Supplementary Material: Subset Selection under Noise

Chao Qian¹ Jing-Cheng Shi² Yang Yu² Ke Tang^{3,1} Zhi-Hua Zhou² ¹Anhui Province Key Lab of Big Data Analysis and Application, USTC, China ²National Key Lab for Novel Software Technology, Nanjing University, China ³Shenzhen Key Lab of Computational Intelligence, SUSTech, China chaoqian@ustc.edu.cn tangk3@sustc.edu.cn {shijc, yuy, zhouzh}@lamda.nju.edu.cn

1 Detailed Proofs

This part aims to provide some detailed proofs, which are omitted in our original paper due to space limitation.

Proof of Theorem 1. Let X^* be an optimal subset, i.e., $f(X^*) = OPT$. Let X_i denote the subset after the *i*-th iteration of the greedy algorithm. Then, we have

$$f(X^*) - f(X_i) \leq f(X^* \cup X_i) - f(X_i)$$

$$\leq \frac{1}{\gamma_{X_i,k}} \sum_{v \in X^* \setminus X_i} \left(f(X_i \cup \{v\}) - f(X_i) \right)$$

$$\leq \frac{1}{\gamma_{X_i,k}} \sum_{v \in X^* \setminus X_i} \left(\frac{1}{1 - \epsilon} F(X_i \cup \{v\}) - f(X_i) \right)$$

$$\leq \frac{1}{\gamma_{X_i,k}} \sum_{v \in X^* \setminus X_i} \left(\frac{1}{1 - \epsilon} F(X_{i+1}) - f(X_i) \right)$$

$$\leq \frac{k}{\gamma_{X_k,k}} \left(\frac{1 + \epsilon}{1 - \epsilon} f(X_{i+1}) - f(X_i) \right),$$

where the first inequality is by the monotonicity of f, the second inequality is by the definition of submodularity ratio and $|X^*| \leq k$, the third is by the definition of multiplicative noise, i.e., $F(X) \geq (1-\epsilon) \cdot f(X)$, the fourth is by line 3 of Algorithm 1, and the last is by $\gamma_{X_i,k} \geq \gamma_{X_{i+1},k}$ and $F(X) \leq (1+\epsilon) \cdot f(X)$. By a simple transformation, we can equivalently get

$$f(X_{i+1}) \ge \left(\frac{1-\epsilon}{1+\epsilon}\right) \left(\left(1 - \frac{\gamma_{X_k,k}}{k}\right) f(X_i) + \frac{\gamma_{X_k,k}}{k} OPT \right).$$

Based on this inequality, an inductive proof gives the approximation ratio of the returned subset X_k :

$$f(X_k) \ge \frac{\frac{1-\epsilon}{1+\epsilon} \frac{\gamma X_k, k}{k}}{1-\frac{1-\epsilon}{1+\epsilon} \left(1-\frac{\gamma X_k, k}{k}\right)} \left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^k \left(1-\frac{\gamma X_k, k}{k}\right)^k\right) \cdot OPT.$$

Lemma 2 shows the relation between the F values of adjacent subsets, which will be used in the proof of Theorem 3.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Lemma 2. For any $X \subseteq V$, there exists one item $\hat{v} \in V \setminus X$ such that

$$F(X \cup \{\hat{v}\}) \ge \left(\frac{1-\epsilon}{1+\epsilon}\right) \left(1 - \frac{\gamma_{X,k}}{k}\right) F(X) + \frac{(1-\epsilon)\gamma_{X,k}}{k} \cdot OPT.$$

Proof. Let X^* be an optimal subset, i.e., $f(X^*) = OPT$. Let $\hat{v} \in \arg \max_{v \in X^* \setminus X} F(X \cup \{v\})$. Then, we have $f(X^*) - f(X) \leq f(X^* \cup X) - f(X)$

$$\begin{aligned} X^*) - f(X) &\leq f(X^* \cup X) - f(X) \\ &\leq \frac{1}{\gamma_{X,k}} \sum_{v \in X^* \setminus X} \left(f(X \cup \{v\}) - f(X) \right) \\ &\leq \frac{1}{\gamma_{X,k}} \sum_{v \in X^* \setminus X} \left(\frac{1}{1 - \epsilon} F(X \cup \{v\}) - f(X) \right) \\ &\leq \frac{k}{\gamma_{X,k}} \left(\frac{1}{1 - \epsilon} F(X \cup \{\hat{v}\}) - f(X) \right), \end{aligned}$$

where the first inequality is by the monotonicity of f, the second inequality is by the definition of submodularity ratio and $|X^*| \leq k$, and the third is by $F(X) \geq (1 - \epsilon)f(X)$. By a simple transformation, we can equivalently get

$$F(X \cup \{\hat{v}\}) \ge (1 - \epsilon) \left(\left(1 - \frac{\gamma_{X,k}}{k}\right) f(X) + \frac{\gamma_{X,k}}{k} \cdot OPT \right)$$

By applying $f(X) \ge F(X)/(1+\epsilon)$ to this inequality, the lemma holds.

Proof of Theorem 3. Let J_{\max} denote the maximum value of $j \in [0, k]$ such that in P, there exists a solution x with $|x| \le j$ and

$$F(\boldsymbol{x}) \geq \frac{(1-\epsilon)\frac{\gamma_{\min}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min}}{k}\right)} \left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{j}\left(1-\frac{\gamma_{\min}}{k}\right)^{j}\right) \cdot OPT.$$

We analyze the expected number of iterations until $J_{\max} = k$, which implies that there exists one solution \boldsymbol{x} in P satisfying that $|\boldsymbol{x}| \leq k$ and $F(\boldsymbol{x}) \geq \frac{(1-\epsilon)\frac{\gamma_{\min}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}(1-\frac{\gamma_{\min}}{k})}(1-(\frac{1-\epsilon}{1+\epsilon})^k(1-\frac{\gamma_{\min}}{k})^k) \cdot OPT$. Since $f(\boldsymbol{x}) \geq F(\boldsymbol{x})/(1+\epsilon)$, the desired approximation bound has been reached when $J_{\max} = k$.

The initial value of J_{max} is 0, since POSS starts from $\{0\}^n$. Assume that currently $J_{\text{max}} = i < k$. Let \boldsymbol{x} be a corresponding solution with the value i, i.e., $|\boldsymbol{x}| \leq i$ and

$$F(\boldsymbol{x}) \ge \frac{(1-\epsilon)\frac{\gamma_{\min}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min}}{k}\right)} \left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{i}\left(1-\frac{\gamma_{\min}}{k}\right)^{i}\right) \cdot OPT.$$
(1)

It is easy to see that J_{max} cannot decrease because deleting x from P (line 6 of Algorithm 2) implies that x is weakly dominated by the newly generated solution x', which must have a smaller size and a larger F value. By Lemma 2, we know that flipping one specific 0 bit of x (i.e., adding a specific item) can generate a new solution x', which satisfies that

$$F(\mathbf{x'}) \ge \left(\frac{1-\epsilon}{1+\epsilon}\right) \left(1-\frac{\gamma_{\mathbf{x},k}}{k}\right) F(\mathbf{x}) + \frac{(1-\epsilon)\gamma_{\mathbf{x},k}}{k} \cdot OPT$$
$$= \frac{1-\epsilon}{1+\epsilon} F(\mathbf{x}) + \left(OPT - \frac{F(\mathbf{x})}{1+\epsilon}\right) \frac{(1-\epsilon)\gamma_{\mathbf{x},k}}{k}.$$

Note that $OPT - \frac{F(\boldsymbol{x})}{1+\epsilon} \ge f(\boldsymbol{x}) - \frac{F(\boldsymbol{x})}{1+\epsilon} \ge 0$. Moreover, $\gamma_{\boldsymbol{x},k} \ge \gamma_{\min}$, since $|\boldsymbol{x}| < k$ and $\gamma_{\boldsymbol{x},k}$ decreases with \boldsymbol{x} . Thus, we have

$$F(\boldsymbol{x'}) \geq \left(\frac{1-\epsilon}{1+\epsilon}\right) \left(1-\frac{\gamma_{\min}}{k}\right) F(\boldsymbol{x}) + \frac{(1-\epsilon)\gamma_{\min}}{k} \cdot OPT.$$

By applying Eq. (1) to the above inequality, we easily get

$$F(\boldsymbol{x'}) \geq \frac{(1-\epsilon)\frac{\gamma_{\min}}{k}}{1-\frac{1-\epsilon}{1+\epsilon}\left(1-\frac{\gamma_{\min}}{k}\right)} \left(1-\left(\frac{1-\epsilon}{1+\epsilon}\right)^{i+1}\left(1-\frac{\gamma_{\min}}{k}\right)^{i+1}\right) \cdot OPT.$$

Since $|\mathbf{x}'| = |\mathbf{x}| + 1 \le i + 1$, \mathbf{x}' will be included into P; otherwise, \mathbf{x}' must be dominated by one solution in P (line 5 of Algorithm 2), and this implies that J_{\max} has already been larger than i, which contradicts with the assumption $J_{\max} = i$. After including \mathbf{x}' , $J_{\max} \ge i + 1$. Let P_{\max} denote the largest size of P during the run of POSS. Thus, J_{\max} can increase by at least 1 in one iteration with probability at least $\frac{1}{P_{\max}} \cdot \frac{1}{n}(1-\frac{1}{n})^{n-1} \ge \frac{1}{enP_{\max}}$, where $\frac{1}{P_{\max}}$ is a lower bound on the probability of selecting \mathbf{x} in line 3 of Algorithm 2 and $\frac{1}{n}(1-\frac{1}{n})^{n-1}$ is the probability of flipping only a specific bit of \mathbf{x} in line 4. Then, it needs at most enP_{\max} expected number of iterations to increase J_{\max} . Thus, after $k \cdot enP_{\max}$ expected number of iterations, J_{\max} must have reached k.

From the procedure of POSS, we know that the solutions in P must be non-dominated. Thus, each value of one objective can correspond to at most one solution in P. Because the solutions with $|\mathbf{x}| \geq 2k$ have $-\infty$ value on the first objective, they must be excluded from P. Thus, $P_{\max} \leq 2k$, which implies that the expected number of iterations $\mathbb{E}[T]$ for finding the desired solution is at most $2ek^2n$.

Proof of Proposition 1. Let $\mathcal{A} = \{S_1, \ldots, S_l\}$ and $\mathcal{B} = \{S_{l+1}, \ldots, S_{2l}\}$. For the greedy algorithm, if without noise, it will first select one S_i from \mathcal{A} , and continue to select S_i from \mathcal{B} until reaching the budget. Thus, the greedy algorithm can find an optimal solution. But in the presence of noise, after selecting one S_i from \mathcal{A} , it will continue to select S_i from \mathcal{A} rather than from \mathcal{B} , since for all $X \subseteq \mathcal{A}, S_i \in \mathcal{B}, F(X) = 2 + \delta > 2 = F(X \cup \{S_i\})$. The approximation ratio thus is only 2/(k+1).

For POSS under noise, we show that it can efficiently follow the path $\{0\}^n$ (i.e., \emptyset) $\rightarrow \{S\} \rightarrow \{S\} \cup X_2 \rightarrow \{S\} \cup X_3 \rightarrow \cdots \rightarrow \{S\} \cup X_{k-1}$ (i.e., an optimal solution), where S denotes any element from \mathcal{A} and X_i denotes any subset of \mathcal{B} with size *i*. Note that the solutions on the path will always be kept in the archive P once found, because there is no other solution which can dominate them. The probability of the first " \rightarrow " on the path is at least $\frac{1}{P_{\text{max}}} \cdot \frac{1}{n} (1 - \frac{1}{n})^{n-1}$, since it is sufficient to select $\{0\}^n$ in line 3 of Algorithm 2, and flip one of its first *l* 0-bits and keep other bits unchanged

in line 4. [Multi-bit search] For the second " \rightarrow ", the probability is at least $\frac{1}{P_{\text{max}}} \cdot \frac{\binom{l}{2}}{n^2} (1 - \frac{1}{n})^{n-2}$, since it is sufficient to select $\{S\}$ and flip any two 0-bits in its second half. For the *i*-th " \rightarrow " with $3 \le i \le k-1$, the probability is at least $\frac{1}{P_{\text{max}}} \cdot \frac{l-i+1}{n} (1 - \frac{1}{n})^{n-1}$, since it is sufficient to select the left solution of " \rightarrow " and flip one 0-bit in its second half. Thus, starting from $\{0\}^n$, POSS can follow the path in

$$enP_{\max} \cdot \left(\frac{1}{l} + \frac{4}{l-1} + \sum_{i=3}^{k-1} \frac{1}{l-i+1}\right) = O(nP_{\max}\log n)$$

expected number of iterations. Since $P_{\max} \leq 2k$, the number of iterations for finding an optimal solution is $O(kn \log n)$ in expectation.

Proof of Proposition 2. For the greedy algorithm, if without noise, it will first select S_{4l-2} since $|S_{4l-2}|$ is the largest, and then find the optimal solution $\{S_{4l-2}, S_{4l-1}\}$. But in the presence of noise, S_{4l} will be first selected since $F(\{S_{4l}\}) = 2l$ is the largest, and then the solution $\{S_{4l}, S_{4l-1}\}$ is found. The approximation ratio is thus only (3l-2)/(4l-3).

For POSS under noise, we first show that it can efficiently follow the path $\{0\}^n \to \{S_{4l}\} \to \{S_{4l}, S_{4l-1}\} \to \{S_{4l-2}, S_{4l-1}, *\}$, where * denotes any subset S_i with $i \neq 4l - 2, 4l - 1$. In this procedure, we can pessimistically assume that the optimal solution $\{S_{4l-2}, S_{4l-1}\}$ will never be found, since we are to derive a running time upper bound for finding it. Note that the solutions on the path will always be kept in P once found, because no other solutions can dominate them. The probability of " \rightarrow " is at least $\frac{1}{P_{\text{max}}} \cdot \frac{1}{n}(1-\frac{1}{n})^{n-1} \geq \frac{1}{enP_{\text{max}}}$, since it is sufficient to select the solution on the left of " \rightarrow " and flip only one specific 0-bit. Thus, starting from $\{0\}^n$, POSS can follow the path in $3 \cdot enP_{\text{max}}$ expected number of iterations. [Backward search] After that, the optimal solution $\{S_{4l-2}, S_{4l-1}\}$ can be found by selecting $\{S_{4l-2}, S_{4l-1}, *\}$ and flipping a specific 1-bit, which happens with probability at least $\frac{1}{enP_{\text{max}}}$. Thus, the total number of required iterations is at most $4enP_{\text{max}}$ in expectation. Since $P_{\text{max}} \leq 4$, $\mathbb{E}[T] = O(n)$.

For the analysis of PONSS in the original paper, we assume that

$$\Pr(F(\boldsymbol{x}) > F(\boldsymbol{y})) \ge 0.5 + \delta \quad \text{if} \quad f(\boldsymbol{x}) > f(\boldsymbol{y}),$$

where $\delta \in [0, 0.5)$. To show that this assumption holds with i.i.d. noise distribution, we prove the following claim. Note that the value of δ depends on the concrete noise distribution.

Claim 1. If the noise distribution is i.i.d. for each solution x, it holds that

$$\Pr(F(x) > F(y)) \ge 0.5$$
 if $f(x) > f(y)$.

Proof. If $F(x) = f(x) + \xi(x)$, where the noise $\xi(x)$ is drawn independently from the same distribution for each x, we have, for two solutions x and y with f(x) > f(y),

$$\begin{aligned} \Pr(F(\boldsymbol{x}) > F(\boldsymbol{y})) &= \Pr(f(\boldsymbol{x}) + \xi(\boldsymbol{x}) > f(\boldsymbol{y}) + \xi(\boldsymbol{y})) \\ &\geq \Pr(\xi(\boldsymbol{x}) \ge \xi(\boldsymbol{y})) \\ &\geq 0.5, \end{aligned}$$

where the first inequality is by the condition that $f(\boldsymbol{x}) > f(\boldsymbol{y})$, and the last inequality is derived by $\Pr(\xi(\boldsymbol{x}) \ge \xi(\boldsymbol{y})) + \Pr(\xi(\boldsymbol{x}) \le \xi(\boldsymbol{y})) \ge 1$ and $\Pr(\xi(\boldsymbol{x}) \ge \xi(\boldsymbol{y})) = \Pr(\xi(\boldsymbol{x}) \le \xi(\boldsymbol{y}))$ due to that $\xi(\boldsymbol{x})$ and $\xi(\boldsymbol{y})$ are from the same distribution.

If $F(\mathbf{x}) = f(\mathbf{x}) \cdot \xi(\mathbf{x})$, the claim holds similarly.

2 Detailed Experimental Results

This part aims to provide some experimental results, which are omitted in our original paper due to space limitation.

Figure 1: Influence maximization with the budget k = 7 (influence spread: the larger the better): the comparison between PONSS with different θ values, POSS and the greedy algorithm.

Figure 2: Sparse regression with the budget k = 14 (R^2 : the larger the better): the comparison between PONSS with different θ values, POSS and the greedy algorithm.