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Abstract

Many randomized heuristic derivative-free optimization
methods share a framework that iteratively learns a
model for promising search areas and samples solutions
from the model. This paper studies a particular setting
of such framework, where the model is implemented
by a classification model discriminating good solutions
from bad ones. This setting allows a general theoreti-
cal characterization, where critical factors to the opti-
mization are discovered. We also prove that optimiza-
tion problems with Local Lipschitz continuity can be
solved in polynomial time by proper configurations of
this framework. Following the critical factors, we pro-
pose the randomized coordinate shrinking classification
algorithm to learn the model, forming the RACOS algo-
rithm, for optimization in continuous and discrete do-
mains. Experiments on the testing functions as well as
on the machine learning tasks including spectral cluster-
ing and classification with Ramp loss demonstrate the
effectiveness of RACOS.

Introduction
Sophisticated optimization problems are often encountered
in numerous real-world applications and are in the core
of many fields. In the realm of optimization, these prob-
lems can be formalized as argminx∈X f(x), where X is
the domain. In many optimization tasks, we cannot as-
sume that f has good properties such as linearity, con-
vexity, or even differentiability. Thus derivative-free opti-
mization methods are quite appealing, including genetic al-
gorithms (Golberg 1989), randomized local search (Neu-
mann and Wegener 2007), estimation of distribution algo-
rithms (Larrañaga and Lozano 2002), cross-entropy meth-
ods (de Boer et al. 2005), Bayesian optimization meth-
ods (Brochu, Cora, and De Freitas 2010), optimistic opti-
mization methods (Munos 2014), etc. However, due to the
extremely large variety of the problems and the heuristics
in the algorithms, most derivative-free optimization algo-
rithms are very weak in their theoretical foundations, only
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except the recent development of the optimistic optimization
method (Munos 2011; 2014), Bayesian optimization meth-
ods (Bull 2011; de Freitas, Smola, and Zoghi 2012), and
a few evolutionary algorithms (Yu, Yao, and Zhou 2012;
Qian, Yu, and Zhou 2015a; 2015b).

Many derivative-free optimization methods are model-
based, i.e., they learn a model from the solutions evalu-
ated in the optimization path, and the model is then used
to guide the sampling of solutions for the next round. For
example, cross-entropy methods may use Gaussian distribu-
tion as the model, Bayesian optimization methods employ
Gaussian process to model the joint distribution, and the es-
timation of distribution algorithms have incorporated many
kinds of learning models.

In this paper we study model-based optimization meth-
ods with a particular type of model: classification model. A
classification model learns to classify solutions into two cat-
egories, good or bad. The learned model partitions the solu-
tion space into good and bad areas. Then solutions are sam-
pled from the good areas. Employing a classification model
is not a new idea, since many different learning models have
been explored (e.g., (Lozano et al. 2006)). However, the the-
oretical understanding was only roughly touched (Yu and
Qian 2014). Important questions need to be addressed, in-
cluding which factors of a classification model effect the
optimization performance, what problems can be efficiently
solved. Towards this direction, this paper makes two contri-
butions:
• We prove a general optimization performance bound of a
classification-based optimization framework, which directly
depends on two critical factors of the classification models:
the error-target dependence and the shrinking rate. We also
show that problems with Local Lipschitz continuity can be
solved in polynomial time, if the framework is properly con-
figured.
• Following the critical factors, we design the randomized
coordinate shrinking classification algorithm, which learns
to discriminate good and bad solutions while trying to keep
the the error-target dependence and the shrinking rate small.
Employing this algorithm, we propose the RACOS optimiza-
tion algorithm for both continuous and discrete domains.
We then conduct experiments comparing RACOS with some
state-of-the-art derivative-free optimization methods on op-



timization testing functions and machine learning tasks in-
cluding spectral clustering and classification with Ramp
loss. The experiment results show that RACOS is superior
to the compared methods.

The rest of this paper is organized in five sections, se-
quentially presenting the background, the theoretical study,
the proposed RACOS algorithm, the empirical results, and
the conclusion.

Background
This paper considers the general minimization problems in
continuous and finite discrete domains. Let X denote a so-
lution space that is a compact subset of Rn, and f : X → R
denote a minimization problem. Assume that there exist
x∗, x′ ∈ X such that f(x∗) = minx∈X f(x) and f(x′) =
maxx∈X f(x). Let F denote the set of all functions that sat-
isfy this assumption. Given f ∈ F , the minimization prob-
lem is to find a solution x∗ ∈ X s.t. ∀x ∈ X : f(x∗) ≤
f(x). For derivative-free optimization algorithms, we as-
sume that only an objective function f ∈ F is accessible
to the algorithm for evaluating solutions. Other information
of f such as derivatives should be unknown to the algorithm.

For the purpose of theoretical analysis, given f ∈ F , let
Mf and Mf be its known lower and upper bounds, respec-
tively. For a subsetD ⊆ X , let #D =

∫
x∈X I[x ∈ D] dx (or

#D =
∑
x∈X I[x ∈ D] for finite discrete domains), where

I[·] is the indicator function. Define |D| = #D/#X and
thus |D| ∈ [0, 1]. Let Dα = {x ∈ X | f(x) ≤ α} for
α ∈ [Mf ,Mf ], and Dε = {x ∈ X | f(x) − f(x∗) ≤ ε}
for ε > 0.

A hypothesis (or a classifier) h is a function mapping
the solution space X to {−1,+1}. Let H ⊆ {h : X →
{−1,+1}} be a hypothesis space consisting of candidate
hypotheses h. Let Dh = {x ∈ X |h(x) = +1} for hy-
pothesis h ∈ H, i.e., the positive class region represented by
h. Denote UX and UDh the uniform distribution over X and
Dh, respectively, and denote Th the distribution defined on
Dh induced by h. Let sign[v] be the sign function returning
1 if v ≥ 0 and −1 otherwise.

A simplified classification-based optimization (Yu and
Qian 2014) is presented in Algorithm 1. It starts from a set
of uniformly generated solutions (line 1), and then a cycle
(lines 3 to 11) is followed. In each iteration, the algorithm
queries the objective function to assess the generated solu-
tions, and forms a binary classification data set Bt (line 4),
where a threshold αt is used to label the solutions as positive
and negative according to sign[αt − f(x)]. In the classifica-
tion phase (line 7), a binary classifier is trained on Bt, in or-
der to approximate the region Dαt = {x ∈ X | f(x) ≤ αt}.
During the sampling step (line 8), solutions are generated
by invoking the Sampling sub-procedure. We specify the
Sampling(h, λ) as that, it samples with probability λ from
UDh (the uniform distribution over the positive region classi-
fied by h), and with the remaining probability from UX (the
uniform distribution overX). Throughout the procedure, the
best-so-far solutions are recorded (line 1 and line 11), and
the best one will be returned as the output solution (line 12).
Note that an efficient sampling from arbitrary region is non-

Algorithm 1 classification-based optimization
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
λ ∈ [0, 1]: Balancing parameter;
α1 > . . . > αT : Threshold for labeling;
T ∈ N+: Number of iterations;
m ∈ N+: Sample size in each iteration;
Sampling: Sampling sub-procedure.

Procedure:
1: Collect S0 = {x1, . . . , xm} by i.i.d. sampling from UX
2: Let x̃ = argminx∈S0

f(x)
3: for t = 1 to T do
4: Construct Bt = {(x1, y1), . . . , (xm, ym)},

where xi ∈ St−1 and yi = sign[αt − f(xi)]
5: Let St = ∅
6: for i = 1 to m do
7: ht = C(Bt), where ht ∈ H
8: xi = Sampling(ht, λ), and let St = St ∪ {xi}
9: end for

10: x̃ = argminx∈St∪{x̃} f(x)
11: end for
12: return x̃ and f(x̃)

trivial, such as the sampling in the Bayesian optimization
methods (Brochu, Cora, and De Freitas 2010). In our latter
proposed learning algorithm, the region will be a rectangle,
and thus the sampling is straightforward.

The simplicity of classification-based optimization admits
a general performance bound on the query complexity (Defi-
nition 1) (Yu and Qian 2014), which counts the total number
of calls to the objective function by an algorithmA before it
finds a solution that reaches the approximation level ε, with
high probability.

DEFINITION 1 ((ε,δ)-Query Complexity)
Given f ∈ F , an algorithm A, 0 < δ < 1 and ε > 0, the
(ε,δ)-query complexity is the number of calls to f such that,
with probability at least 1 − δ, A finds at least one solution
x̃ ∈ X ⊆ Rn satisfying

f(x̃)− f(x∗) ≤ ε,

where f(x∗) = minx∈X f(x).

Lemma 1 and Lemma 2 are simplified from (Yu and Qian
2014). In order to be self-contained, their proofs are included
in the appendix1. For the lemmas, let Dt = λUDht + (1 −
λ)UX be the sampling distribution at iteration t, RDt de-
note the generalization error of ht ∈ H with respect to the
target function under distribution Dt, and DKL denote the
Kullback-Leibler (KL) divergence between two probability
distributions. Combining the two lemmas results in a gen-
eral and explicit query complexity upper bound of any algo-
rithm following the classification-based optimization frame-
work for any f ∈ F .

1The appendix presenting all the proofs can be found in the
webpage of the author http://cs.nju.edu.cn/yuy



LEMMA 1
Given f ∈ F , 0 < δ < 1 and ε > 0, the (ε,δ)-query com-
plexity of a classification-based optimization algorithm is
upper bounded by

O

(
max

{
1

(1− λ)|Dε|+ λPrh
ln

1

δ
,

T∑
t=1

mPrht

})
,

where Prh = 1
T

∑T
t=1 Prht = 1

T

∑T
t=1

∫
Dε
UDht (x) dx

(or Prh = 1
T

∑T
t=1

∑
x∈Dε UDht (x) for finite discrete

domains) is the average success probability of sampling
from the learned positive region of ht, and mPrht

is the
sample size required to realize the success probability Prht .

LEMMA 2
Given f ∈ F , ε > 0, the average success probability of
sampling from the distributions induced by the learned hy-
potheses of any classification-based optimization algorithm
Prh is lower bounded by

Prh ≥
1

T

T∑
t=1

|Dε| − 2Ψ
RDt
DKL(Dt‖UX)

|Dαt |+ Ψ
RDt
DKL(Dt‖UX)

,

where Ψ
RDt
DKL(Dt‖UX) = RDt + #X

√
1
2DKL(Dt‖UX).

Let poly(·) be the set of all polynomials w.r.t. the related
variables and superpoly(·) be the set of all functions that
grow faster than any function in poly(·) w.r.t. the related
variables.

Theoretical Study
Lemma 1 indicates that classification-based optimization al-
gorithms will degenerate to the uniformly random search if
λ = 0. Now, we only consider that 0 < λ ≤ 1. Since
Prh is related to the learned hypothesis and the classifi-
cation phase can be arbitrarily bad without any restriction,
a classification-based optimization algorithm does not al-
ways outperform the uniformly random search. In the worst
case, Prh can be zero and thus the classification-based op-
timization algorithm degenerates to the uniformly random
search, which can be derived directly from Lemma 1 and
Lemma 2. However, as long as Prh is larger than |Dε|,
the part of the local search dominates the query complex-
ity, and the corresponding classification-based optimization
algorithm outperforms the uniformly random search. Fur-
thermore, we hope that, given f ∈ F ′ ⊆ F , the query
complexity of the corresponding classification-based opti-
mization algorithm belongs to poly( 1

ε ,
1
δ , n), i.e., f is ef-

ficiently approximative by classification-based optimization
algorithms. Therefore, we are interested in investigating the
conditions under which f is efficiently approximative by
classification-based optimization algorithms.

Definition 2 characterizes the dependence between the
classification error and the target region. The smaller θ in-
dicates that they are more independent, and when θ = 0,
they are totally independent. We would want the classifica-
tion error and the target region to be independent, such that

sampling from the positive region of the classifier may ob-
tain solutions in the target region.

DEFINITION 2 (Error-Target θ-Dependence)
The error-target dependence θ ≥ 0 of a classification-based
optimization algorithm is its infimum such that, for any ε >
0 and any t,

|Dε| · |Dαt∆Dht | − θ|Dε|
≤ |Dε ∩ (Dαt∆Dht)|

≤ |Dε| · |Dαt∆Dht |+ θ|Dε|,

where the operator ∆ is the symmetric difference of two sets
defined as A1∆A2 = (A1 ∪A2)− (A1 ∩A2). It character-
izes, when sampling a solution x from UX , the dependence
between the random variable that whether x ∈ Dαt∆Dht
and the random variable that whether x ∈ Dε.

Definition 3 characterizes how large the positive region of
the classifier. The smaller γ indicates the smaller the posi-
tive region. When the dependence between the classification
error and the target region is low, we would want the positive
region to be small, so that the chance of sampling within the
target region could be high.

DEFINITION 3 (γ-Shrinking Rate)
The shrinking rate γ > 0 of a classification-based optimiza-
tion algorithm is its infimum such that |Dht | ≤ γ|Dαt | for
all t.

Using these two definitions, we present a general upper
bound of the query complexity of a classification-based op-
timization algorithm.

THEOREM 1
Given f ∈ F , 0 < δ < 1 and ε > 0, if a classification-based
optimization algorithm has error-target θ-dependence and γ-
shrinking rate, its (ε,δ)-query complexity is upper bounded

O

 1

|Dε|

(
(1− λ) +

λ

γT

T∑
t=1

1−Q ·RDt − θ
|Dαt |

)−1
ln

1

δ

 ,

where Q = 1/(1− λ).

The proof is presented in the appendix. Theorem 1 dis-
closes that the error-target θ-dependence and the γ-shrinking
rate are two important factors. It can be observed that the
smaller θ and γ, the better the query complexity.

On the basis of Lemma 1 and Theorem 1, we then
study what function classes can be efficiently optimized by
classification-based optimization algorithms.

First, we find that a class of functions FL ⊆ F satisfy-
ing the Local Lipschitz continuity (Definition 4) can be ef-
ficiently optimized by classification-based optimization al-
gorithms with error-target dependence θ < 1 and shrink-
ing rate γ > 0. For finite discrete domains, we consider
X = {0, 1}n and let ‖x − y‖H denote the Hamming dis-
tance between x, y ∈ {0, 1}n.

DEFINITION 4 (Local Lipschitz)
Given f ∈ F , let x∗ be a global minimum of f , for all



x ∈ X , if X = {0, 1}n, then there exist positive constants
β1, β2, L1, L2 such that

L2‖x− x∗‖β2

H ≤ f(x)− f(x∗) ≤ L1‖x− x∗‖β1

H ;

if X is a compact continuous domains, then there exist posi-
tive constants β1, β2, L1, L2 such that

L2‖x− x∗‖β2

2 ≤ f(x)− f(x∗) ≤ L1‖x− x∗‖β1

2 .

Let Fβ1,L1,β2,L2

L (⊆ F) denote the function class that satis-
fies the condition.

This condition guarantees that f has a bounded change
range around a global minimum x∗. Note that we can have
classification algorithms with the convergence rate of the
generalization error Õ( 1

m ) ignoring other variables and log-
arithmic terms (Kearns and Vazirani 1994; Vapnik 2000),
wherem is the sample size for the learning. Thus we assume
that the classification-based optimization algorithms use the
classification algorithms with convergence rate Θ̃( 1

m ).

COROLLARY 1
In finite discrete domains X = {0, 1}n, given f ∈
Fβ1,L1,β2,L2

L , 0 < δ < 1 and 0 < ε ≤ L1(n2 )β1 , for a
classification-based optimization algorithm using a classi-
fication algorithm with convergence rate Θ̃( 1

m ), under the
conditions that error-target dependence θ < 1 and shrink-
ing rate γ > 0, its (ε,δ)-query complexity belongs to
poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ .

COROLLARY 2
In compact continuous domains X , given f ∈ Fβ1,L1,β2,L2

L ,
0 < δ < 1 and ε > 0, for a classification-based optimization
algorithm using a classification algorithm with convergence
rate Θ̃( 1

m ), under the conditions that error-target depen-
dence θ < 1 and shrinking rate γ > 0, its (ε,δ)-query com-
plexity belongs to poly( 1

ε , n,
1
β1
, β2, lnL1, ln

1
L2

) · ln 1
δ .

More generally, instead of the Local Lipschitz continuity
for compact continuous domains, we present another suffi-
cient condition under which f can be efficiently optimized
by classification-based optimization algorithms, using the
η-Packing Number and η-Covering Number (Definition 5).
Recall thatDε = {x ∈ X | f(x)−f(x∗) ≤ ε} for any ε > 0.
Let α′t = αt − f(x∗) and we assume that α′t > 0.

DEFINITION 5 (η-Packing Number and η-Covering Num-
ber)
η-Packing Number is the largestNp ≥ 0 such that, there ex-
ists C1 > 0, for all ε > 0, the maximal number of disjoint
`2-balls of radius ηε contained in Dε with center in Dε is
not less than C1ε

−Np ; η-Covering Number is the smallest
Nc ≥ 0 such that, there exists C2 > 0, for all ε > 0, the
minimal number of `2-balls of radius ηε with center in X
covering Dε is not larger than C2ε

−Nc .

COROLLARY 3
In compact continuous domains X , given f ∈ F satisfying∑T
t=1 (α′t)

Nc−n ∈ Ω
(
εNp−n

)
, where Np and Nc are its η-

Packing and η-Covering numbers, respectively, 0 < δ < 1

and ε > 0, for a classification-based optimization algorithm
using the classification algorithms with convergence rate
Θ̃( 1

m ) , under the conditions that error-target dependence
θ < 1 and shrinking rate γ > 0, its (ε,δ)-query complexity
belongs to poly( 1

ε , n) · ln 1
δ .

The proofs of the corollaries are in the appendix. For
continuous domains, we have Np ≤ Nc. Because if we
let V (Dε) and V (ηε) denote the volume of Dε and `2
ball of radius ηε in Rn respectively, then it holds that
C1ε
−Np · V (ηε) ≤ V (Dε) ≤ C2ε

−Nc · V (ηε). It is worth-
while to point out that if Nc = Np = n, the condi-
tion

∑T
t=1 (α′t)

Nc−n ∈ Ω
(
εNp−n

)
can always be satisfied,

which implies that classification-based optimization is effi-
cient on this class of functions.

The RACOS Algorithm
Theorem 1 has revealed that two critical factors, the error-
target dependence and shrinking rate, should be as small
as possible. Notice that these two factors were not in tra-
ditional classification algorithms. Thus, we need to design
new classification algorithm. Inspired by the classical and
simple version space learning algorithm (Mitchell 1997), we
propose the randomized coordinate shrinking classification
algorithm. Given a set of positive and negative solutions, it
maintains an axis-parallel rectangle to cover all the positive
but no negative solutions, meanwhile the learning is highly
randomized and the rectangle is largely shrunk to meet the
critical factors.

The detail of the proposed learning algorithm is depicted
in Algorithm 2. In each run, it is inputed a set of solutions
with their objective values in Bt, which consists of positive
and negative solutions according to the threshold αt (in Al-
gorithm 1). The algorithm discriminates a randomly selected
positive solution (line 3) from the negative ones. In line 4, re-
call that Dht denotes the positive region of ht, and I is the
index set of dimensions.

The algorithm takes two steps: learning with random-
ness until all negative solutions have been excluded (lines
5-21) and shrinking (lines 22-25). In learning, we consider
X = {0, 1}n and X = [0, 1]n for discrete domain (lines
6-9) and continuous domain (lines 10-20), respectively. This
can be extended to larger vocabulary sets or general box con-
straints directly. For discrete domain, it randomly selects a
dimension and collapses the dimension to the value of the
positive solution (lines 7-8); for continuous domain, it sets
the upper or lower bound on a randomly chosen dimension
to exclude negative solutions (lines 13-19). Finally, lines 22-
25 further shrink the classifier to leave only M dimensions
uncollapsed, for both discrete and continuous domains. This
learning algorithm with high-level randomness achieves a
positive region with a small error-target dependence, and
largely reduces the positive region for a small shrinking rate.

By equipping this classification algorithm into Algo-
rithm 1 (implementing the C in line 7), we obtain the RACOS
optimization algorithm. Notice that the Sampling proce-
dure of Algorithm 1 (line 8) simply draws a solution from
the rectangle positive area uniformly. The codes of RACOS
can be found from http://cs.nju.edu.cn/yuy.



Algorithm 2 The randomized coordinate shrinking classifi-
cation algorithm for X = {0, 1}n or [0, 1]n

Input:
t: Current iteration number;
Bt: Solution set in iteration t;
X: Solution space ({0, 1}n or [0, 1]n);
I: Index set of coordinates;
M ∈ N+: Maximum number of uncertain coordinates.

Procedure:
1: B+

t = the positive solutions in Bt
2: B−t = Bt −B+

t

3: Randomly select x+ = (x
(1)
+ , . . . , x

(n)
+ ) from B+

t
4: Let Dht = X , I = {1, . . . , n}
5: while ∃x ∈ B−t s.t. ht(x) = +1 do
6: if X = {0, 1}n then
7: k = randomly selected index from the index set I
8: Dht = Dht −{x ∈ X |x(k) 6= x

(k)
+ }, I = I−{k}

9: end if
10: if X = [0, 1]n then
11: k = randomly selected index from the index set I
12: x− = randomly selected solution from B−t
13: if x(k)+ ≥ x(k)− then
14: r = uniformly sampled value in (x

(k)
− , x

(k)
+ )

15: Dht = Dht − {x ∈ X |x(k) < r}
16: else
17: r = uniformly sampled value in (x

(k)
+ , x

(k)
− )

18: Dht = Dht − {x ∈ X |x(k) > r}
19: end if
20: end if
21: end while
22: while #I > M do
23: k = randomly selected index from the index set I
24: Dht = Dht − {x ∈ X |x(k) 6= x

(k)
+ }, I = I − {k}

25: end while
26: return ht

Experiments

We use the same fixed parameters for RACOS in all the
following experiments: in Algorithm 1 we set λ = 0.95,
m = 100, and αt is set so that only the best solution is pos-
itive, and in Algorithm 2 we set M = 1.

On Testing Functions
We first empirically test RACOS on two benchmark testing
functions: the convex Sphere function defined as
f(x) =

∑n
i=1 (xi − 0.2)2,

and the highly non-convex Ackley function defined as

f(x) = −20e

(
− 1

5

√
1
n

∑n
i=1 (xi−0.2)2

)
−e(

1
n

∑n
i=1 cos 2πxi)

+ e+ 20.
The functions are minimized within the solution space X =
[0, 1]n, of which the minimum values are 0.

RACOS is compared with simultaneous optimistic op-
timization (SOO) algorithm (Munos 2011; 2014), ran-
dom embedding Bayesian optimization (REMBO) algo-
rithm (Wang et al. 2013), and covariance matrix adaptation
evolution strategy (CMA-ES) algorithm (Hansen, Müller,
and Koumoutsakos 2003), where the implementations are
by their authors. To study the scalability w.r.t. the solution
space dimensions n, we choose n be to 10, 100, 500, 1000,
and set the maximum number of function evaluations to be
30n for all algorithms. To study the convergence rate w.r.t.
the number of function evaluations, we choose n = 500, and
set the total number of function evaluations from 5× 103 to
2 × 105 for the Sphere function and 5 × 103 to 5 × 104 for
the Ackley function. Each algorithm is repeated 30 times in-
dependently. The mean of the achieved objective values are
shown in Figure 1.

Figure 1 (a) and (b) show that RACOS has the lowest
growing rate as the dimension increases, indicating that
RACOS has a better scalability than the compared algo-
rithms; (c) and (d) show that RACOS reduces the objective
function value with the highest rate, indicating that it con-
verges consistently faster than the others.

On Clustering
We then study on a clustering task: consider clustering a
dataset V = {v1, . . . , vn} into two groups, {A1, A2}. A na-
ture solution space is the discrete domain X = {0, 1}n for
the bipartition. The optimization task is to minimize inter-
cluster similarity:
f(A1, A2) =

∑2
i

1
#Ai

∑
p∈Ai,q /∈AiWp,q over X ,

where Wp,q = exp (−‖vp − vq‖22/σ2) is the similarity be-
tween vp and vq . This is also known as the RatioCut prob-
lem, and it is NP-hard.

RACOS is compared with unnormalized spectral cluster-
ing (USC) algorithm (Von Luxburg 2007) which is a clas-
sical approximate algorithm for the RatioCut problem, ge-
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Figure 1: Comparing the scalability with 30n evaluations in (a) & (b), and the convergence rate with n = 500 in (c) & (d).



Table 1: Comparing the achieved objective values of the algorithms (mean ± standard derivation). In each column, an entry
is bolded if its mean value is the best (smallest); and an entry is marked with bullet if it is significantly worse than the best
algorithm by t-test with confidence level 5%. The last column counts the win/tie/loss of the algorithm to RACOS.

Algorithm Sonar Heart Ionosphere Breast Cancer German w/t/l to RACOS
USC 3.91±0.00• 79.67±0.00• 54.21±0.00• 200.62±0.00• 239.00±0.00• 0 / 0 / 5
GA 3.14±0.74 57.31±0.46 55.71±3.74• 189.52±1.26 205.61±1.80• 0 / 3 / 2
RLS 4.07±0.82• 58.81±0.45• 58.74±2.81• 192.63±1.62• 207.36±2.11• 0 / 0 / 5
UMDA 7.40±2.26• 58.76±1.02• 61.77±4.54• 193.58±3.56• 212.83±1.08• 0 / 0 / 5
CE 8.00±1.35• 58.75±1.39• 63.71±3.41• 188.76±3.77 209.57±1.96• 0 / 1 / 4
RACOS 2.88±0.63 57.45±0.89 50.01±2.80 187.55±3.01 192.11±2.51 - / - / -
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Figure 2: Comparing the achieved objective function values against the parameter C of the classification with Ramp loss.

netic algorithm (GA) (Golberg 1989) (using the bit-wise
mutation with probability 1/n and one-bit crossover with
probability 0.5), randomized local search (RLS) (Neumann
and Wegener 2007), univariate marginal distribution algo-
rithm (UMDA) (Mühlenbein 1997) and cross-entropy (CE)
method (de Boer et al. 2005) with the recommended param-
eters in their references. Five binary UCI datasets (Blake,
Keogh, and Merz 1998) are employed: Sonar, Heart, Iono-
sphere, Breast Cancer and German, with 208, 270, 351, 683
and 1000 instances, respectively. All features are normalized
into [−1, 1]. We set the total number of calls to the objective
function of GA, RLS, UMDA, CE and RACOS to be 30n.
Each algorithm is repeated 30 times independently on each
dataset. Table 1 reports the achieved objective values.

Table 1 shows that, by t-test with confidence level 5%,
RACOS is never worse than the others, is always better than
USC, RLS, UMDA, and have significant wins to GA and
CE. The results imply that the performance of RACOS is not
only superior to the compared methods, but also stable.

On Classification with Ramp Loss
We finally study on a classification task with Ramp
loss (Collobert et al. 2006). The Ramp loss is defined as
Rs(z) = H1(z) − Hs(z) with s < 1, where Hs(z) =
max{0, s−z} is the Hinge loss with s being the Hinge point.
The task is to find a vector w and a scalar b to minimize
f(w, b) = 1

2‖w‖
2
2 + C

∑L
` Rs

(
y`(w

>v` + b)
)
,

where v` is the training instance and y` ∈ {−1,+1} is its
label. This objective function is similar to that of support
vector machines (SVM) (Vapnik 2000) but the loss function
of SVM is the Hinge loss. Due to the convexity of the Hinge
loss, the number of support vectors increases linearly with
the number of training instances in SVM, which is unde-

sired with respect to scalability. While this problem can be
relieved by using the Ramp loss (Collobert et al. 2006).

RACOS is compared with SOO, REMBO, CMA-ES, and
the concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2001) which is a gradient-based non-convex op-
timization approach for objective functions that can be
decomposed into convex sub-function plus concave sub-
function. We employ two binary class UCI datasets, Adult
and USPS+N (0 v.s. rest), that are used in (Collobert et
al. 2006). The feature dimension of which are 123 and
256, respectively. All features are normalized into [0, 1] or
[−1, 1]. Since we focus on the optimization performance,
we compare the results on the training set. Since there are
two hyper-parameters in the optimization formulation, i.e.,
C and s, to study the effectiveness of RACOS under dif-
ferent hyper-parameters, we test s ∈ {−1, 0} and C ∈
{0.1, 0.5, 1, 2, 5, 10}. We set the total number of calls to the
objective function to be 40n for all algorithms except for
CCCP, while CCCP runs until it converges. Each algorithm
is repeated 30 times independently. The achieved objective
values are reported in Figure 2.

As shown in Figure 2, compared with SOO, REMBO,
and CMA-ES, RACOS has the best performance in all situa-
tions. Notice that the smaller the C is, the closer the objec-
tive function is to convexity, therefore, the optimization dif-
ficulty increases with C. On USPS+N, we can observe that
CCCP has the best performance when the objective func-
tion is very close to convexity (C is very small), since it is
a gradient-based method. However, CCCP does not fit well
to high non-convexity. It can be further observed that the ad-
vantage of RACOS increases as C increases in all situations.
This implies that RACOS is suitable for complex tasks.



Conclusion
This paper performs a general theoretical investigation of
classification-based optimization methods, where an upper
bound of the query complexity of such methods is derived.
The upper bound reveals two critical factors of the classi-
fication model effecting the optimization performance. Fur-
thermore, we prove that optimization problems with Local
Lipschitz continuity can be solved in polynomial time by
properly configured classification-based optimization meth-
ods.

By following the identified critical factors, we propose
the randomized coordinate shrinking algorithm for learning
the classification model, forming the RACOS optimization
algorithm for both continuous and discrete domains. The
experiments on optimization testing functions and machine
learning tasks including spectral clustering and classifica-
tion with Ramp loss demonstrate that RACOS is more effec-
tive than the compared optimization methods. We also notice
that RACOS scales better in high-dimensional optimization
problems, and has a clearer advantage as the difficulty of the
optimization problem increases.

We will test RACOS in more machine learning tasks, and
improve RACOS to high-dimensional optimization by, e.g.,
adapting the random embedding technique (Qian and Yu
2016).
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