreover, this finding is unique to multi-objective optimization, as

there is no Pareto front in single-objective situations.

On the multi-objective MST problem, we follow the idea that recombination can accelerate the fill-

ing of the Pareto front by recombining diverse solutions, and analyze the expected running time of

MOEAbitwise
recomb. Let m and n denote the number of edges and nodes respectively. Let wmax and wmin

denote the maximum and minimum among the maximum values for each kind of weight respec-

tively. Let |F ∗| and |conv(F ∗)| denote the size of the optimal Pareto front and its convex sub-front

(definitions are in Section 5.1) respectively, and Ngc ≥ 0, Cmin ≥ 1 be two parameters that depend

on concrete problem instances. First, on a subclass of bi-objective MST problem with a strictly con-

vex optimal Pareto front, we find that the expected running time of MOEAbitwise
recomb,0.5 has the upper

bound of

O
(
m2nwmin

(
|F ∗|+ lnn+ lnwmax

nwmin
−Ngc(1−

1

m
)
))
.

By comparing with the previous result for MOEAbitwise [33]

O
(
m2nwmin

(
|F ∗|+ lnn+ lnwmax

))
,

MOEAbitwise
recomb,0.5 appears to be more efficient. Moreover, to obtain the 2-approximation solutions for

the general bi-objective MST problem, the expected running time of MOEAbitwise
recomb,0.5 has the upper

bound of

O
(
m2nwmin

(
|conv(F ∗)|+ lnn+ lnwmax

nwmin
−Ngc(Cmin −

1

m
)
))
,

5

which improves the previous result for MOEAbitwise [33]

O
(
m2nwmin

(
|conv(F ∗)|+ lnn+ lnwmax

))
.

The comparisons imply that recombination operators may help MOEAs in solving real-world multi-

objective optimizations.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries on multi-

objective optimization. Section 3 presents the MOEAonebit
recomb and the MOEAbitwise

recomb algorithms. Sec-

tion 4 studies these two algorithms on the artificial problems, and Section 5 studies them on the

multi-objective minimum spanning tree problem. Section 6 concludes.

2. Multi-Objective Optimization

Multi-objective optimization requires to simultaneously optimize two or more objective functions,

as in Definition 1. When there are two objective functions, it is also called as bi-objective optimiza-

tion. We consider maximization here, while minimization can be defined similarly.

Definition 1 (Multi-Objective Optimization)

Given a feasible solution space X and objective functions f1, . . . , fm, the maximum multi-objective

optimization aims to find the solution x∗ satisfying

x∗ = arg max
x∈X

f(x) = arg max
x∈X

(
f1(x), f2(x), ..., fm(x)

)
where f(x) =

(
f1(x), f2(x), ..., fm(x)

)
is the objective vector of the solution x.

Usually, the objectives are conflicted, i.e., optimization of one objective alone will degrade the other

objectives, and it is impossible to have one solution that optimizes all the objectives simultaneously.

Therefore, multi-objective optimization tries to find a set of solutions according to some criteria.

One commonly used criterion is the Pareto optimality, which utilizes the domination relation be-

tween solutions as in Definition 2. The solution set by Pareto optimality is called Pareto set, as in

Definition 3.

Definition 2 (Domination)

Let f = (f1, f2, . . . , fm) : X → Rm be the objective vector, where X is the feasible solution space,

and Rm is the objective space. For two solutions x and x′ ∈ X :

1. x weakly dominates x′ if, for all i that 1 ≤ i ≤ m, fi(x) ≥ fi(x′), denoted as�f ;

2. x dominates x′ if, x weakly dominates x′ and fi(x) > fi(x
′) for some i, denoted as�f .

6

Definition 3 (Pareto Optimality)

Let f = (f1, f2, . . . , fm) : X → Rm be the objective vector, where X is the feasible solution space,

and Rm is the objective space. A solution x is Pareto optimal if there is no other solution in X that

dominates x. A set of solutions is called Pareto set if it contains only Pareto optimal solutions. The

collection of objective values of a set of solutions is called the front of the set. If a set is a Pareto set,

its front is also called the Pareto front.

With the goal of finding the largest Pareto set, or called the optimal Pareto set, the running time of an

MOEA is counted as the number of calls to f until it finds the Pareto front of the optimal Pareto set,

or called the optimal Pareto front. That is, the MOEA should find at least one corresponding solution

for each element in the optimal Pareto front. Note that this definition agrees with that in [28, 18, 29].

Since MOEAs are naturally stochastic algorithms, we measure the performance of MOEAs by the

expected running time.

SEMO [28], as described in Algorithm 1, is a simple MOEA, and also the first analyzed MOEA due to

its simplicity, which explains the common structure of various MOEAs. In the SEMO, X is the solu-

tion space, and it employs the one-bit mutation operator (i.e., step 5) where the action of “flipping”

is implemented problem-specifically. Usually, when X = {0, 1}n, the “flipping” action interchanges

between 0 and 1 of a solution bit. A newly generated solution is compared with the solutions in the

population, and then only non-dominated solutions are kept in the population.

Algorithm 1 (SEMO [28])

Given solution space X and objective function vector f , SEMO consists of the following steps:

1. Randomly choose x ∈ X

2. P ← {x}

3. loop

4. Choose x from P uniformly at random

5. Create x′ by flipping a randomly chosen bit of x

6. if @z ∈ P such that z �f x′

7. P ← (P − {z ∈ P |x′ �f z}) ∪ {x′}

8. end if

9. end loop

Following SEMO, two modifications of SEMO, i.e., FEMO and GEMO, were proposed. FEMO [28] ac-

celerates the exploration of the optimal set by using a fair sampling strategy, which makes that every

solution produces the same number of offspring solutions at the end. GEMO [29] extends FEMO to

achieve maximum progress toward the Pareto front by using a greedy selection mechanism, which

allows only the newly included solution dominating some current solutions to have reproduction

chance. All of these MOEAs use one-bit mutation operator. By replacing the one-bit mutation op-

7

erator which searches locally in SEMO with the bit-wise mutation operator which searches globally,

the global SEMO (GSEMO) algorithm [18] was proposed and analyzed. That is, GSEMO is the same

as SEMO except that step 5 in Algorithm 1 changes to be “Create x′ by flipping each bit of x with

probability 1
n”, where n is the solution length. For presenting these MOEAs clearly, we rename them

in this paper, as in Table 1.

3. Recombination Enabled MOEAs

The recombination-incorporated MOEA (MOEAonebit
recomb) studied in this paper is depicted in Algo-

rithm 2, which is extended from the algorithm MOEAonebit by incorporating a recombination oper-

ator. The components of MOEAonebit
recomb are explained in the following.

It is well known that the diversity of a population is important to the success of recombination oper-

ators, since recombination makes no progress from similar solutions. Therefore, we should employ

some diversity control in MOEAonebit
recomb. We use objective diversity (od) measure based on the assump-

tion that the diversity of a set of solutions is consistent with the difference of their objective vectors.

By this assumption, a population has a high diversity if it contains solutions with good objective

values on different objectives. Thus, we define objective diversity of a set of solutions as the number

of objectives, on which at least one solution in this set has a good objective value. Formally, for a set

of solutions S, define a variable qi for the i-th objective (1 ≤ i ≤ m),

qi =

1 if max{fi(x) | x ∈ S} ≥ θi,

0 otherwise,

where θi is the “goodness” threshold of the i-th objective, then the objective diversity of S

od(S) =
∑m

i=1
qi.

Given m objectives, the largest value of objective diversity is m. Here, we use the objective diversity

with θi = the minimal local optimal value of the i-th objective.

To make the initial population diverse enough, we use an initialization process, described in Def-

inition 4. In the initialization process, m independent runs of randomized local search (RLS) are

employed to optimize the m objective functions f1, f2, . . . , fm, each RLS corresponds to one ob-

jective. In the RLS, the solution is examined whether it is local optimal for an objective every N

mutation steps, where N is the size of the neighbor space of a solution. When to check whether a

solution is local optimal for an objective, we use the solutions having Hamming distance 1 with the

current solution as the neighborhood. Thus, N = n, i.e., the length of a solution. This initialization

procedure is terminated when local optimal solutions are found for all the objectives.

8

Definition 4 (Initialization)

Input: m solutions x1,x2, . . . ,xm from X ; Output: m local optimal solutions corresponding to one

of the m objectives respectively; the Initialization procedure consists of the following steps:

1. repeat

2. repeat the following process N times

3. Create x′1,x
′
2, . . . ,x

′
m by flipping a randomly chosen bit of x1,x2, . . . ,xm respectively

4. if fi(x
′
i) > fi(xi) for an i then

5. xi ← x′i

6. end if

7. end repeat

8. until ∀i: xi is a local optimum for fi

This process makes the initial population contain one good solution for each objective, i.e., qi =

1 (1 ≤ i ≤ m). Thus, the objective diversity of the initial population is m. Since a solution in the

population is eliminated only if it is dominated by a new solution, there always exist good solu-

tions for each objective. As the result, the objective diversity of the population always keeps m, the

maximal objective diversity, throughout the evolution process.

In each reproduction step, MOEAonebit
recomb picks a set ofm solutions with the objective diversity at least

m/2 from the current population to carry out recombination. In order to do so, the best solutions

each for one of the randomly selected m/2 objectives are selected at first, denoted as a set P 1
s . The

remaining m − |P 1
s | solutions are randomly chosen from the population excluding P 1

s . Thus, the

selected solutions for recombination have an objective diversity at least m/2.

In the reproduction procedure, we use the parameter pc to control the use of recombination. That is,

in each reproduction step, the offspring solutions are generated by recombination with probability

pc, and otherwise generated by mutation. In the end of each iteration, the offspring solutions Po

are used to update the current population. For an offspring solution, if there is no solution in the

current population which can weakly dominate it, it will be included into the population, and then

the population is cleaned up by removing all solutions that are no longer non-dominated.

Algorithm 2 (MOEAonebit
recomb)

Given solution space X and objective function vector f of length m, MOEAonebit
recomb consists of the

following steps:

9

1. P ← Initialization(m solutions randomly from X)

2. loop

3. P 1
s ← select the best solution in P for each of the randomly selected m/2 objectives

4. P 2
s ← randomly select m− |P 1

s | solutions from P − P 1
s

5. Ps ← P 1
s ∪ P 2

s

6. r ← uniformly chosen from [0, 1] at random

7. if r < pc then

8. Po ← Recombination(Ps)

9. else

10. Po ← for each solution x ∈ Ps, flip a randomly chosen bit

11. end if

12. for each solution x′ ∈ Po

13. if @z ∈ P such that z �f x′ then

14. P ← (P − {z ∈ P | x′ �f z}) ∪ {x′}

15. end if

16. end for

17. end loop

The recombination operator employed in MOEAonebit
recomb is the diagonal multi-parent crossover [14],

as in Definition 5. Form solutions, diagonal multi-parent crossover randomly selectsm−1 crossover

points between adjacent bits and createsm offspring solutions by sequentially combining the com-

ponents partitioned by the crossover points, which is a generalization of one-point crossover over

two solutions.

Definition 5 (Recombination [14])

Given m solutions whose length is n, randomly select m − 1 crossover points from n − 1 positions

between adjacent bits, and create m offspring solutions as follows. Denote the order of the m par-

ents as 1, 2, ...,m. Them offspring solutions are generated by combiningm components partitioned

by the m − 1 crossover points, where the components of the i-th (1 ≤ i ≤ m) offspring solution

sequentially come from parents i, i+ 1, ...,m− 1,m, 1, ..., i− 1.

In the algorithm MOEAonebit
recomb, the employed mutation operator is the one-bit mutation operator

(i.e., step 10), which searches locally. If there are a set of non-dominated solutions such that they

weakly dominate all their Hamming neighbors, and the current population is contained in this set,

the population cannot escape from this set through the one-bit mutation operator. To solve such

difficulty, we can modify the one-bit mutation operator in MOEAonebit
recomb to a more general mutation

operator, the bit-wise mutation operator which searches globally. We call the modified algorithm

MOEAbitwise
recomb, which will also be studied in our paper. MOEAbitwise

recomb is almost the same algorithm

10

as MOEAonebit
recomb. The only difference is that step 10 of MOEAbitwise

recomb is “Po ← for each solution x ∈

Ps, flip each bit with probability 1
n” while that of MOEAonebit

recomb is “Po ← for each solution x ∈ Ps,

flip a randomly chosen bit”. Since MOEAonebit
recomb is an extension of MOEAonebit by incorporating a

recombination operator, MOEAbitwise
recomb can also be viewed as an extension of MOEAbitwise using the

same way.

4. Analysis of Recombination on Artificial Problems

4.1. The Problems

Two bi-objective pseudo-Boolean model problems LOTZ (Leading Ones Trailing Zeros) and COCZ

(Count Ones Count Zeros) are usually used to investigate the properties of MOEAs [28, 18, 29], as

the listed in Table 2.

For LOTZ, the first objective is to maximize the number of leading one bits (the same as the Leadin-

gOnes problem [12]), and the other objective is to maximize the number of trailing zero bits. These

two objectives have n-order bit interactions.

Definition 6 (LOTZ [28])

The pseudo-Boolean function LOTZ: {0, 1}n → N2 is defined as follows:

LOTZ(x) =

 n∑
i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1− xj)

 .

As analyzed in [28], the objective space of LOTZ can be partitioned into n + 1 subsets Fi, where

i ∈ {0, . . . , n} is the sum of the two objective values, i.e., f(x) ∈ Fi if f1(x) + f2(x) = i. Obviously,

Fn = {(0, n), (1, n − 1), . . . , (n, 0)} is the optimal Pareto front, and the optimal Pareto set has n + 1

elements, which are 0n, 10n−1, . . . , 1n.

For COCZ, the two objectives are linear functions. The first objective is to maximize the number of

one bits (the same as the OneMax problem [12]), and the other objective is to maximize the number

of one bits in the first half of the solution plus the number of zero bits in the second half. The two

objectives are corporative in maximizing the number of one bits in the first half of the solution, but

conflict in the second half.

Definition 7 (COCZ [29])

The pseudo-Boolean function COCZ: {0, 1}n → N2 is defined as follows:

COCZ(x) =

 n∑
i=1

xi,

n/2∑
i=1

xi +

n∑
i=n/2+1

(1− xi)

 ,

where n is even.

11

As analyzed in [29], the objective space of COCZ can be partitioned into n/2 + 1 subsets Fi, where

i ∈ {0, . . . , n/2} is the number of one bits in the first half of the solution. It is obvious that each Fi

contains n/2 + 1 different objective vectors (i+ j, i+ n/2− j), where j ∈ {0, . . . , n/2} is the number

of one bits in the second half. The optimal Pareto front is Fn/2 = {(n
2 , n), (n

2 + 1, n − 1), . . . , (n, n2)},

and the optimal Pareto set is {1n
2 ∗n

2 ; ∗ ∈ {0, 1}}, the size of which is 2
n
2 .

In this paper, we will use Weighted LPTNO (Weighted Leading Positive Ones Trailing Negative Ones)

and COCZ to investigate the effect of recombination operators for MOEAs. Weighted LPTNO as in

Definition 8 is a bi-objective pseudo-Boolean problem class, which is generalized from LOTZ. The

first objective is to maximize the number of leading positive one bits, and the other objective is to

maximize the number of trailing negative one bits.

Definition 8 (Weighted LPTNO)

The function Weighted LPTNO: {−1, 1}n → R2 is defined as follows:

Weighted LPTNO(x) =

 n∑
i=1

wi

i∏
j=1

(1 + xj),

n∑
i=1

vi

n∏
j=i

(1− xj)

 ,

where for 1 ≤ i ≤ n, wi, vi > 0.

The objective vector of Weighted LPTNO can be represented as (
∑i

k=1 2kwk,
∑n

k=n−j+1 2n+1−kvk),

where i and j are the number of leading positive one bits and trailing negative one bits, respectively.

The optimal Pareto set has n+1 elements, which are 1n, 1n−1(−1), . . . , 1(−1)n−1, (−1)n. The optimal

Pareto front is {(
∑i

k=1 2kwk,
∑n

k=i+1 2n+1−kvk) | 0 ≤ i ≤ n}.

It is worthwhile to note that Weighted LPTNO, though which can be considered as an extension of

LOTZ by shifting the solution space from {0, 1}n to {−1, 1}n and adding weights wi and vi, has very

different properties from LOTZ. For LOTZ, the optimal Pareto front is symmetric, i.e., if (a, b) is in

the optimal Pareto front, so is (b, a), and is thus convex. However, for Weighted LPTNO, the opti-

mal Pareto front can be nonsymmetric and nonconvex in general, which may result in much more

complicated situations.

4.2. Analysis on the Weighted LPTNO Problem

First, we derive the running time of the initialization procedure of MOEAonebit
recomb and MOEAbitwise

recomb.

The initialization is to optimize the two objectives of a problem separately by two independent RLS.

For Weighted LPTNO, the objectives have the same structure as the LeadingOnes problem, which we

know that RLS takes Θ(n2) time to optimize by Theorem 13 in [24].

During the optimization of RLS in the initialization, a solution is examined whether it is local opti-

mal for an objective every n mutation steps. The running time of examining once is n because the

12

neighborhood size of a solution is n. Thus, the total running time of examining is the same as that

of optimization. We then have the following lemma.

Lemma 1

On Weighted LPTNO, the expected running time of the initialization procedure of MOEAonebit
recomb and

MOEAbitwise
recomb is Θ(n2).

Then, we focus on the size of the population during the evolution process.

Lemma 2

On Weighted LPTNO, the population size of MOEAs maintaining non-dominated solutions is always

not larger than n+ 1, and equals to n+ 1 iff the population is the optimal Pareto set.

Proof. Because the solutions in the population have a one-to-one correspondence with the objec-

tive vectors in the front of the population, the size of the population equals to the size of its front.

Thus, we just need to investigate the size of the front of the population.

For the first objective of Weighted LPTNO, there are n + 1 possible values, {
∑j

i=1 2iwi | 0 ≤ j ≤ n}.

In the front of the current population, any possible value of the first objective can have at most one

corresponding value of the second objective, because two solutions with the same first objective

value and different second objective values are comparable, which violates the property that the

solutions in the population are non-dominated. Thus, the size of the front is not larger than n + 1.

If the size of the front equals to n + 1, the values on the first dimension of the n + 1 elements in

the front are 0, 2w1,
∑2

i=1 2iwi, . . . ,
∑n

i=1 2iwi, respectively. Because the solutions in the population

are non-dominated, the corresponding values on the second dimension must decrease, i.e., they

are
∑n

i=1 2n+1−ivi,
∑n

i=2 2n+1−ivi, . . . , 2vn, 0, respectively. Thus, the front is just the optimal Pareto

front.

In the evolution process of the MOEAs analyzed in this paper, it is easy to see that the population

contains at most one Pareto optimal solution for each element in the optimal Pareto front, and the

Pareto optimal solution will never be eliminated once it has been found. Thus, to find the optimal

Pareto front, it is sufficient to increase the number of Pareto optimal solutions enough (e.g., the size

of the optimal Pareto front) times. We call the event that the number of Pareto optimal solutions

increases in one step a success. Then, by analyzing the expected steps for a success and summing

up the expected steps for all the required successes, we can get the expected running time bound of

the MOEAs. In the following proof, we will often use this idea.

Note that we investigate the bi-objective problems in this paper, thus when selecting solutions

for reproduction in MOEAonebit
recomb and MOEAbitwise

recomb, the best solution in the current population for

13

a randomly selected objective is selected first, and then the other solution is randomly chosen

from the remaining solutions. Also since the bi-objective problems are considered in this paper,

the recombination operator used is just one-point crossover. In the following analysis, we always

denote MOEAonebit
recomb and MOEAbitwise

recomb with crossover probability pc = 0.5 by MOEAonebit
recomb,0.5 and

MOEAbitwise
recomb,0.5 respectively, and denote them with crossover probability pc = 0 by MOEAonebit

recomb,0

and MOEAbitwise
recomb,0 respectively.

Theorem 1

On Weighted LPTNO, the expected running time of MOEAonebit
recomb,0.5 and MOEAbitwise

recomb,0.5 is Θ(n2).

Proof. For Weighted LPTNO, the size of the optimal Pareto front is n + 1. After the initialization, the

two Pareto optimal solutions 1n and (−1)n have been found. Thus, it is sufficient to increase the

number of Pareto optimal solutions n− 1 times for finding the optimal Pareto front.

Then, we consider the expected steps for a success when starting from a population P containing

i + 1 (1 ≤ i ≤ n − 1) Pareto optimal solutions. In the selection procedure, since the two solutions

1n and (−1)n, which are optimal for the two objectives of Weighted LPTNO respectively, have been

found, it actually selects one solution x randomly from {1n, (−1)n} first, and then selects the other

solution randomly from the remaining solutions P − {x}. We then consider two cases in selection

for the probability p of generating one new Pareto optimal solution by one-point crossover in one

step: the two solutions 1n and (−1)n are selected; one selected solution is either 1n or (−1)n and

the other selected one is a Pareto optimal solution from P − {1n, (−1)n}. In the former case which

happens with probability 1
|P |−1 , p = n−i

n−1 . In the latter case which happens with probability 1
2(|P |−1) ,

suppose that the selected Pareto optimal solution from P − {1n, (−1)n} has k (0 < k < n) leading

positive ones, the number of Pareto optimal solutions having more than k leading positive ones in

the current population is k′ (1 ≤ k′ ≤ i − 1) and the other selected solution is 1n, then p = n−k−k′

n−1 .

Correspondingly, when the other selected solution is (−1)n, then p = k−i+k′

n−1 . Thus, in the latter

case, p = 1
2(|P |−1) ·

n−k−k′

n−1 + 1
2(|P |−1) ·

k−i+k′

n−1 = n−i
2(|P |−1)(n−1) . By combining these two cases, p =

1
|P |−1 ·

n−i
n−1 + (i− 1) · n−i

2(|P |−1)(n−1) = (i+1)(n−i)
2(|P |−1)(n−1) , where the factor (i− 1) is because there are i− 1

Pareto optimal solutions in P − {1n, (−1)n} for selection in the latter case. Because the crossover

probability is 1
2 , the number of Pareto optimal solutions increases in one step with probability at

least (i+1)(n−i)
4(|P |−1)(n−1) ≥

(i+1)(n−i)
4(n−1)2 , where the inequality is by |P | ≤ n from Lemma 2. Thus, the expected

steps for a success when starting from a population containing i + 1 Pareto optimal solutions is at

most 4(n−1)2
(i+1)(n−i) .

Because two offspring solutions need to be evaluated in one reproduction step, the running time

of one step is counted as 2. Thus, the expected running time to find the optimal Pareto front

14

after initialization is at most 2 ·
∑n−1

i=1
4(n−1)2

(i+1)(n−i) , i.e., O(n lnn). By combining the expected run-

ning time Θ(n2) of the initialization in Lemma 1, the expected running time of MOEAonebit
recomb,0.5 and

MOEAbitwise
recomb,0.5 on Weighted LPTNO is Θ(n2).

Therefore, we have proved that the expected running time ofMOEAonebit
recomb/MOEAbitwise

recomb with crossover

probability 0.5 on Weighted LPTNO is Θ(n2). The running time on the LOTZ problem, a special case

of Weighted LPTNO, has been well studied for the MOEAs with only mutation. Compared with all

the previously analyzed MOEAs with one-bit mutation or bit-wise mutation as in the 3rd column of

Table 2, MOEAonebit
recomb,0.5/MOEAbitwise

recomb,0.5 has better running time on LOTZ.

Then, we also analyze the running time of MOEAonebit
recomb and MOEAbitwise

recomb turning off recombination

on Weighted LPTNO to see whether recombination is crucial for the efficiency of MOEAonebit
recomb and

MOEAbitwise
recomb on this problem.

Theorem 2

On Weighted LPTNO, the expected running time of MOEAonebit
recomb,0 is Θ(n3).

Proof. For Weighted LPTNO, the offspring Pareto optimal solution generated by one-bit mutation

on a Pareto optimal solution must be adjacent to the parent Pareto optimal solution. After the ini-

tialization, the two Pareto optimal solutions 1n and (−1)n have been found. Thus, it is easy to see

that the population in any step of the evolutionary process is always constructed by two continuous

subsets L and R of the optimal Pareto set {1n, 1n−1(−1), . . . , (−1)n}, where 1n ∈ L and (−1)n ∈ R.

Then, we divide the optimization process into n phases, where the population in the i-th phase

(1 ≤ i ≤ n) consists of i + 1 Pareto optimal solutions and the n-th phase corresponds to that the

optimal Pareto set has been found. In the following, we will consider the probability of generating

new Pareto optimal solutions in one step in each phase.

In the first phase, |L| = 1 and |R| = 1, where | ∗ | denotes the size of a set. For the reproduction,

the two solutions 1n and (−1)n are selected. For 1n, the offspring solution generated by one-bit

mutation can be accepted only if the rightmost positive one bit is mutated. For (−1)n, only if the

leftmost negative one bit is mutated, the offspring solution can be accepted. Thus, in one step, two

new Pareto optimal solutions will be generated simultaneously with probability 1
n2 ; only one new

Pareto optimal solution will be generated with probability 2(n−1)
n2 ; otherwise, no new Pareto optimal

solution will be generated.

Then, we consider the i-th phase (1 < i ≤ n − 1). In the selection procedure of reproduction,

since 1n and (−1)n, which are optimal for the two objectives of Weighted LPTNO respectively, have

been found, one solution will be randomly selected from {1n, (−1)n}, and the other solution will be

15

randomly selected from the remaining solutions. The probabilities for two selected solutions by this

procedure are 1
2 and 1

i , respectively. Then, there are two cases.

Case 1: min{|L|, |R|} > 1. In this case, one-bit mutation on either 1n or (−1)n will never generate

new Pareto optimal solutions, and only the rightmost solution of L or the leftmost solution ofR can

generate one new Pareto optimal solution with probability 1
n by one-bit mutation. Thus, one new

Pareto optimal solution can be generated in one step with probability 2
in ; otherwise, no new Pareto

optimal solution will be generated.

Case 2: min{|L|, |R|} = 1. Suppose that |L| = 1. If the selected solution from {1n, (−1)n} is (−1)n,

one-bit mutation on (−1)n will never generate new Pareto optimal solutions, and only when the

other selected solution is 1n or the leftmost solution of R, mutation on it can generate one new

Pareto optimal solution with probability 1
n . If the selected solution from {1n, (−1)n} is 1n, by muta-

tion on 1n, one new Pareto optimal solution 1n−1(−1) can be generated with probability 1
n , and only

when the other selected solution is the leftmost solution of R, mutation on it can generate one new

Pareto optimal solution with probability 1
n . Thus, when i < n − 1, in one step, only one new Pareto

optimal solution will be generated while min{|L|, |R|} is still 1 with probability 1
in −

1
2in2 ; one or two

new Pareto optimal solutions will be generated while min{|L|, |R|} > 1 with probability 1
2n + 1

2in ;

otherwise, no new Pareto optimal solution will be generated. When i = n− 1, the last undiscovered

Pareto optimal solution will be found in one step with probability n2+2n−1
2(n−1)n2 .

We know that during the evolution process after initialization, the state of the population will change

as follows:
1. start at the 1st phase;

2. transfer to case 2;

3. stay at case 2;

4. transfer to case 1;

5. stay at case 1;

6. end at the n-th phase, i.e, the optimal Pareto front is found.

It may skip steps 2 and 3, because the population can directly transfer to case 1 when leaving phase

1; it may also skip steps 4 and 5, because the population can always stay at case 2 until the optimal

Pareto front is found.

From the analysis above, we know that the probability of generating one new Pareto optimal solu-

tion in the process of steps 3 and 5 is Θ(1
in). Moreover, the probability of transferring at steps 2 and

4 is Ω(1
n2). Thus, the expected steps after the initialization procedure to generate the optimal Pareto

front is Θ(
∑n−1

i=1 in) = Θ(n3). By combining the expected running time Θ(n2) of the initialization in

Lemma 1, the expected running time of MOEAonebit
recomb,0 on Weighted LPTNO is Θ(n3).

16

Theorem 3

On Weighted LPTNO, the expected running time of MOEAbitwise
recomb,0 is Ω(n2) and O(n3).

Proof. After the initialization procedure, the two Pareto optimal solutions 1n and (−1)n have been

found. Thus, it is sufficient to increase the number of Pareto optimal solutions n − 1 times to find

the optimal Pareto front.

Before finding the optimal Pareto front, there always exists at least one Pareto optimal solution in

the current population which can generate one new Pareto optimal solution by flipping just the

rightmost positive one bit or the leftmost negative one bit. Because the probability of selecting a

specific solution is at least 1
n−1 by Lemma 2, the number of Pareto optimal solutions increases in

one step with probability at least 1
n−1

1
n (1− 1

n)n−1 ≥ 1
en(n−1) .

Thus, the expected running time to find the optimal Pareto front after the initialization procedure is

at most 2en(n − 1)2. By combining the expected running time Θ(n2) of the initialization procedure

in Lemma 1, the expected running time of the whole evolution process is Ω(n2) and O(n3).

We have proved that the expected running time of MOEAonebit
recomb/MOEAbitwise

recomb without crossover on

Weighted LPTNO is Θ(n3)/Ω(n2), which increases from Θ(n2) ofMOEAonebit
recomb/MOEAbitwise

recomb with crossover

probability 0.5. Thus, recombination is crucial for the efficiency of MOEAonebit
recomb/MOEAbitwise

recomb on

Weighted LPTNO.

From the analysis of MOEAonebit
recomb and MOEAbitwise

recomb on Weighted LPTNO, we can find that recombina-

tion works by accelerating the filling of the Pareto front through recombining diverse optimal solu-

tions found-so-far. For example, when the two diverse Pareto optimal solutions 1n and 1n/2(−1)n/2

are selected for reproduction, the probability of generating offspring Pareto optimal solutions which

are different from the parents by one-point crossover is n/2−1
n , while the probability on any two se-

lected solutions by mutation (one-bit or bit-wise) is at most 4
n .

4.3. Analysis on the COCZ Problem

First, the initialization of MOEAonebit
recomb and MOEAbitwise

recomb is to optimize the two objectives of COCZ,

which have the same structure as the OneMax problem, by two independent RLS. By Theorem 11

in [24], it is known that the running time of RLS on OneMax is Θ(n lnn). During the optimization of

RLS in the initialization, a solution is examined whether it is local optimal for an objective every n

mutation steps. The running time of examining once is n. Thus, the total running time of examining

is the same as that of optimization. Then, we can get the following lemma.

17

Lemma 3

On COCZ, the expected running time of the initialization procedure of MOEAonebit
recomb and MOEAbitwise

recomb

is Θ(n lnn).

Then, we bound the size of the population during the evolution.

Lemma 4

On COCZ, the population size of MOEAs maintaining non-dominated solutions is always not larger

than n/2 + 1.

Proof. By the definition of COCZ, the objective vector can be represented as (i+ j, i+n/2− j), where

i and j (0 ≤ i, j ≤ n/2) are the number of one bits in the first and second half of a solution, respec-

tively. For each value of j, there can be only one corresponding value of i, because two objective

vectors with the same j value and different i values are comparable, which violates the property

that the MOEAs maintain non-dominated solutions. Thus, the front of the population contains at

most n/2 + 1 objective vectors.

Because the population has a one-to-one correspondence with its front, the size of the population

equals to the size of its front. Thus, the population size is not larger than n/2 + 1.

Theorem 4

On COCZ, the expected running time of MOEAonebit
recomb,0.5 and MOEAbitwise

recomb,0.5 is Θ(n lnn).

Proof. For COCZ, the size of the optimal Pareto front is n
2 + 1. After the initialization procedure, the

two Pareto optimal solutions 1n and 1
n
2 0

n
2 have been found. Thus, it is sufficient to increase the

number of Pareto optimal solutions n
2 − 1 times to find the optimal Pareto front.

Then, we consider the expected steps for a success when starting from a population P containing

i + 1 (1 ≤ i ≤ n
2 − 1) Pareto optimal solutions. In the selection procedure, since the two solutions

1n and 1
n
2 0

n
2 , which are optimal for the two objectives of COCZ respectively, have been found, the

algorithm actually selects one solution x randomly from {1n, 1n
2 0

n
2 } first, and then selects the other

solution randomly from the remaining solutions P − {x}. Then, we consider two cases in selection

for the probability p of generating one or two new Pareto optimal solutions by one-point crossover

in one step: the two solutions 1n and 1
n
2 0

n
2 are selected; one selected solution is either 1n or 1

n
2 0

n
2

and the other selected one is a Pareto optimal solution from P − {1n, 1n
2 0

n
2 }. In the former case

which happens with probability 1
|P |−1 , p ≥ n/2−i

n−1 . In the latter case which happens with probability
1

2(|P |−1) , suppose that the selected Pareto optimal solution fromP−{1n, 1n
2 0

n
2 } has k (1 ≤ k ≤ n

2−1)

0 bits, the number of Pareto optimal solutions having less than k 0 bits in the current population is

k′ (1 ≤ k′ ≤ i − 1) and the other selected solution is 1n, then p ≥ k−k′

n−1 . Correspondingly, when

18

the other selected solution is 1
n
2 0

n
2 , then p ≥ n/2−k−i+k′

n−1 . Thus, in the latter case, p ≥ 1
2(|P |−1) ·

k−k′

n−1 + 1
2(|P |−1) ·

n/2−k−i+k′

n−1 = n/2−i
2(|P |−1)(n−1) . By combining these two cases, p ≥ 1

|P |−1 ·
n/2−i
n−1 +

(i − 1) · n/2−i
2(|P |−1)(n−1) = (i+1)(n/2−i)

2(|P |−1)(n−1) . Because the crossover probability is 1
2 , the number of Pareto

optimal solutions increases in one step with probability at least (i+1)(n/2−i)
4(|P |−1)(n−1) ≥

(i+1)(n/2−i)
2n(n−1) , where

the inequality is by |P | ≤ n/2 + 1 from Lemma 4. Thus, the expected steps for a success is at most
2n(n−1)

(i+1)(n/2−i) .

Therefore, the expected running time to find the optimal Pareto front is at most 2·
∑n

2−1
i=1

2n(n−1)
(i+1)(n/2−i) ,

i.e., O(n lnn). By combining the expected running time Θ(n lnn) of the initialization procedure in

Lemma 3, the expected running time of MOEAonebit
recomb,0.5 and MOEAbitwise

recomb,0.5 on COCZ is Θ(n lnn).

Therefore, we have proved that the expected running time ofMOEAonebit
recomb/MOEAbitwise

recomb with crossover

probability 0.5 on COCZ is Θ(n lnn). Compared with all the previously analyzed MOEAs with one-bit

mutation as in the last cell of the 2nd row of Table 2, MOEAonebit
recomb,0.5 has better running time on

COCZ. For MOEAbitwise
recomb, it uses bit-wise mutation. Note that MOEAbitwise is the only previously ana-

lyzed MOEA with bit-wise mutation, and its expected running time on COCZ is unknown. Thus, for

the comparison purpose, we derive the running time of MOEAbitwise on COCZ.

Theorem 5

On COCZ, the expected running time of MOEAbitwise is O(n2 lnn).

Proof. We divide the evolutionary process into two phases. The first phase starts after initialization

and finishes until the first Pareto optimal solution is found. The second phase finishes until the

optimal Pareto front is found.

For the first phase, let j (0 ≤ j ≤ n/2) denote the maximal number of 1 bits in the first half of

the solutions in the current population. Because a solution with less 1 bits in its first half cannot

dominate a solution with more 1 bits in its first half, j cannot decrease. Then, j increases in one step

with probability at least 1
n/2+1

n/2−j
n (1− 1

n)n−1 ≥ n/2−j
en(n/2+1) , since it is sufficient to select the solution

with j number of 1 bits in its first half for mutation, flip one 0 bit in the first half of this solution

and keep the other bits unchanged, where the probability of selection is at least 1
n/2+1 by Lemma 4

and the probability of mutation is n/2−j
n (1 − 1

n)n−1. Because any solution with n
2 number of 1 bits

in its first half is a Pareto optimal solution, n
2 such steps increasing the value of j are sufficient to

find the first Pareto optimal solution. Thus, the expected running time of the first phase is at most∑n/2−1
j=0

en(n/2+1)
n/2−j , i.e., O(n2 lnn).

For the second phase, before finding the optimal Pareto front, there always exists at least one Pareto

optimal solution in the current population which can generate one new Pareto optimal solution by

19

flipping just one 1 bit or one 0 bit in its second half. We call such Pareto optimal solutions boundary

Pareto optimal solutions. Thus, the number of Pareto optimal solutions can increase by 1 in one

step with probability at least 1
n/2+1

min{i,n/2−i}
n (1− 1

n)n−1 ≥ min{i,n/2−i}
en(n/2+1) , since it is sufficient to select

one boundary Pareto optimal solution for mutation, and flip just one 1 bit or one 0 bit in its second

half, where the probability of selection is at least 1
n/2+1 by Lemma 4, the probability of mutation is at

least min{i,n/2−i}
n (1− 1

n)n−1, and i is the number of 1 bits in the second half of the selected boundary

Pareto optimal solution. Because n
2 such steps increasing the number of Pareto optimal solutions

are sufficient to find the optimal Pareto front of COCZ, the expected running time of the second phase

is at most
∑dn/4e

i=1 2 · en(n/2+1)
i , i.e., O(n2 lnn).

By combining the running time of these two phases, the expected running time of the whole evolu-

tion process is O(n2 lnn).

Therefore, compared with MOEAbitwise on COCZ, MOEAbitwise
recomb,0.5 has better upper bound of running

time. Then, we analyze the running time of MOEAonebit
recomb and MOEAbitwise

recomb turning off recombination

on COCZ to see whether recombination is crucial for the efficiency of MOEAonebit
recomb and MOEAbitwise

recomb

on this problem.

Theorem 6

On COCZ, the expected running time of MOEAonebit
recomb,0 is Ω(n2) and O(n2 lnn).

Proof. For COCZ, we define that two Pareto optimal solutions are consecutive if the difference of the

number of 0 bits for these two solutions is 1. Then, the offspring Pareto optimal solution gener-

ated by one-bit mutation on a Pareto optimal solution must be consecutive with the parent Pareto

optimal solution. After the initialization, the two Pareto optimal solutions 1n and 1
n
2 0

n
2 have been

found. Then, it is easy to see that the population in the evolutionary process is always constructed

by two continuous set of Pareto optimal solutions L and R, where 1n ∈ L, 1
n
2 0

n
2 ∈ R, and every

two adjacent Pareto optimal solutions in L or R are consecutive. Then, we divide the optimization

process into n
2 phases, where the population in the i-th phase (1 ≤ i ≤ n

2) consists of i + 1 Pareto

optimal solutions and the n
2 -th phase corresponds to that the optimal Pareto front has been found.

In the following, we will consider the probability of generating new Pareto optimal solutions in one

step in each phase.

In the first phase, |L| = 1 and |R| = 1. For the reproduction, the two solutions 1n and 1
n
2 0

n
2 are

selected. For 1n, the offspring solution generated by one-bit mutation will be accepted if the 1 bit in

the second half is mutated. For 1
n
2 0

n
2 , if the 0 bit is mutated, the offspring solution will be accepted.

Thus, in one step, two new Pareto optimal solutions will be generated simultaneously with proba-

20

bility 1
4 ; only one new Pareto optimal solution will be generated with probability 1

2 ; otherwise, no

new Pareto optimal solution will be generated.

Then, we consider the i-th phase (1 < i ≤ n
2 − 1). In the selection procedure of reproduction,

since 1n and 1
n
2 0

n
2 , which are optimal for the two objectives of COCZ respectively, have been found,

one solution will be randomly selected from {1n, 1n
2 0

n
2 }, and the other solution will be randomly

selected from the remaining solutions. The probabilities for two selected solutions by this procedure

are 1
2 and 1

i , respectively. Then, there are two cases.

Case 1: min{|L|, |R|} > 1. In this case, one-bit mutation on either 1n or 1
n
2 0

n
2 will never generate new

Pareto optimal solutions, and only the rightmost solution in L and the leftmost solution in R can

generate one new Pareto optimal solution with probability n/2−(|L|−1)
n and n/2−(|R|−1)

n respectively

by one-bit mutation. Thus, one new Pareto optimal solution can be generated in one step with

probability n/2−(|L|−1)
in + n/2−(|R|−1)

in = n−i+1
in ; otherwise, no new Pareto optimal solution will be

generated.

Case 2: min{|L|, |R|} = 1. Suppose that |L| = 1. If the selected solution from {1n, 1n
2 0

n
2 } is 1

n
2 0

n
2 ,

one-bit mutation on it will never generate new Pareto optimal solutions, and only when the other

selected solution is 1n or the leftmost solution ofR, mutation on it can generate one new Pareto op-

timal solution with probability 1
2 and n/2−(i−1)

n , respectively. If the selected solution from {1n, 1n
2 0

n
2 }

is 1n, by mutation on 1n, one new Pareto optimal solution can be generated with probability 1
2 , and

only when the other selected solution is the leftmost solution of R, mutation on it can generate

one new Pareto optimal solution with probability n/2−(i−1)
n . Thus, when i < n

2 − 1, in one step,

only one new Pareto optimal solution will be generated while min{|L|, |R|} is still 1 with probability
3(n/2−i+1)

4in ; one or two new Pareto optimal solutions will be generated while min{|L|, |R|} > 1 with

probability i+1
4i ; otherwise, no new Pareto optimal solution will be generated. When i = n

2 − 1, the

last undiscovered Pareto optimal solution will be found in one step with probability n2+12
4n2−8n .

The state of the population during the evolution will change as similar as that in the proof of The-

orem 2. From the analysis above, we know that the probabilities of generating one new Pareto op-

timal solution in the process of steps 3 and 5 are Θ(n/2−i+1
in) and Θ(n−i+1

in), respectively. Moreover,

the probability of transferring at steps 2 and 4 is Θ(1). Thus, the expected steps after the initial-

ization procedure to generate the optimal Pareto front is Ω(
∑n/2−1

i=1
in

n−i+1) and O(
∑n/2−1

i=1
in

n/2−i+1),

i.e., Ω(n2) and O(n2 lnn). By combining the expected running time Θ(n lnn) of the initialization in

Lemma 3, the expected running time of MOEAonebit
recomb,0 on COCZ is Ω(n2) and O(n2 lnn).

Theorem 7

On COCZ, the expected running time of MOEAbitwise
recomb,0 is Ω(n lnn) and O(n2 lnn).

21

Proof. After the initialization procedure, the two Pareto optimal solutions 1n and 1
n
2 0

n
2 have been

found. Thus, it is sufficient to increase the number of Pareto optimal solutions n
2 − 1 times to find

the optimal Pareto front.

Before finding the optimal Pareto front, there always exists at least one Pareto optimal solution in

the current population which can generate one new Pareto optimal solution by flipping just one 1

bit or one 0 bit in its second half. Because the probability of selecting a specific solution is at least
1

n/2 by Lemma 4, the number of Pareto optimal solutions increases in one step with probability at

least 1
n/2

min{i,n/2−i}
n (1 − 1

n)n−1 ≥ min{i,n/2−i}
en2/2 , where i is the number of 1 bits in the second half of

the selected Pareto optimal solution.

Then, the expected running time to find the optimal Pareto front after the initialization is at most

2 ·
∑d(n−2)/4e

i=1 2 · en
2/2
i , i.e.,O(n2 lnn). By combining the running time Θ(n lnn) of the initialization in

Lemma 3, the expected running time of the whole evolution process is Ω(n lnn) and O(n2 lnn).

We have proved that the expected running time of MOEAonebit
recomb/MOEAbitwise

recomb without crossover on

COCZ is Ω(n2)/Ω(n lnn), which increases from Θ(n lnn) of MOEAonebit
recomb/MOEAbitwise

recomb with crossover

probability 0.5. Thus, recombination is crucial for the efficiency of MOEAonebit
recomb/MOEAbitwise

recomb on the

COCZ problem. From the analysis, we can also find that recombination works by accelerating the

filling of the Pareto front through recombining diverse optimal solutions found-so-far, as that we

have found from the analysis on the Weighted LPTNO problem.

4.4. Empirical Verification

Some running time bounds in Table 2 are not tight, which makes the comparison of performance

between MOEAs not strict. For example, when comparing MOEAonebit
recomb,0.5 with MOEAonebit on COCZ,

we can only say that the expected running time of MOEAonebit
recomb,0.5 is better than the upper bound

of the expected running time of MOEAonebit proved-so-far. To have a more meaningful comparison,

we estimate the running time order by experiments. On each problem size, we repeat independent

runs of an MOEA 1000 times, and then the average running time is recorded as an estimation of the

expected running time, which will be called as ERT for short. Figures 1 and 2 plot the results.

From Figure 1(a), we can observe that for MOEAonebit
fair on LOTZ, the curve of the ERT divided by n2 lnn

tends to a constant, and both the curve of the ERT divided by n2 and the curve of n2 ln2 n divided by

the ERT grow in a closely logarithmic trend. Therefore, the observation suggests that the expected

running time of MOEAonebit
fair is approximately in the order of n2 lnn. Similarly, Figure 1(b) and (c)

suggest that both the ERT of MOEAonebit
greedy on LOTZ and the ERT of MOEAonebit on COCZ is approxi-

mately in the order of n2 lnn. Therefore, by combining the proved results, we can conclude that

22

0 50 100 150 200
0

1

2

3

4

5

6

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT/n
2

ERT/n
2
ln(n)

n
2
ln

2
(n)/ERT

0 50 100 150 200
0

1

2

3

4

5

6

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT/n
2

ERT/n
2
ln(n)

n
2
ln

2
(n)/ERT

(a) MOEAonebit
fair on LOTZ (b) MOEAonebit

greedy on LOTZ

0 100 200 300 400
0

1

2

3

4

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT/n
2

ERT/n
2
ln(n)

n
2
ln

2
n/(4⋅ERT)

(c) MOEAonebit on COCZ

Figure 1: Estimated ERT of several MOEAs with one-bit mutation operator on LOTZ and COCZ.

0 50 100 150 200
0

1

2

3

4

5

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT⋅ln(n)/n
3

ERT/n
3

n
3
ln(n)/(2⋅ERT)

0 20 40 60 80 100
0

1

2

3

4

5

6

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT⋅ln(n)/n
3

ERT/n
3

n
3
ln(n)/ERT

(a) MOEAbitwise on LOTZ (b) MOEAbitwise
recomb,0 on LOTZ

0 100 200 300 400
0

2

4

6

8

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT/n
2

ERT/n
2
ln(n)

n
2
ln

2
(n)/ERT

0 100 200 300 400
0

5

10

15

20

25

30

Problem size

E
s
ti
m

a
te

d
 r

a
ti
o

ERT⋅ln
2
(n)/n

2

ERT⋅ln(n)/n
2

13⋅n
2
/ERT

(c) MOEAbitwise on COCZ (d) MOEAbitwise
recomb,0 on COCZ

Figure 2: Estimated ERT of several MOEAs with bit-wise mutation operator on LOTZ and COCZ.

23

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

5

Problem size

E
s
ti
m

a
te

d
 E

R
T

MOEA
onebit

MOEA
fair

onebit

MOEA
greedy

onebit

MOEA
recomb,0.5

onebit

MOEA
recomb,0

onebit

0 50 100 150 200
0

2

4

6

8

10
x 10

4

Problem size

E
s
ti
m

a
te

d
 E

R
T

MOEA
onebit

MOEA
fair

onebit

MOEA
greedy

onebit

MOEA
recomb,0.5

onebit

MOEA
recomb,0

onebit

(a) MOEAs with one-bit mutation on LOTZ (b) MOEAs with one-bit mutation on COCZ

0 20 40 60 80 100
0

2

4

6

8

10
x 10

5

Problem size

E
s
ti
m

a
te

d
 E

R
T

MOEA
bitwise

MOEA
recomb,0.5

bitwise

MOEA
recomb,0

bitwise

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

5

Problem size

E
s
ti
m

a
te

d
 E

R
T

MOEA
bitwise

MOEA
recomb,0.5

bitwise

MOEA
recomb,0

bitwise

(c) MOEAs with bit-wise mutation on LOTZ (d) MOEAs with bit-wise mutation on COCZ

Figure 3: Comparison between estimated ERT of several MOEAs on LOTZ and COCZ.

MOEAonebit
recomb,0.5 is the most efficient algorithm among the MOEAs with one-bit mutation on LOTZ

and COCZ.

Figure 2 suggests that the ERT of MOEAbitwise and MOEAbitwise
recomb,0 on LOTZ is approximately in the

order of n3, and the ERT of MOEAbitwise and MOEAbitwise
recomb,0 on COCZ is approximately in the order of

n2 lnn and n2/ lnn, respectively. Therefore, we can conclude that MOEAbitwise
recomb,0.5 is the most effi-

cient algorithm among the MOEAs with bit-wise mutation on the two problems.

Then, in Figure 3, we compare the expected running time of MOEAonebit
recomb/MOEAbitwise

recomb with other

MOEAs empirically when the problem size is not large. The problem size for LOTZ is set in the range

from 2 to 100, and that for the COCZ problem is set even integers in the range from 2 to 200. It can be

observed that even in this empirical comparison, the ERT of MOEAonebit
recomb,0.5 and MOEAbitwise

recomb,0.5 on

the two problems is the smallest among the corresponding MOEAs.

5. Analysis of Recombination on the Multi-Objective Minimum Spanning Tree Problem

5.1. The Problem

The single-objective minimum spanning tree (MST) problem is a classical polynomial solvable com-

binatorial problem, which is to find a connected subgraph with the minimum weight from an undi-

24

rected connected graph. However, the multi-objective MST problem with at least two objectives,

where each edge of a graph is assigned to a weight vector rather than a single weight, has been

proved to be NP-Hard [2, 13]. It has found many real applications in designing networks. For ex-

ample, in the design for a layout of telecommunication systems, besides the cost for connection

between terminals, other factors, e.g., the time for communication and the network reliability, may

also need to be considered. For solving this problem, many algorithms have been proposed for

approximation, e.g., deterministic algorithms [19, 43] and evolutionary algorithms [55, 5].

The multi-objective MST problem can be described as follows. Given an undirected connected

graph G = (V,E) on n vertices and m edges where V and E = {e1, e2, . . . , em} are the vertex set and

edge set respectively, each edge ei has a weight vector (wi
1, w

i
2, . . . , w

i
k), where wi

j > 0 is the value of

edge ei with respect to the j-th weight. The goal is to find connected subgraphs G′ = (V,E′ ⊆ E)

which minimize the objective vector

(
∑

ei∈E′
wi

1,
∑

ei∈E′
wi

2, . . . ,
∑

ei∈E′
wi

k).

The special case with k = 1 is just the single-objective MST problem. Let wmax
j denote the maximal

value for the j-th weight (i.e., wmax
j = max{wi

j |1 ≤ i ≤ m}), wmax = max{wmax
j |1 ≤ j ≤ k} and

wmin = min{wmax
j |1 ≤ j ≤ k}.

For MOEAs solving the multi-objective MST problem, a solutionx is usually represented by a Boolean

string of lengthm, i.e., x ∈ {0, 1}m, where xi = 1 means that the edge ei is selected by x [42]. A com-

monly used fitness function for minimizing the j-th objective [33] is

fj(x) =(c(x)− 1)w2
ub + (

∑m

i=1
xi − n+ 1)wub +

∑m

i=1
xiw

i
j , (1)

where c(x) is the number of connected components of the subgraph described by x, and wub =

n2wmax. Note that in this fitness function, the first term (c(x) − 1)w2
ub makes that a subgraph with

fewer connected components is better, the second term (
∑m

i=1 xi−n+1)wub makes that a connected

subgraph with fewer edges is better, and the last term
∑m

i=1 xiw
i
j makes that a spanning tree with

a smaller weight is better. That is, fj(x) is minimized with respect to the lexicographic order of

(c(x),
∑m

i=1 xi,
∑m

i=1 xiw
i
j).

By the fitness function of Eq.1, all the objectives are consistent on decreasing the number of con-

nected components and decreasing the number of edges of a connected subgraph. Thus, a Pareto

optimal solution must be a spanning tree.

We will consider the bi-objective MST problem in our analysis. In particular, we will analyze solving

a subclass of bi-objective MST problem with a strictly convex optimal Pareto front, and approximat-

ing the general bi-objective MST problem. The two tasks are described as follows.

25

��

� !�

!"#�

!"

!$

Figure 4: A Pareto front and its (strictly) convex sub-front.

Let F denote a Pareto front of a bi-objective minimization problem. The convex and strictly convex

sub-front of F , denoted as conv(F) and sconv(F) respectively, is defined in Definition 9.

Definition 9 ((Strictly) Convex Sub-Front)

Given a Pareto front F of a bi-objective minimization problem, let the convex sub-front conv(F) be

the smallest subset of F such that

∀q ∈ F − conv(F), ∃q′, q′′ ∈ conv(F), ∃c1, c2 > 0 : q = c1q
′ + c2q

′′ ∧ c1 + c2 > 1,

and let the strictly convex sub-front sconv(F) be the smallest subset of F such that

∀q ∈ F − sconv(F), ∃q′, q′′ ∈ sconv(F), ∃c1, c2 > 0 : q = c1q
′ + c2q

′′ ∧ c1 + c2 ≥ 1.

For example, in Figure 4, F consists of all the points represented by •, ◦ and ×, then conv(F) consists

of the points represented by both • and ◦, and sconv(F) consists of the points represented by •.

Let F ∗ denote the optimal Pareto front. Our first task is to analyze MOEAs solving a subclass of

bi-objective MST problem where F ∗ = sconv(F ∗), i.e., the optimal Pareto front equals its strictly

convex sub-front.

Our second task is to approximate the optimal Pareto front of the general bi-objective MST prob-

lem, particularly, find (1 + ε)-approximation as defined in Definition 10, which means that for every

Pareto optimal solution we have a solution that is (1 + ε) close on every objective. Note that, ap-

proximation here is considered for minimization. Then, the expected running time of MOEAs for

approximation is the number of fitness evaluations until a desired approximation of the optimal

Pareto front is found.

26

Definition 10 ((1 + ε)-Approximation)

Given a k-objective optimization task, for any ε > 0, a set P of solutions is a (1+ ε)-approximation of

the optimal Pareto front if ∀q∗ = (q∗1 , . . . , q
∗
k) ∈ F ∗, i.e., any point in the optimal Pareto front, there

exists a solution x ∈ P such that ∀i = 1, . . . , k : fi(x) ≤ (1 + ε) · q∗i .

5.2. Analysis

In this section, we analyze the expected running time of MOEAbitwise
recomb on the bi-objective MST prob-

lem for the above two tasks, i.e., finding the optimal Pareto front for the bi-objective MST problem

with F ∗ = sconv(F ∗), and finding a 2-approximation of the optimal Pareto front for the general

bi-objective MST problem.

For the first task, we first analyze the initialization procedure of MOEAbitwise
recomb on the bi-objective

MST problem. From Definition 4, we know that the initialization is to optimize two single-objective

MST problems with respect to w1 and w2 separately by two independent RLS. For RLS, it generates

an offspring solution by flipping a randomly chosen bit of the parent solution. For a spanning tree,

it cannot be improved by one-bit flip, which will lead to either an unconnected subgraph or a non-

spanning tree; it can decrease its weight by flipping two proper bits, which inserts an edge leading

to a cycle and deletes an existed edge with a larger weight in the created cycle. Thus, we modify the

RLS by its reproduction behavior. That is, with probability 0.5, it generates an offspring by flipping

a randomly chosen bit of the parent; otherwise, it generates an offspring solution by flipping two

randomly chosen bits. From Theorem 2 in [37], it is known that the expected running time of such

RLS for finding a minimum spanning tree with respect tow1 (orw2) is upper bounded byO(m2(lnn+

lnwmax
1) (or O(m2(lnn+ lnwmax

2)). Here, when examining whether a solution is local optimal for an

objective, we use the solutions having Hamming distance not larger than 2 with the current solution

as its neighbor space. Thus the parameterN in Definition 4 is Θ(m2), i.e., the examining will be done

every Θ(m2) iteration. Because the running time of examining once is Θ(m2) by the neighborhood

size Θ(m2) of a solution, the total running time of examining in the initialization is as same as that

of optimization. Then, we have the following lemma.

Lemma 5

On the bi-objective MST problem, the expected running time of the initialization procedure of

MOEAbitwise
recomb is O(m2(lnn+ lnwmax)).

Lemma 6 gives a property for the points in sconv(F ∗), which will be used in the following analysis.

We denote these points by q1, . . . , qr in the lexicographic order (i.e., the first value of qi increases

with i), as showed in Figure 4. Let d(T, T ′) = |E(T) − E(T ′)| denote the distance of two spanning

27

trees T and T ′, i.e., the minimum number of two edge exchanges for constructing T ′ from T , where

E(T) denotes the edge set of T .

Lemma 6 ([33])

IfF ∗ = sconv(F ∗), for each Pareto optimal spanning tree T with objective vector qi (1 ≤ i < r), there

always exists a Pareto optimal spanning tree T ′ with objective vector qi+1 such that d(T, T ′) = 1.

We then define a specific optimization path of MOEAs for finding sconv(F ∗) of a bi-objective MST

problem instance, as in Definition 11. At any time of the optimization, it uses crossover if crossover

can produce new elements in sconv(F ∗); otherwise, it uses mutation.

Definition 11 (Crossover-First-Mutation-Second Path)

For a bi-objective MST problem instance, assume that two Pareto optimal solutions T ∗1 and T ∗r for

q1 and qr respectively have been found. A crossover-first-mutation-second path is an optimization

path of MOEAs for finding the remaining part of sconv(F ∗) (i.e., {q2, . . . , qr−1}), which behaves as

follows: at any time of the optimization, if crossover on T ∗1 (or T ∗r) and any other Pareto optimal

solution with objective vector qi that has been found can generate a Pareto optimal solution with

objective vector qj that has not been found, it will always apply crossover until crossover generates

it; otherwise, assuming that {q1, . . . , qi} have been found and qi+1 has not been found, it will always

apply mutation until mutation generates a Pareto optimal solution with objective vector qi+1. The

process of generating a new qi by crossover only and that by mutation only on this path are called

good crossover and good mutation, respectively.

In the following analysis, we will not distinguish a solution and the subgraph that it represents for

convenience, and we will use wj(ei) and wj(T) to denote the value of an edge ei and a spanning

tree T for the j-th weight wj respectively, i.e., wj(ei) = wi
j and wj(T) =

∑
e∈E(T) wj(e). Given a bi-

objective MST problem instance and two Pareto optimal solutions T ∗1 and T ∗r for q1 and qr respec-

tively, let Ngc(T
∗
1 , T

∗
r) denote the maximum number of good crossover for all possible crossover-

first-mutation-second paths starting from T ∗1 and T ∗r , and let Ngc = min{Ngc(T
∗
1 , T

∗
r) | f(T ∗1) =

q1 ∧ f(T ∗r) = qr}.

Theorem 8

The expected running time ofMOEAbitwise
recomb,0.5 on the bi-objective MST problem withF ∗ = sconv(F ∗)

until finding the optimal Pareto front isO(mnwminNgc +m2nwmin(|F ∗| −Ngc) +m2(lnn+ lnwmax)),

where 0 ≤ Ngc ≤ |F ∗|.

Proof. We divide the optimization process into two phases. The first phase starts after initialization

and finishes until two Pareto optimal solutions for q1 and qr respectively are found. The second

phase finishes until the optimal Pareto front is found.

28

In the first phase, two minimum spanning trees with respect to w1 and w2 respectively have been

found after the initialization procedure. Then, we are to analyze the expected running time until a

Pareto optimal solution T ∗1 for q1 is found. T ∗1 is actually a minimum spanning tree for w1; mean-

while, it is also Pareto optimal, i.e., it has the minimum weight forw2 among all minimum spanning

trees for w1. Note that, a minimum spanning tree for w1 will be always existed in the population,

because it has the minimum value on the first objective f1 with respect to w1, and a non-minimum

spanning tree for w1 has a larger value on f1 and thus cannot dominate it. Let T1 denote the mini-

mum spanning tree for w1 in the current population. Then, we analyze the expected running time

for constructing T ∗1 from T1. As T ∗1 is a minimum spanning tree forw1, from [32], we know that there

exists a bijection α fromE(T ∗1)−E(T1) toE(T1)−E(T ∗1) such that for each edge e ∈ E(T ∗1)−E(T1),

α(e) ∈ Cyc(T1, e) andw1(e) ≤ w1(α(e)), whereCyc(T1, e) is the cycle led by the insertion of e into T1.

Because T1 is also a minimum spanning tree forw1, it must hold thatw1(e) = w1(α(e)). We also have

w2(e) ≤ w2(α(e)), because otherwise we can construct a spanning tree T ′1 withw2(T ′1) < w2(T ∗1) and

w1(T ′1) = w1(T ∗1), which contradicts that T ∗1 is Pareto optimal. Thus, we have shown that for con-

structing T ∗1 from T1, there always exist k (k = |E(T ∗1)− E(T1)| > 0) number of two edge exchanges

which can keep the offspring spanning tree minimum forw1 and improve it forw2. Note that, (1+1)-

EA is a simple single-objective EA which maintains one solution, reproduces an offspring solution

by bit-wise mutation and updates the parent solution if the offspring is better in every iteration.

Thus, if we assume that T1 is always selected for mutation in every iteration, the process of con-

structing T ∗1 from T1 follows the optimization procedure of (1+1)-EA for constructing a minimum

spanning tree from a non-minimum spanning tree with respect tow2, the expected running time of

which has been proved to be O(m2(lnn + lnwmax
2)) from Theorem 2 in [37]. Since T1 is optimal for

the first objective, it will be selected for reproduction with probability at least 1
2 in every iteration.

The probability of employing mutation in reproduction for MOEAbitwise
recomb,0.5 is 1

2 . Thus, the probabil-

ity of selecting T1 for mutation in each iteration is Θ(1), which implies that the expected running

time for finding T ∗1 is O(m2(lnn+ lnwmax
2)). Similarly, we can prove that the expected running time

for finding a corresponding Pareto optimal solution T ∗r for qr is O(m2(lnn + lnwmax
1)). Thus, the

expected running time of the first phase is O(m2(lnn+ lnwmax)).

Then, in the second phase, we are to analyze the expected running time for finding the remain-

ing part of the optimal Pareto front (i.e., {q2, . . . , qr−1}). We consider an arbitrary crossover-first-

mutation-second path starting from T ∗1 and T ∗r . Obviously, its expected running time is an upper

bound on the expected running time of this phase, because at any time of the optimization, there

are many other possible ways to find new Pareto optimal solutions, except the way used by the

path. Let P denote the current population. Because T ∗1 and T ∗r that have been found are optimal

for the two objectives with respect to w1 and w2 respectively, in the selection procedure for repro-

duction, a solution x1 will be first selected from {T ∗1 , T ∗r } randomly, and then another solution x2

29

will be selected randomly from the remaining solutions P −{x1}. The probabilities for two selected

solutions by this procedure are 1
2 and 1

|P |−1 , respectively. Then, for good crossover, the probabil-

ity of generating a new qi in one step is at least 1
2 · (1

2 ·
1

|P |−1) · 1
m , where 1

2 is the probability of

applying crossover, (1
2 ·

1
|P |−1) is the probability of selecting two specific Pareto optimal solutions

and 1
m is the probability of selecting a proper crossover point; and for good mutation, the prob-

ability of generating a new qi in one step is at least 1
2 ·

1
|P |−1 ·

1
m2 (1 − 1

m)m−2 by Lemma 6, where
1
2 is the probability of applying mutation, 1

|P |−1 is the lower bound for the probability of selecting

a specific solution, and 1
m2 (1 − 1

m)m−2 is the probability of flipping two specific bits. Because for

any value of one objective, there exists at most one corresponding solution in the population, we

have |P | ≤ nwmin. Thus, the above two probabilities become at least 1
4mnwmin

and 1
2em2nwmin

respec-

tively, which implies that the expected running time of a good crossover and a good mutation is

at most 4mnwmin and 2em2nwmin respectively. Then, we can get that the expected running time of

the crossover-first-mutation-second path with the maximum number of good crossover is at most

4mnwmin ·Ngc(T
∗
1 , T

∗
r)+2em2nwmin ·(r−2−Ngc(T

∗
1 , T

∗
r)) ≤ 4mnwmin ·Ngc+2em2nwmin ·(r−2−Ngc),

which is also an upper bound for the expected running time of this phase.

By combining the expected running time of the above two phases and that of the initialization in

Lemma 5, we can get that the expected running time of the whole process is upper bounded by

O(mnwminNgc +m2nwmin(r −Ngc) +m2(lnn+ lnwmax)), where r = |F ∗|.

Then, we analyze the approximation for the general bi-objective MST problem. By Lemma 7, we

know that we can find a 2-approximation of the optimal Pareto front by finding sconv(F ∗). For

deriving its expected running time, we can follow the above proof except that the expected steps for

a good mutation is different, because F ∗ usually does not equal to sconv(F ∗) which makes Lemma 6

not hold. Let Ci = {r ∈ conv(F ∗) | qi, qi+1 ∈ sconv(F ∗)∧ r1 > qi,1 ∧ r1 ≤ qi+1,1}, where r1, qi,1, qi+1,1

are the first value of r, qi, qi+1, respectively. That is, Ci consists of points on the i-th linear segment

of conv(F ∗). From the proof of Theorem 9 in [33], it is known that for constructing qi+1 from qi,

there exists an evolution path where the elements are from Ci and in the lexicographic order, and

the adjacent two elements can be reached by a single two edge exchange. The expected running

time for a specific two edge exchange on a specific solution is O(m2nwmin). Thus, a good mutation

needs O(m2nwmin|Ci|) expected running time. Let Cmin = min{|Ci| | 1 ≤ i ≤ r − 2}. Then, we can

derive Theorem 9.

Lemma 7 ([33])

For the minimization of two objective functions with positive objective values, a solution set con-

taining a corresponding solution for each point in sconv(F ∗) is a 2-approximation of the optimal

Pareto front F ∗.

30

(7,4)

1

2
3

4

(6,5)
(7,1)

(9,3)

(5,7)
(3,1)

(32,1)

1

2
3

4

(8,10)
(8,20)

(4,10)

(3,33)
(1,42)

(10,1)

1

2
3

4

(6,30)
(8,15)

(4,10)

(1,30)
(1,40)

(a) Example 1 (b) Example 2 (c) Example 3

Figure 5: Three examples of the bi-objective MST problem.

Theorem 9

The expected running time of MOEAbitwise
recomb,0.5 on the bi-objective MST problem until finding a 2-

approximation of the optimal Pareto front is O(mnwminNgc + m2nwmin(|conv(F ∗)| − NgcCmin) +

m2(lnn+ lnwmax)), where 0 ≤ Ngc ≤ |sconv(F ∗)|.

Neumann [33] has derived the expected running time of MOEAbitwise on the bi-objective MST prob-

lem for the two tasks. The results are showed in Theorem 10.

Theorem 10 ([33])

For MOEAbitwise on the bi-objective MST problem,

(1) ifF ∗ = sconv(F ∗), the expected running time until finding the optimal Pareto front isO(m2nwmin

(|F ∗|+ lnn+ lnwmax));

(2) in general cases, the expected running time until finding a 2-approximation of the optimal

Pareto front is O(m2nwmin(|conv(F ∗)|+ lnn+ lnwmax)).

By comparing Theorem 10 with Theorem 8 and 9, we find that recombination can make MOEAs

more efficient on the bi-objective MST problem. For the special case with F ∗ = sconv(F ∗), we can

observe that the expected running time for finding q1 and qr decreases fromm2nwmin(lnn+lnwmax)

to m2(lnn + lnwmax), and the expected running time for finding the remaining part of sconv(F ∗)

decreases by Ngc(m
2nwmin −mnwmin). For the approximation in general cases, we can observe the

similar result.

5.3. Empirical Verification

We give some examples to show thatNgc is usually larger than 0. Figure 5 lists three complete graphs

with 4 nodes, where each edge has two weights. We use a Boolean string of length 6 to represent

a solution, where the bits correspond to the edges 1 ↔ 2, 1 ↔ 3, 1 ↔ 4, 2 ↔ 3, 2 ↔ 4, 3 ↔ 4,

respectively. For a complete graph with 4 nodes, there are 16 possible spanning trees, as in the 1st

31

column of Table 3. Table 3 also shows the objective value of each spanning tree for each example

problem, and the elements of the optimal Pareto front are denoted by †. The optimal Pareto fronts

of these three examples are plotted in the left part of Figure 6, where the corresponding convex sub-

front consists of the points on the piece-wise linear function. We can observe that F ∗ = sconv(F ∗)

for example 1 and 2. In Table 3, we also denote the points of sconv(F ∗) in the lexicographic order

by q1, q2, . . . , qr, where r = |sconv(F ∗)|. We then construct the crossover-first-mutation-second

paths of these three examples, and show them in the right part of Figure 6, where ‘cor’ and ‘mut’

represent the crossover and mutation respectively, and the number i represents the execution order

of the current operator on the path. Let’s look at the path of example 1. First, crossover on the two

corresponding Pareto optimal solutions for q1 and q4 can generate the Pareto optimal solution for

q2; after that, crossover cannot generate new Pareto optimal solutions, then mutation applies to

the solution for q2 to generate the Pareto optimal solution for q3. We can observe that Ngc > 0 on

these examples. We also compare the expected running time of MOEAbitwise and MOEAbitwise
recomb,0.5 on

these example problems empirically. For each MOEA, we repeat independent runs for 1000 times,

and then the average running time is recorded as an estimation of the expected running time. The

results are showed in Table 4. We can observe that MOEAbitwise
recomb,0.5 is always better than MOEAbitwise,

which is consistent with our theoretical result.

The comparison in Table 4 is on three specific bi-objective MST problem instances. We also gen-

erally compare the performance of MOEAbitwise and MOEAbitwise
recomb,0.5 by experiments. We use the

complete graphs with the number of nodes n = 4, 5, 6, respectively. For each size of n, the average

running time of 1000 independent runs will be used as an estimation of the expected running time.

For each independent run, following [55, 26], the graph is constructed by setting the weight vector

of each edge be two integers uniformly randomly selected from [10, 100] and [10, 50], respectively.

The results are showed in Table 5. We can observe that MOEAbitwise
recomb,0.5 always needs less expected

running time than MOEAbitwise.

6. Discussions and Conclusions

This paper extends our preliminary work [40]. Multi-objective evolutionary algorithms, which typi-

cally use recombination operators, have been successfully applied in many practical situations, and

some theoretical results of MOEAs have been derived in recent years. However, previously analyzed

MOEAs rarely incorporate recombination operators. This paper theoretically investigates whether

recombination operators can be useful in the scenario of multi-objective optimization.

The Pareto front is a property of multi-objective optimization that is not involved in single-objective

optimization, thus we investigate whether a recombination operator can have an effect on solv-

32

spanning tree example 1 example 2 example 3

111000 (20,10) (48,31) (24,46)

110010 (18,16) (43,44) (17,61)

110001 (16,10) (41,53) (17,71)

101100 (23,8) (44,31)†, q5 (22,26)†, q5

101001 (17,6)†, q3 (41,63) (19,56)

100110 (21,14) (39,44) (15,41)†, q4

100101 (19,8) (37,53) (15,51)

100011 (15,12) (36,76) (12,71)

011100 (22,9) (20,40)†, q4 (18,55)

011010 (18,13) (19,63) (15,75)

010110 (20,15) (15,53)†, q3 (11,70)†, q2

010101 (18,9) (13,62)†, q2 (11,80)

010011 (14,13)†, q1 (12,85)†, q1 (8,100)†, q1

001110 (21,11) (15,63) (13,55)†, q3

001101 (19,5)†, q4 (13,72) (13,65)

001011 (15,9)†, q2 (12,95) (10,85)†

Table 3: The objective values for all possible spanning trees.

MOEA example 1 example 2 example 3

MOEAbitwise 278.81 337.89 361.17

MOEAbitwise
recomb,0.5 196.26 269.95 239.51

Table 4: Comparison of estimated expected running time on three example instances.

Problem size OPF MOEAbitwise MOEAbitwise
recomb,0.5

n = 4 3.14 203.76 142.54

n = 5 6.44 1403 1204.8

n = 6 10.02 5892.9 4828.6

Table 5: Comparison of estimated expected running time on random complete graphs, where problem size denotes the

number of nodes and OPF denotes the average size of the optimal Pareto front.

33

14 16 18 20

4

6

8

10

12

14

(a) Example 1

10 20 30 40 50
30

40

50

60

70

80

90

(b) Example 2

5 10 15 20 25
20

40

60

80

100

(c) Example 3

Figure 6: The optimal Pareto front and the crossover-first-mutation-second path.

ing the Pareto front of multi-objective problems. First, we analyze the running time of two multi-

objective evolutionary algorithms with a recombination operator: MOEAonebit
recomb using one-bit mu-

tation and MOEAbitwise
recomb using bit-wise mutation, on two artificial model problems Weighted LPTNO

and COCZ. The analytic results of MOEAonebit
recomb/MOEAbitwise

recomb turning recombination on and off on

these two problems show the helpfulness of crossover. By comparing with the previously analyzed

MOEAs on the LOTZ (a special case of Weighted LPTNO) and COCZ problems, we find that MOEAonebit
recomb

and MOEAbitwise
recomb are the most efficient. This supports the conclusion that recombination operators

can be useful for multi-objective optimization. The analysis discloses that the recombination opera-

tor works in the studied situation by accelerating the filling of the Pareto front through recombining

diverse optimal solutions found-so-far. Then, we further examine the effect of recombination for

solving the multi-objective minimum spanning tree problem, which is an NP-hard problem. We

derive the expected running time of MOEAbitwise
recomb with crossover probability 0.5, and by comparing

with the previously analyzed MOEAbitwise, we find that recombination can still work.

We observe that the use of the bit-wise mutation does not show advantages over the one-bit mu-

34

tation in the studied cases, while they have been shown to have different ability [54]. A question

that will be investigated in the future is that when the bit-wise mutation leads to a better perfor-

mance than the one-bit mutation. We shall analyze MOEAonebit
recomb and MOEAbitwise

recomb on more realistic

problems with more kinds of objective functions, and we will also try to identify problem classes for

which the investigated recombination operator is helpful following [41]. There are several possible

directions to extend this work in the future: first, other types as well as other usages of recombina-

tion operators in MOEAs could be investigated; second, it is also interesting to study the effect of

recombination in different stages of MOEAs as well as the effect of different initialization of MOEAs;

third, the interaction between mutation, recombination and selection operators is an important

aspect for a full characterization of MOEAs; and moreover, analyzing MOEAs on more than two

objectives is an interesting topic.

7. Acknowledgments

We want to thank the associate editor and anonymous reviewers for their helpful comments and

suggestions. This work was supported by the National Science Foundation of China (61375061,

61333014), the Jiangsu Science Foundation (BK2012303), and the National Fundamental Research

Program of China (2014CB340501).

References

[1] M. Abido. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE

Transactions on Evolutionary Computation, 10(3):315–329, 2006.

[2] K. A. Andersen, K. Jörnsten, and M. Lind. On bicriterion minimal spanning trees: An approxi-

mation. Computers & Operations Research, 23(12):1171–1182, 1996.

[3] A. Arias-Montano, C. Coello Coello, and E. Mezura-Montes. Multiobjective evolutionary algo-

rithms in aeronautical and aerospace engineering. IEEE Transactions on Evolutionary Compu-

tation, 16(5):662–694, 2012.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Oxford University Press, Oxford, UK, 1996.

[5] G. Chen, S. Chen, W. Guo, and H. Chen. The multi-criteria minimum spanning tree problem

based genetic algorithm. Information Sciences, 177(22):5050–5063, 2007.

[6] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc.,

New York, NY, 2001.

35

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[8] M. Dietzfelbinger, B. Naudts, C. Van Hoyweghen, and I. Wegener. The analysis of a recombi-

native hill-climber on H-IFF. IEEE Transactions on Evolutionary Computation, 7(5):417–423,

2003.

[9] B. Doerr and M. Theile. Improved analysis methods for crossover-based algorithms. In Proceed-

ings of the 11th ACM Annual Conference on Genetic and Evolutionary Computation (GECCO’09),

pages 247–254, Montreal, Canada, 2009.

[10] B. Doerr, E. Happ, and C. Klein. Crossover can provably be useful in evolutionary computation.

In Proceedings of the 10th ACM Annual Conference on Genetic and Evolutionary Computation

(GECCO’08), pages 539–546, Atlanta, GA, 2008.

[11] B. Doerr, D. Johannsen, T. Kötzing, F. Neumann, and M. Theile. More effective crossover opera-

tors for the all-pairs shortest path problem. In Proceedings of the 11th International Conference

on Parallel Problem Solving from Nature (PPSN’10), pages 184–193, Krakow, Poland, 2010.

[12] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary algorithm. The-

oretical Computer Science, 276(1-2):51–81, 2002.

[13] M. Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Germany, 2005.

[14] A.-E. Eiben, P.-E. Raué, and Z. Ruttkay. Genetic algorithms with multi-parent recombination.

In Proceedings of the 3rd International Conference on Parallel Problem Solving from Nature

(PPSN’94), pages 78–87, Jerusalem, Israel, 1994.

[15] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiobjective optimization and evolutionary al-

gorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE

Transactions on Evolutionary Computation, 10(3):358–374, 2006.

[16] S. Fischer and I. Wegener. The one-dimensional Ising model: Mutation versus recombination.

Theoretical Computer Science, 344(2-3):208–225, 2005.

[17] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating covering prob-

lems by randomized search heuristics using multi-objective models. In Proceedings of the 9th

ACM Annual Conference on Genetic and Evolutionary Computation (GECCO’07), pages 797–

804, London, UK, 2007.

[18] O. Giel. Expected runtimes of a simple multi-objective evolutionary algorithm. In Proceed-

ings of the IEEE Congress on Evolutionary Computation (CEC’03), pages 1918–1925, Canberra,

Australia, 2003.

36

[19] H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals of

Operations Research, 52(4):209–230, 1994.

[20] T. Hanne. On the convergence of multiobjective evolutionary algorithms. European Journal of

Operational Research, 117(3):553–564, 1999.

[21] J. He and X. Yao. Drift analysis and average time complexity of evolutionary algorithms. Artifi-

cial Intelligence, 127(1):57–85, 2001.

[22] T. Jansen and I. Wegener. The analysis of evolutionary algorithms-a proof that crossover really

can help. Algorithmica, 34(1):47–66, 2002.

[23] T. Jansen and I. Wegener. Real royal road functions-where crossover provably is essential. Dis-

crete Applied Mathematics, 149(1-3):111–125, 2005.

[24] D. Johannsen, P. Kurur, and J. Lengler. Can quantum search accelerate evolutionary algorithms?

In Proceedings of the 12th ACM Annual Conference on Genetic and Evolutionary Computation

(GECCO’10), pages 1433–1440, Portland, OR, 2010.

[25] M. P. Kleeman, B. A. Seibert, G. B. Lamont, K. M. Hopkinson, and S. R. Graham. Solving

multicommodity capacitated network design problems using multiobjective evolutionary al-

gorithms. IEEE Transactions on Evolutionary Computation, 16(4):449–471, 2012.

[26] J. D. Knowles and D. W. Corne. A comparison of encodings and algorithms for multiobjective

minimum spanning tree problems. In Proceedings of the IEEE Congress on Evolutionary Com-

putation (CEC’01), pages 544–551, Korea, 2001.

[27] T. Kötzing, D. Sudholt, and M. Theile. How crossover helps in pseudo-Boolean optimization.

In Proceedings of the 13th ACM Annual Conference on Genetic and Evolutionary Computation

(GECCO’11), pages 989–996, Dublin, Ireland, 2011.

[28] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time analysis of multi-

objective evolutionary algorithms on a simple discrete optimization problem. In Proceedings

of the 7th International Conference on Parallel Problem Solving from Nature (PPSN’02), pages

44–53, Birmingham, UK, 2002.

[29] M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of multiobjective evolutionary

algorithms on pseudo-Boolean functions. IEEE Transactions on Evolutionary Computation,

8(2):170–182, 2004.

[30] P. K. Lehre and X. Yao. Crossover can be constructive when computing unique input output se-

quences. In Proceedings of the 7th International Conference on Simulated Evolution and Learn-

ing (SEAL’08), pages 595–604, Melbourne, Australia, 2008.

37

[31] G. Lin and X. Yao. Analysing crossover operators by search step size. In Proceedings of the IEEE

Congress on Evolutionary Computation (CEC’97), pages 107–110, Indianapolis, IN, 1997.

[32] E. W. Mayr and C. G. Plaxton. On the spanning trees of weighted graphs. Combinatorica, 12(4):

433–447, 1992.

[33] F. Neumann. Expected runtimes of a simple evolutionary algorithm for the multi-objective

minimum spanning tree problem. European Journal of Operational Research, 181(3):1620–

1629, 2007.

[34] F. Neumann and J. Reichel. Approximating minimum multicuts by evolutionary multi-

objective algorithms. In Proceedings of the 10th International Conference on Parallel Problem

Solving from Nature (PPSN’08), pages 72–81, Dortmund, Germany, 2008.

[35] F. Neumann and M. Theile. How crossover speeds up evolutionary algorithms for the multi-

criteria all-pairs-shortest-path problem. In Proceedings of the 11th International Conference

on Parallel Problem Solving from Nature (PPSN’10), pages 667–676, Krakow, Poland, 2010.

[36] F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-objective opti-

mization. Natural Computing, 5(3):305–319, 2006.

[37] F. Neumann and I. Wegener. Randomized local search, evolutionary algorithms, and the mini-

mum spanning tree problem. Theoretical Computer Science, 378(1):32–40, 2007.

[38] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization - Algorithms

and Their Computational Complexity. Springer-Verlag, Berlin, Germany, 2010.

[39] P. Oliveto, J. He, and X. Yao. Analysis of population-based evolutionary algorithms for the vertex

cover problem. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’08),

pages 1563–1570, Hong Kong, China, 2008.

[40] C. Qian, Y. Yu, and Z.-H. Zhou. An analysis on recombination in multi-objective evolutionary

optimization. In Proceedings of the 13th ACM Annual Conference on Genetic and Evolutionary

Computation (GECCO’11), pages 2051–2058, Dublin, Ireland, 2011.

[41] C. Qian, Y. Yu, and Z.-H. Zhou. On algorithm-dependent boundary case identification for prob-

lem classes. In Proceedings of the 12th International Conference on Parallel Problem Solving

from Nature (PPSN’12), pages 62–71, Taormina, Italy, 2012.

[42] G. R. Raidl and B. A. Julstrom. Edge sets: an effective evolutionary coding of spanning trees.

IEEE Transactions on Evolutionary Computation, 7(3):225–239, 2003.

[43] R. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the optimal biobjective span-

ning tree. European Journal of Operational Research, 111(3):617–628, 1998.

38

[44] J. Richter, A. Wright, and J. Paxton. Ignoble trails-where crossover is provably harmful. In

Proceedings of the 10th International Conference on Parallel Problem Solving from Nature

(PPSN’08), pages 92–101, Dortmund, Germany, 2008.

[45] G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to the pareto

set. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’98), pages 511–516,

Piscataway, NJ, 1998.

[46] G. Rudolph and A. Agapie. Convergence properties of some multi-objective evolutionary al-

gorithms. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’00), pages

1010–1016, Piscataway, NJ, 2000.

[47] W. Spears. Evolutionary Algorithms: The Role of Mutation and Recombination. Springer-Verlag,

Berlin, Germany, 2000.

[48] R. Steuer. Multiple Criteria Optimization: Theory, Computations, and Application. John Wiley

& Sons, Inc., New York, NY, 1986.

[49] D. Sudholt. Crossover is provably essential for the ising model on trees. In Proceedings of

the 7th ACM Annual Conference on Genetic and Evolutionary Computation (GECCO’05), pages

1161–1167, Washington, DC, 2005.

[50] R. A. Watson. Analysis of recombinative algorithms on a non-separable buildingblock prob-

lem. In Proceedings of the 6th International Workshop on Foundations of Genetic Algorithms

(FOGA’00), pages 69–89, San Mateo, CA, 2000.

[51] Y. Yu and Z.-H. Zhou. A new approach to estimating the expected first hitting time of evolu-

tionary algorithms. Artificial Intelligence, 172(15):1809–1832, 2008.

[52] Y. Yu, C. Qian, and Z.-H. Zhou. Towards analyzing recombination operators in evolutionary

search. In Proceedings of the 11th International Conference on Parallel Problem Solving from

Nature (PPSN’10), pages 144–153, Krakow, Poland, 2010.

[53] Y. Yu, C. Qian, and Z.-H. Zhou. Towards analyzing crossover operators in evolutionary search

via general Markov chain switching theorem. CORR abs/1111.0907, 2011.

[54] Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary optimization with

application to minimum set cover. Artificial Intelligence, 180-181:20–33, 2012.

[55] G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning tree

problem. European Journal of Operational Research, 114(1):141–152, 1999.

39

	Introduction
	Related Work
	Our Contribution

	Multi-Objective Optimization
	Recombination Enabled MOEAs
	Analysis of Recombination on Artificial Problems
	The Problems
	Analysis on the Weighted LPTNO Problem
	Analysis on the COCZ Problem
	Empirical Verification

	Analysis of Recombination on the Multi-Objective Minimum Spanning Tree Problem
	The Problem
	Analysis
	Empirical Verification

	Discussions and Conclusions
	Acknowledgments

