Supplementary Material: Subset Selection under Noise

Chao Qian ${ }^{1} \quad$ Jing-Cheng Shi ${ }^{2} \quad$ Yang Yu ${ }^{2} \quad$ Ke Tang $^{3,1} \quad$ Zhi-Hua Zhou ${ }^{2}$
${ }^{1}$ Anhui Province Key Lab of Big Data Analysis and Application, USTC, China
${ }^{2}$ National Key Lab for Novel Software Technology, Nanjing University, China
${ }^{3}$ Shenzhen Key Lab of Computational Intelligence, SUSTech, China
chaoqian@ustc.edu.cn tangk3@sustc.edu.cn
\{shijc,yuy, zhouzh\}@lamda.nju.edu.cn

1 Detailed Proofs

This part aims to provide some detailed proofs, which are omitted in our original paper due to space limitation.

Proof of Theorem 1. Let X^{*} be an optimal subset, i.e., $f\left(X^{*}\right)=O P T$. Let X_{i} denote the subset after the i-th iteration of the greedy algorithm. Then, we have

$$
\begin{aligned}
f\left(X^{*}\right)-f\left(X_{i}\right) & \leq f\left(X^{*} \cup X_{i}\right)-f\left(X_{i}\right) \\
& \leq \frac{1}{\gamma_{X_{i}, k}} \sum_{v \in X^{*} \backslash X_{i}}\left(f\left(X_{i} \cup\{v\}\right)-f\left(X_{i}\right)\right) \\
& \leq \frac{1}{\gamma_{X_{i}, k}} \sum_{v \in X^{*} \backslash X_{i}}\left(\frac{1}{1-\epsilon} F\left(X_{i} \cup\{v\}\right)-f\left(X_{i}\right)\right) \\
& \leq \frac{1}{\gamma_{X_{i}, k}} \sum_{v \in X^{*} \backslash X_{i}}\left(\frac{1}{1-\epsilon} F\left(X_{i+1}\right)-f\left(X_{i}\right)\right) \\
& \leq \frac{k}{\gamma_{X_{k}, k}}\left(\frac{1+\epsilon}{1-\epsilon} f\left(X_{i+1}\right)-f\left(X_{i}\right)\right),
\end{aligned}
$$

where the first inequality is by the monotonicity of f, the second inequality is by the definition of submodularity ratio and $\left|X^{*}\right| \leq k$, the third is by the definition of multiplicative noise, i.e., $F(X) \geq(1-\epsilon) \cdot f(X)$, the fourth is by line 3 of Algorithm 1, and the last is by $\gamma_{X_{i}, k} \geq \gamma_{X_{i+1}, k}$ and $F(X) \leq(1+\epsilon) \cdot f(X)$. By a simple transformation, we can equivalently get

$$
f\left(X_{i+1}\right) \geq\left(\frac{1-\epsilon}{1+\epsilon}\right)\left(\left(1-\frac{\gamma_{X_{k}, k}}{k}\right) f\left(X_{i}\right)+\frac{\gamma_{X_{k}, k}}{k} O P T\right) .
$$

Based on this inequality, an inductive proof gives the approximation ratio of the returned subset X_{k} :

$$
f\left(X_{k}\right) \geq \frac{\frac{1-\epsilon}{1+\epsilon} \frac{\gamma_{X_{k}, k}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{X_{k}, k}}{k}\right)}\left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{k}\left(1-\frac{\gamma_{X_{k}, k}}{k}\right)^{k}\right) \cdot O P T .
$$

Lemma 2 shows the relation between the F values of adjacent subsets, which will be used in the proof of Theorem 3.

Lemma 2. For any $X \subseteq V$, there exists one item $\hat{v} \in V \backslash X$ such that

$$
F(X \cup\{\hat{v}\}) \geq\left(\frac{1-\epsilon}{1+\epsilon}\right)\left(1-\frac{\gamma_{X, k}}{k}\right) F(X)+\frac{(1-\epsilon) \gamma_{X, k}}{k} \cdot O P T
$$

Proof. Let X^{*} be an optimal subset, i.e., $f\left(X^{*}\right)=O P T$. Let $\hat{v} \in \arg \max _{v \in X^{*} \backslash X} F(X \cup\{v\})$. Then, we have

$$
\begin{aligned}
f\left(X^{*}\right)-f(X) & \leq f\left(X^{*} \cup X\right)-f(X) \\
& \leq \frac{1}{\gamma_{X, k}} \sum_{v \in X^{*} \backslash X}(f(X \cup\{v\})-f(X)) \\
& \leq \frac{1}{\gamma_{X, k}} \sum_{v \in X^{*} \backslash X}\left(\frac{1}{1-\epsilon} F(X \cup\{v\})-f(X)\right) \\
& \leq \frac{k}{\gamma_{X, k}}\left(\frac{1}{1-\epsilon} F(X \cup\{\hat{v}\})-f(X)\right)
\end{aligned}
$$

where the first inequality is by the monotonicity of f, the second inequality is by the definition of submodularity ratio and $\left|X^{*}\right| \leq k$, and the third is by $F(X) \geq(1-\epsilon) f(X)$. By a simple transformation, we can equivalently get

$$
F(X \cup\{\hat{v}\}) \geq(1-\epsilon)\left(\left(1-\frac{\gamma_{X, k}}{k}\right) f(X)+\frac{\gamma_{X, k}}{k} \cdot O P T\right)
$$

By applying $f(X) \geq F(X) /(1+\epsilon)$ to this inequality, the lemma holds.

Proof of Theorem 3. Let $J_{\text {max }}$ denote the maximum value of $j \in[0, k]$ such that in P, there exists a solution \boldsymbol{x} with $|\boldsymbol{x}| \leq j$ and

$$
F(\boldsymbol{x}) \geq \frac{(1-\epsilon) \frac{\gamma_{\min }}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min }}{k}\right)}\left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{j}\left(1-\frac{\gamma_{\min }}{k}\right)^{j}\right) \cdot O P T
$$

We analyze the expected number of iterations until $J_{\max }=k$, which implies that there exists one solution \boldsymbol{x} in P satisfying that $|\boldsymbol{x}| \leq k$ and $F(\boldsymbol{x}) \geq \frac{(1-\epsilon) \frac{\gamma_{\text {min }}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\text {min }}}{k}\right)}\left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{k}\left(1-\frac{\gamma_{\text {min }}}{k}\right)^{k}\right) \cdot O P T$. Since $f(\boldsymbol{x}) \geq F(\boldsymbol{x}) /(1+\epsilon)$, the desired approximation bound has been reached when $J_{\max }=k$.
The initial value of $J_{\max }$ is 0 , since POSS starts from $\{0\}^{n}$. Assume that currently $J_{\max }=i<k$. Let \boldsymbol{x} be a corresponding solution with the value i, i.e., $|\boldsymbol{x}| \leq i$ and

$$
\begin{equation*}
F(\boldsymbol{x}) \geq \frac{(1-\epsilon) \frac{\gamma_{\min }}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min }}{k}\right)}\left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{i}\left(1-\frac{\gamma_{\min }}{k}\right)^{i}\right) \cdot O P T \tag{1}
\end{equation*}
$$

It is easy to see that $J_{\text {max }}$ cannot decrease because deleting \boldsymbol{x} from P (line 6 of Algorithm 2) implies that \boldsymbol{x} is weakly dominated by the newly generated solution \boldsymbol{x}^{\prime}, which must have a smaller size and a larger F value. By Lemma 2, we know that flipping one specific 0 bit of \boldsymbol{x} (i.e., adding a specific item) can generate a new solution \boldsymbol{x}^{\prime}, which satisfies that

$$
\begin{aligned}
F\left(\boldsymbol{x}^{\prime}\right) & \geq\left(\frac{1-\epsilon}{1+\epsilon}\right)\left(1-\frac{\gamma_{\boldsymbol{x}, k}}{k}\right) F(\boldsymbol{x})+\frac{(1-\epsilon) \gamma_{\boldsymbol{x}, k}}{k} \cdot O P T \\
& =\frac{1-\epsilon}{1+\epsilon} F(\boldsymbol{x})+\left(O P T-\frac{F(\boldsymbol{x})}{1+\epsilon}\right) \frac{(1-\epsilon) \gamma_{\boldsymbol{x}, k}}{k}
\end{aligned}
$$

Note that $O P T-\frac{F(\boldsymbol{x})}{1+\epsilon} \geq f(\boldsymbol{x})-\frac{F(\boldsymbol{x})}{1+\epsilon} \geq 0$. Moreover, $\gamma_{\boldsymbol{x}, k} \geq \gamma_{\text {min }}$, since $|\boldsymbol{x}|<k$ and $\gamma_{\boldsymbol{x}, k}$ decreases with \boldsymbol{x}. Thus, we have

$$
F\left(\boldsymbol{x}^{\prime}\right) \geq\left(\frac{1-\epsilon}{1+\epsilon}\right)\left(1-\frac{\gamma_{\min }}{k}\right) F(\boldsymbol{x})+\frac{(1-\epsilon) \gamma_{\min }}{k} \cdot O P T
$$

By applying Eq. (1) to the above inequality, we easily get

$$
F\left(\boldsymbol{x}^{\prime}\right) \geq \frac{(1-\epsilon) \frac{\gamma_{\min }}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min }}{k}\right)}\left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{i+1}\left(1-\frac{\gamma_{\min }}{k}\right)^{i+1}\right) \cdot O P T
$$

Since $\left|\boldsymbol{x}^{\prime}\right|=|\boldsymbol{x}|+1 \leq i+1, \boldsymbol{x}^{\prime}$ will be included into P; otherwise, \boldsymbol{x}^{\prime} must be dominated by one solution in P (line 5 of Algorithm 2), and this implies that $J_{\text {max }}$ has already been larger than i, which contradicts with the assumption $J_{\max }=i$. After including $\boldsymbol{x}^{\prime}, J_{\max } \geq i+1$. Let $P_{\max }$ denote the largest size of P during the run of POSS. Thus, $J_{\max }$ can increase by at least 1 in one iteration with probability at least $\frac{1}{P_{\max }} \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e n P_{\max }}$, where $\frac{1}{P_{\max }}$ is a lower bound on the probability of selecting \boldsymbol{x} in line 3 of Algorithm 2 and $\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}$ is the probability of flipping only a specific bit of \boldsymbol{x} in line 4 . Then, it needs at most $e n P_{\max }$ expected number of iterations to increase $J_{\max }$. Thus, after $k \cdot e n P_{\text {max }}$ expected number of iterations, $J_{\max }$ must have reached k.

From the procedure of POSS, we know that the solutions in P must be non-dominated. Thus, each value of one objective can correspond to at most one solution in P. Because the solutions with $|x| \geq 2 k$ have $-\infty$ value on the first objective, they must be excluded from P. Thus, $P_{\max } \leq 2 k$, which implies that the expected number of iterations $\mathbb{E}[T]$ for finding the desired solution is at most $2 e k^{2} n$.

Proof of Proposition 1. Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{l}\right\}$ and $\mathcal{B}=\left\{S_{l+1}, \ldots, S_{2 l}\right\}$. For the greedy algorithm, if without noise, it will first select one S_{i} from \mathcal{A}, and continue to select S_{i} from \mathcal{B} until reaching the budget. Thus, the greedy algorithm can find an optimal solution. But in the presence of noise, after selecting one S_{i} from \mathcal{A}, it will continue to select S_{i} from \mathcal{A} rather than from \mathcal{B}, since for all $X \subseteq \mathcal{A}, S_{i} \in \mathcal{B}, F(X)=2+\delta>2=F\left(X \cup\left\{S_{i}\right\}\right)$. The approximation ratio thus is only $2 /(k+1)$.
For POSS under noise, we show that it can efficiently follow the path $\{0\}^{n}$ (i.e., \emptyset) $\rightarrow\{S\} \rightarrow$ $\{S\} \cup X_{2} \rightarrow\{S\} \cup X_{3} \rightarrow \cdots \rightarrow\{S\} \cup X_{k-1}$ (i.e., an optimal solution), where S denotes any element from \mathcal{A} and X_{i} denotes any subset of \mathcal{B} with size i. Note that the solutions on the path will always be kept in the archive P once found, because there is no other solution which can dominate them. The probability of the first " \rightarrow " on the path is at least $\frac{1}{P_{\max }} \cdot \frac{l}{n}\left(1-\frac{1}{n}\right)^{n-1}$, since it is sufficient to select $\{0\}^{n}$ in line 3 of Algorithm 2, and flip one of its first $l 0$-bits and keep other bits unchanged in line 4. [Multi-bit search] For the second " \rightarrow ", the probability is at least $\frac{1}{P_{\max }} \cdot \frac{\binom{l}{2}}{n^{2}}\left(1-\frac{1}{n}\right)^{n-2}$, since it is sufficient to select $\{S\}$ and flip any two 0 -bits in its second half. For the i-th " \rightarrow " with $3 \leq i \leq k-1$, the probability is at least $\frac{1}{P_{\max }} \cdot \frac{l-i+1}{n}\left(1-\frac{1}{n}\right)^{n-1}$, since it is sufficient to select the left solution of " \rightarrow " and flip one 0 -bit in its second half. Thus, starting from $\{0\}^{n}$, POSS can follow the path in

$$
e n P_{\max } \cdot\left(\frac{1}{l}+\frac{4}{l-1}+\sum_{i=3}^{k-1} \frac{1}{l-i+1}\right)=O\left(n P_{\max } \log n\right)
$$

expected number of iterations. Since $P_{\max } \leq 2 k$, the number of iterations for finding an optimal solution is $O(k n \log n)$ in expectation.

Proof of Proposition 2. For the greedy algorithm, if without noise, it will first select $S_{4 l-2}$ since $\left|S_{4 l-2}\right|$ is the largest, and then find the optimal solution $\left\{S_{4 l-2}, S_{4 l-1}\right\}$. But in the presence of noise, $S_{4 l}$ will be first selected since $F\left(\left\{S_{4 l}\right\}\right)=2 l$ is the largest, and then the solution $\left\{S_{4 l}, S_{4 l-1}\right\}$ is found. The approximation ratio is thus only $(3 l-2) /(4 l-3)$.
For POSS under noise, we first show that it can efficiently follow the path $\{0\}^{n} \rightarrow\left\{S_{4 l}\right\} \rightarrow$ $\left\{S_{4 l}, S_{4 l-1}\right\} \rightarrow\left\{S_{4 l-2}, S_{4 l-1}, *\right\}$, where $*$ denotes any subset S_{i} with $i \neq 4 l-2,4 l-1$. In this procedure, we can pessimistically assume that the optimal solution $\left\{S_{4 l-2}, S_{4 l-1}\right\}$ will never be found, since we are to derive a running time upper bound for finding it. Note that the solutions on the path will always be kept in P once found, because no other solutions can dominate them. The probability of " \rightarrow " is at least $\frac{1}{P_{\max }} \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e n P_{\max }}$, since it is sufficient to select the solution on the left of " \rightarrow " and flip only one specific 0 -bit. Thus, starting from $\{0\}^{n}$, POSS can follow the path in $3 \cdot \mathrm{en} P_{\max }$ expected number of iterations. [Backward search] After that, the optimal solution $\left\{S_{4 l-2}, S_{4 l-1}\right\}$ can be found by selecting $\left\{S_{4 l-2}, S_{4 l-1}, *\right\}$ and flipping a specific l-bit, which happens with probability at least $\frac{1}{e n P_{\max }}$. Thus, the total number of required iterations is at most $4 e n P_{\max }$ in expectation. Since $P_{\max } \leq 4, \mathbb{E}[T]=O(n)$.

For the analysis of PONSS in the original paper, we assume that

$$
\operatorname{Pr}(F(\boldsymbol{x})>F(\boldsymbol{y})) \geq 0.5+\delta \quad \text { if } \quad f(\boldsymbol{x})>f(\boldsymbol{y}),
$$

where $\delta \in[0,0.5)$. To show that this assumption holds with i.i.d. noise distribution, we prove the following claim. Note that the value of δ depends on the concrete noise distribution.

Claim 1. If the noise distribution is i.i.d. for each solution \boldsymbol{x}, it holds that

$$
\operatorname{Pr}(F(\boldsymbol{x})>F(\boldsymbol{y})) \geq 0.5 \quad \text { if } \quad f(\boldsymbol{x})>f(\boldsymbol{y})
$$

Proof. If $F(\boldsymbol{x})=f(\boldsymbol{x})+\xi(\boldsymbol{x})$, where the noise $\xi(\boldsymbol{x})$ is drawn independently from the same distribution for each \boldsymbol{x}, we have, for two solutions \boldsymbol{x} and \boldsymbol{y} with $f(\boldsymbol{x})>f(\boldsymbol{y})$,

$$
\begin{aligned}
\operatorname{Pr}(F(\boldsymbol{x})>F(\boldsymbol{y})) & =\operatorname{Pr}(f(\boldsymbol{x})+\xi(\boldsymbol{x})>f(\boldsymbol{y})+\xi(\boldsymbol{y})) \\
& \geq \operatorname{Pr}(\xi(\boldsymbol{x}) \geq \xi(\boldsymbol{y})) \\
& \geq 0.5
\end{aligned}
$$

where the first inequality is by the condition that $f(\boldsymbol{x})>f(\boldsymbol{y})$, and the last inequality is derived by $\operatorname{Pr}(\xi(\boldsymbol{x}) \geq \xi(\boldsymbol{y}))+\operatorname{Pr}(\xi(\boldsymbol{x}) \leq \xi(\boldsymbol{y})) \geq 1$ and $\operatorname{Pr}(\xi(\boldsymbol{x}) \geq \xi(\boldsymbol{y}))=\operatorname{Pr}(\xi(\boldsymbol{x}) \leq \xi(\boldsymbol{y}))$ due to that $\xi(\boldsymbol{x})$ and $\xi(\boldsymbol{y})$ are from the same distribution.
If $F(\boldsymbol{x})=f(\boldsymbol{x}) \cdot \xi(\boldsymbol{x})$, the claim holds similarly.

2 Detailed Experimental Results

This part aims to provide some experimental results, which are omitted in our original paper due to space limitation.

Figure 1: Influence maximization with the budget $k=7$ (influence spread: the larger the better): the comparison between PONSS with different θ values, POSS and the greedy algorithm.

Figure 2: Sparse regression with the budget $k=14$ (R^{2} : the larger the better): the comparison between PONSS with different θ values, POSS and the greedy algorithm.

