
Sequential Classification-based Optimization for Direct Policy Search∗

Yi-Qi Hu and Hong Qian and Yang Yu
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China

Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210023, China
yuy@nju.edu.cn

Abstract

Direct policy search often results in high-quality policies in
complex reinforcement learning problems, which employs
some optimization algorithms to search the parameters of
the policy for maximizing the its total reward. Classification-
based optimization is a recently developed framework for
derivative-free optimization, which has shown to be effec-
tive and efficient for non-convex optimization problems with
many local optima, and may provide a power optimization
tool for direct policy search. However, this framework re-
quires to sample a batch of solutions for every update of
the search model, while in reinforcement learning, the envi-
ronment often offers only sequential policy evaluation. Thus
the classification-based optimization may not efficient for di-
rect policy search, where solutions have to be sampled se-
quentially. In this paper, we adapt the classification-based op-
timization for sequential sampled solutions by forming the
sample batch via reusing historical solutions. Experiments on
a helicopter hovering task and controlling tasks in OpenAI
Gym show that the new algorithm significantly improve the
performance from several state-of-the-art derivative-free op-
timization approaches.

Introduction
With the goal of learning an optimal policy from au-

tonomous interactions with the environment, reinforcement
learning is in the core of artificial intelligence. Previous
studies (Wang et al. 2007; El-Fakdi, Carreras, and Palom-
eras 2005) show that direct policy search, which employs
some optimization algorithms to find parameters of the pol-
icy to maximize the received total reward, can have bet-
ter performance than traditional reinforcement learning ap-
proaches. The policy optimization task is usually quite com-
plex, involving many local optima, for which derivative-
free optimization can be useful. Many derivative-free op-
timization methods are model-based, and mainly consist
of a cycle of two steps: sampling solutions from the cur-
rent model, and updating the model from the sampled solu-
tions along with their evaluation values. Through the cycle,

∗This research was supported by the NSFC (61375061,
61333014), JiangsuSF (BK20160066), Foundation for the Author
of National Excellent Doctoral Dissertation of China (201451), and
2015 Microsoft Research Asia Collaborative Research Program.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they are expected to iteratively find better solutions. Typical
derivative-free optimization algorithms include evolution-
ary algorithms (Hansen, Müller, and Koumoutsakos 2003;
Golberg 1989; Larranaga and Lozano 2002; Neumann and
Wegener 2007) and similar methods such as cross-entropy
methods (de Boer et al. 2005), however, these methods have
little theoretical support, except very few of them (Qian,
Yu, and Zhou 2015a; 2015b; Yu, Yao, and Zhou 2012).
Recently emerged optimistic optimization methods (Munos
2011; 2014) and Bayesian optimization methods (Bull 2011;
de Freitas et al. 2012) are better theoretically supported, but
often suffer from poor scalability.

Classification-based optimization is a recently developed
theoretical framework of model-based derivative-free op-
timization method. Its implementation, the RACOS algo-
rithm (Yu, Qian, and Hu 2016) has shown outstanding per-
formance in various applications (Yu, Qian, and Hu 2016;
Qian, Hu, and Yu 2016; Qian and Yu 2016), and may provide
a powerful optimization tool for direct policy search. How-
ever, we have noticed an inefficient component of RACOS:
like other batch-mode algorithms, it updates its model only
after sampling and evaluating a batch of solutions, even if
the model samples out unnecessary bad solutions. Mean-
while, in direct policy search, policies often have to be evalu-
ated sequentially but not in parallel, such as evaluating poli-
cise on a single physical robot. Therefore, the original batch-
mode RACOS may not efficient for direct policy search.

In this paper, we propose the sequential classification-
based optimization, which updates the model after sampling
every solution by reusing historical samples. We first an-
alyze when the sequential-mode need fewer samples than
the batch-mode. Then we design a new algorithm named
Sequential RACOS (SRACOS), with which three replacing
strategies for maintaining the historical samples are pro-
posed. We empirically compare SRACOS with RACOS and
several other model-based optimization algorithms on two
synthetic testing functions, and apply them to direct pol-
icy search for 9 controlling tasks, where an artificial neu-
ral network is used as the policy and optimized. Experi-
ment results show that SRACOS can significantly improve
the performance of RACOS as well as the other state-of-the-
art derivative-free optimization methods.

The rest four sections presents the background, new algo-
rithm, experiments, and conclusion, respectively.

Background
Reinforcement learning can often be described by the

Markov decision process (MDP) presented as a tuple
〈S,A, Psa, R〉, where S is the state space, A is the action
space and Psa is the transition function for taking action a
in state s, and R : S → R is the reward function. The dy-
namic of MDP is as follows: the environment initializes a
state s0; we choose an action a0 ∈ A based on s0; according
to Ps0a0 , the environment turns to a new state s1 with prob-
ability; we then pick up a new action a1 in s1, and so on.
The sequence of s0, s1, . . . represents a trajectory. A map-
ping π : S → A is a policy which determines the actions
based on current state. The goal of reinforcement learning is
to search for a policy that maximizes the long-term cumu-
lated reward.

Direct policy search employs an optimization algorithm
to search in the parameter space of the policy for maximiz-
ing the cumulated reward of the policy. For example, neu-
ral network is a commonly used model for policy, and its
weights w = {w1, w2, . . . , wn} are the parameters. The cu-
mulated reward of executing a neural network policy, e.g.,
f(w) =

∑T
i=1Ri is the objective to be maximized. Treating

the optimization of policy as a black-box optimization prob-
lem, derivative-free optimization methods have been used to
directly optimize the parameters of the policy.

For black-box optimization, we consider general mini-
mization problems in continuous domains. Let X denote a
bounded solution space that is a compact subset of Rn, and
f : X → R denote a minimization problem. Assume that
there exist x∗, x̂ ∈ X such that f(x∗) = minx∈X f(x)
and f(x̂) = maxx∈X f(x). let F denote the set of all
functions that satisfy this assumption. Given f ∈ F , the
minimization problem is to find a solution x∗ ∈ X s.t.
∀x ∈ X : f(x∗) ≤ f(x). For black-box optimization, given
a solution x, only the objective function f(x) is accessible
for evaluating x. Other information of f such as the gradient
is inaccessible.

RACOS is a recently proposed classification-based
derivative-free optimization algorithm (Yu, Qian, and Hu
2016). Unlike other derivative-free optimization algorithms,
the sampling region of RACOS is learned by a simple clas-
sifier. RACOS shows outstanding performance in empirical
experiments and theoretical study. Its pseudo-code is pre-
sented in Algorithm 1. It starts from a set S0 of solutions
uniformly sampled from the solution space (line 1), where
UX denotes the uniform distribution over X . We will get a
solution-value tuple set B0 after querying objective function
for each solution in S0 (line 2). Lines 3 and 11 record the
best-so-far solution. In line 5, the old tuple set Bt−1 is split
into the positive set B+

t consisting of the tuples of the best
k solutions, and the negative set B−t consisting of the rest of
tuples. Then a loop is followed to samplem solutions. In the
t-th iteration (line 6 to 10), RACOS learns a hypothesis hi
by the learning algorithm C, where hi is an axis-parallel box
that discriminates a randomly chosen positive solution from
all negative solutions. The details of the learning algorithm
can be find in (Yu, Qian, and Hu 2016). Then RACOS sam-
ples a solution xi from the uniform distribution over Dhi

Algorithm 1 RACOS (batch-mode)
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
λ: Balancing parameter;
T ∈ N+: Number of iterations;
m ∈ N+: Sample size in each iteration;
k ∈ N+(≤ m): Number of positive samples;
Sampling: Sampling sub-procedure;
Selection: Decide the positive/negative solutions.

Procedure:
1: Collect S0 = {x1, . . . , xm} by i.i.d. sampling from UX
2: B0 = {(x1, y1), . . . , (xm, ym)}, ∀xi ∈ S0 : yi = f(xi)
3: Let (x̃, ỹ) = arg min(x,y)∈B+ y
4: for t = 1 to T do
5: (B+

t , B
−
t) = Selection(Bt−1; k), Bt = B+

t
6: for i = 1 to m do
7: hi = C(B+

t , B
−
t)

8: xi =

{
Sampling(UDhi

) w.p. λ
Sampling(UX) w.p. 1− λ

9: yi = f(xi) and let Bt = Bt ∪ {(xi, yi)}
10: end for
11: (x̃, ỹ) = arg min(x,y)∈Bt∪{(x̃,ỹ)} y
12: end for
13: return (x̃, ỹ)

with λ probability or over X with 1− λ probability (line 8).
Here, Dh = {x ∈ X|h(x) = +1} is the region of positive
solutions represented by h. Finally RACOS will return the
best-so-far tuple (x̃, ỹ).

RACOS is a batch-mode algorithm: the model hi depends
on B+

t and B−t in line 7 of the algorithm, and in the loop of
iteration (line 6 to 10), those two sets are unchanged. That is
to say, the sampling regions are generated from the same dis-
tribution, even if this distribution is not good enough. Batch-
mode sampling probably produces redundancy and is not
suitable for sequential evaluating problem like direct policy
search. So that we propose the sequential RACOS.

Sequential RACOS

Algorithm
The idea of converting RACOS to be sequential is straight-

forward: update the model (B+,B−) from the batch formed
by reusing historical solutions after each sampling. There-
fore it is important to find a way to maintain historical so-
lutions. The sequential algorithm SRACOS is presented in
Algorithm 2, where we omit the inherited input from Algo-
rithm 1.

With the same as Algorithm 1, Sampling(S) is
used to sample a solution from the given distribution S.
Selection(B; k) splits the solution-value tuple setB into
a positive set and a negative set, where the positive set con-
tains k tuples of best-so-far solutions. Replace(a,A, ‘s’)
is replacing sub-procedure for SRACOS means using a to
replace a tuple from set A with some strategy ‘s’, and the
return values are a replaced tuple and the updated tuple set.

Algorithm 2 Sequential RACOS (SRACOS)
Input: (extra input than RACOS)

N ∈ N+: Budget;
r = m+ k;
Replace: Replacing sub-procedure.

Procedure:
1: Collect S = {x1, . . . , xr} by i.i.d. sampling from UX
2: B = {(x1, y1), . . . , (xr, yr)}, ∀xi ∈ S : yi = f(xi)
3: (B+, B−) = Selection(B; k)
4: Let (x̃, ỹ) = argmin(x,y)∈B+y
5: for t = r + 1 to N do
6: h = C(B+, B−)

7: x =

{
Sampling(UDh

) w.p. λ
Sampling(UX) w.p. 1− λ

8: y = f(x)
9: [(x′, y′), B+] = Replace((x, y), B+, ‘strategy P’)

10: [, B−] = Replace((x′, y′), B−, ‘strategy N’)
11: (x̃, ỹ) = arg min(x,y)∈B+∪{(x̃,ỹ)} y
12: end for
13: return (x̃, ỹ)

Three replacing strategies that we are considering are as fol-
lows: replacing the tuple with worst evaluation value in A
(WR-); replacing a tuple in A randomly (RR-) and replac-
ing the tuple which has largest margin from the best-so-far
solution (LM-).

In Algorithm 2, after initialization, SRACOS will get two
tuple sets B+ and B−, denoting the positive solution-value
tuple set and the negative one. The method of generating a
new solution (lines 7 to 8) is the same as RACOS. After get-
ting a new tuple (x, y), SRACOS updatesB+ andB− imme-
diately. When updating B+ (line 9), we use the ‘strategy P’.
Because B+ must contain the best-so-far solutions, ‘strat-
egy P’ can only be ‘WR-’, i.e., a solution with the worst
evaluation value is removed fromB+∪{(x, y)} and the rest
of set is the new B+. The removed tuple (x′, y′) is used to
updateB− using ‘strategy N’ in line 10. ‘strategy N’ can be
any one of three strategies mentioned above. In experiments
section, we will prove that selection of ‘strategy N’ has no
influence on convergence rate of SRACOS empirically. In the
end, SRACOS returns the best solution-value tuple (x̃, ỹ).

Query complexity
For a subset D ⊆ X , let #D =

∫
x∈X I[x ∈ D] dx,

where I[·] is the indicator function. Define |D| = #D/#X .
Let Dα = {x ∈ X | f(x) ≤ α}, and Dε = {x ∈
X | f(x) − f(x∗) ≤ ε} for ε > 0. A hypothesis is a map-
ping h : X → {−1,+1}. Let H ⊆ {h : X → {−1,+1}}
be a hypothesis space. Let Dh = {x ∈ X |h(x) = +1}
for hypothesis h ∈ H, i.e., the positive class region repre-
sented by h. Denote UDh

the uniform distribution over Dh,
respectively, and denote Th the distribution defined on Dh

induced by h. Let St = λUDht
+ (1 − λ)UX be the sam-

pling distribution in iteration t, Dt be the distribution under
which the classifier is trained in iteration t, RDt

denote the
generalization error of ht ∈ H under the distribution Dt,

DKL denote the Kullback-Leibler (KL) divergence between
two probability distributions, and N denote the number of
iterations.

The complexity of an algorithm is measured by the (ε,δ)-
Query Complexity as Definition 1 (Yu and Qian 2014; Yu,
Qian, and Hu 2016). It counts the total number of calls to the
objective function by an algorithm before it finds a solution
that reaches the approximation level ε, with high probability.

DEFINITION 1 ((ε,δ)-Query Complexity)
Given f ∈ F , an algorithm A, 0 < δ < 1 and ε > 0, the
(ε,δ)-query complexity is the number of calls to f such that,
with probability at least 1 − δ, A finds at least one solution
x̃ ∈ X ⊆ Rn satisfying f(x̃)− f(x∗) ≤ ε, where f(x∗) =
minx∈X f(x).

Under the conditions of error-target θ-dependence and γ-
shrinking rate (Yu, Qian, and Hu 2016), we derive a gen-
eral upper bound of the query complexity of sequential
classification-based optimization algorithms as Theorem 1.

THEOREM 1
Given f ∈ F , 0 < δ < 1 and ε > 0, if a sequential
classification-based optimization algorithm has error-target
θ-dependence and γ-shrinking rate, then its (ε,δ)-query com-
plexity is upper bounded by

O

max

 1

|Dε|

(
(1−λ)+

λ

γ(N−r)

N∑
t=r+1

Φt

)−1
ln

1

δ
,N

 ,

where Φt =
(

1−RDt −#X
√

1
2DKL(Dt‖UX)− θ

)
·

|Dαt |−1 and #X is the volume of X .
We can observe from Theorem 1 that the smaller θ, γ,RDt

and DKL(Dt‖UX), the better the query complexity. Note
that the training data in SRACOS reuses samples from his-
torical models,Dt is a combination of the uniform sampling,
and the sampling from a set of models determined by the
strategy of data reuse. Due to the shifted training distribu-
tion, the generalization error RDt

may be worse than that in
the batch-mode, meanwhile, the DKL(Dt‖UX) can be bet-
ter than that in the batch-mode as the training distribution is
more spreaded.

We can have a comparison of the query complexity bound
of the sequential classification-based algorithm of Theo-
rem 1 with the bound of the batch-mode algorithm in (Yu,
Qian, and Hu 2016). Let DSt and DBt denote the distribu-
tion under which the classifier is trained in iteration t of the
sequential-mode and the batch-mode, respectively, and also
denote RDS

t
and RDB

t
as the generalization error of them,

respectively. The comparison result of the query complexity
upper bound is shown in Theorem 2.

THEOREM 2
Ignoring the constant factor and fixing θ and γ, the sequen-
tial classification-based optimization algorithm can have a
better (or worse) query complexity upper bound than the
batch-mode if for any iteration t

RDS
t
< (or >)

1

1− λ
RDB

t
−#X

√
1

2
DKL(DSt ‖UX).

Theorem 2 discloses that the spreading training distri-
bution DSt of the sequential algorithm makes room for its
worse generalization error of the classifier. If the room is
large enough, the query complexity of the sequential algo-
rithm can be better than the batch-mode. The proofs of The-
orem 1 and 2 are both presented in the appendix1 due to the
space limitation.

Experiments
We empirically compare SRACOS with RACOS (code

from https://github.com/eyounx/RACOS),
as well as other state-of-the-art derivative-free op-
timization algorithms including CMA-ES (Hansen,
Müller, and Koumoutsakos 2003) (code from https:
//pypi.python.org/pypi/cma), differential evo-
lution algorithm (Storn and Price 1997) (DE, code imple-
mented in SciPy https://www.scipy.org/), cross-
entropy method (CE, implemented by the authors in python
according to https://en.wikipedia.org/wiki/
Cross-entropy_method) and a Bayesian optimization
method with exponential convergence (Kawaguchi, Kael-
bling, and Lozano-Pérez 2015) (IMGPO, code from http:
//lis.csail.mit.edu/code/imgpo.html). All
algorithms are used with their default parameters.

We firstly investigate properties of SRACOS on two syn-
thetic testing functions, and then we apply to several rein-
forcement learning tasks including helicopter hovering con-
trol task (Kim et al. 2003) and controlling tasks in OpenAI
Gym, an open source environment for reinforcement learn-

1The appendix presenting all the proofs can be found in the
homepage of the author http://cs.nju.edu.cn/yuy.

ing (http://gym.openai.com).

On synthetic functions
We choose two benchmark testing functions: the convex

Sphere function defined as f(x) =
∑n
i=1(xi − 0.2)2,

and the highly non-convex Ackley function defined as
f(x) =− 20e(−

1
5

√
1
n

∑n
i=1 (xi−0.2)2)

− e 1
n

∑n
i=1 cos 2π(xi−0.2) + e+ 20.

The functions are minimized within the solution space X =
[−1, 1]n, of which the minimum value is 0. Note that we
shift the optimal solution by 0.2 to avoid possible optimiza-
tion bias to the origin point.

To study the convergence speed against the number of
function evaluations, we choose n = 100 and 1, 000, and
set the total number of function evaluations to be 20n for
all algorithms and objective functions. Each algorithm is re-
peated 15 times independently, and the mean value and stan-
dard deviation of the top-5 results are reported.

First of all, we investigate how ‘strategy N’ influences
convergence of SRACOS. The convergence speeds of SRA-
COS with ‘WR-’, ‘RR-’, ‘LM-’ strategies and RACOS are
compared. From Figure 1, the curves of SRACOS with the
three strategies are almost overlapped, indicating that the
difference among the replacing strategies can be ignored. In
the rest of the experiments, we will choose WR-SRCOS as
representation of SRACOS.

We then compare SRACOS with other derivative-free al-
gorithms in convergence rate. The results are plotted in Fig-
ure 2. Firstly, we compare SRACOS with RACOS: it is clear
that SRACOS is consistently better than RACOS in all sit-
uations. In low dimension convex problem (i.e., n = 100,

0 500 1000 1500 2000
evaluation number

0

10

20

30

40

fu
nc

tio
n

va
lu

e

WR-SRACOS
RR-SRACOS
LM-SRACOS
RACOS

(a) Sphere, n = 100

0 500 1000 1500 2000
evaluation number

0

1

2

3

4

fu
nc

tio
n

va
lu

e

(b) Ackley, n = 100

0 0.5 1 1.5 2
evaluation number *104

0

100

200

300

400

fu
nc

tio
n

va
lu

e

(c) Sphere, n = 1000

0 0.5 1 1.5 2
evaluation number *104

0

1

2

3

4
fu

nc
tio

n
va

lu
e

(d) Ackley, n = 1000

Figure 1: Comparison on the impact of the three replacing strategy in SRACOS on Sphere and Ackley function with dimension
size n = 100 and n = 1000.

0 500 1000 1500 2000
evaluation number

0

10

20

30

fu
nc

tio
n

va
lu

e

SRACOS
RACOS
CMA-ES
DE
CE
IMGPO

(a) Sphere, n = 100

0 500 1000 1500 2000
evaluation number

0

1

2

3

4

fu
nc

tio
n

va
lu

e

(b) Ackley, n = 100

0.5 1 1.5 2
evaluation number *104

0

50

100

150

fu
nc

tio
n

va
lu

e

(c) Sphere, n = 1000

0.5 1 1.5 2
evaluation number *104

0

1

2

3

4

fu
nc

tio
n

va
lu

e

(d) Ackley, n = 1000

Figure 2: Comparison of the convergence speed on Sphere and Ackley functions with dimension size n = 100 and n = 1000.

500 1000 1500 2000
dimension size

0

50

100

150

200
fu

nc
tio

n
va

lu
e

SRACOS
RACOS
CMA-ES
DE
CE
IMGPO

(a) Sphere

500 1000 1500 2000
dimension size

0

0.5

1

1.5

2

2.5

fu
nc

tio
n

va
lu

e

(b) Ackley

Figure 3: Comparison the scalability with 20n evaluations
on Sphere and Ackley functions.

0 20 40 60
wall-clock time (ms)

0

1

2

3

4

fu
nc

tio
n

va
lu

e

SRACOS
RACOS
CMA-ES
DE
CE
IMGPO

(a) Ackley, n = 100

0 500 1000 1500 2000
wall-clock time (ms)

0

1

2

3

4

fu
nc

tio
n

va
lu

e

(b) Ackley, n = 1, 000

Figure 4: Comparison on the convergence speed against the
wall-clock time, on n = 100 and n = 1, 000 Ackley func-
tions with 20n evaluations.

Sphere), the Bayesian optimization method IMGPO shows
the highest convergence speed, but IMGPO is hard to handle
high dimension problems (i.e., n = 1, 000, Sphere) or prob-
lems with many local optima (i.e., Ackley). While SRACOS
shows the best convergence rate in those situations.

To study the scalability w.r.t. the solution space dimension
n, we choose n as 10, 20, 50, 100, 200, 500, 1, 000, 2, 000,
set the maximum number of function evaluations to be 20n,
and set m to be 5, 5, 10, 10, 20, 20, 40, 40 corresponding
to each n setting for all algorithms. Figure 3 shows that the
curves of SRACOS has the lowest growing rate as the dimen-
sionality increasing. It indicates that SRACOS has the best
scalability among the compared algorithms. Specially, we
can also observed that RACOS already has better scalability
than other compared algorithms, while SRACOS improves
the scalability of RACOS even further.

Furthermore, we consider the actual computation costs
and compare the convergence speed against the wall-clock
time. Figure 4 presents the results. It can be observed
that SRACOS takes more computation time than RACOS
(i.e., longer curve), but even with the same time, SRACOS
achieves better solution except the very beginning.

On reinforcement learning for controlling tasks

In this section, we apply the optimization for direct policy
search. In the following experiments, the policy is a feed
forward fully connected neural network. We will employ the
optimization to find the best weights of the neural network
that maximizing the cumulated reward.

Helicopter hovering control task Helicopter flight is re-
garded to be a challenging control problem. In (Kim et al.
2003), they successfully applied reinforcement learning to
design of controller for helicopter hovering task and imple-
mented the helicopter hovering simulation environment. In
this environment helicopter is required to hover in a limited
space. If the helicopter moves out of the boundary within
limited steps, we regard that helicopter has crashed and the
policy will get a very bad score.

Previously, neural network policy model is considered
suitable for this task (Rogier and Whiteson 2011). A full-
connected neural network without any hidden nodes is em-
ployed as the policy model. The system will fly helicopter
under policy’s control up to 2,000 steps. The sum of rewards
in these steps is used as the evaluation of the policy. Set
w ∈ [−10, 10]n. On this task, the state space has 13 di-
mensions and action space has 4 dimensions, so there are
52 neural network weights that is also the dimension num-
ber of the search space. Helicopter hovering control task can
be presented as: argmaxw∈[−10,10]nf(w). When using SRA-
COS to optimize w, a derivative-free optimization algorithm
generates a w, then system will fly the helicopter with w as
the parameters of the policy model. After getting f(w), the
algorithm will update its model and then generate a new w
and so on.

We compare SRACOS with RACOS, CMA-ES, DE, CE,
IMGPO mentioned above. The number of evaluations is set
as 105 for all algorithms. Each algorithm is repeated 15
times independently. Figure 5 shows the performance of the
best result, and Table 1 reports the average performance of
the top-5 highest reward.

On helicopter hovering control task, the reward of pol-
icy should be as large as possible. If reward is larger than

2 4 6 8 10
evaluation number *104

-105

-100

re
w

ar
d

SRACOS
RACOS
CMA-ES
DE
CE
IMGPO

(a) Reward

2 4 6 8 10
evaluation number *104

0

500

1000

1500

2000
ho

ve
rin

g
st

ep

(b) Hovering steps

Figure 5: Comparison of the convergence speed on (a) the
reward and (b) the hovering steps.

Table 1: Average of the top-5 rewards and the hovering steps,
and the success rate of the 15 repeats. The values in bold
mean best in each item.

Algorithms Reward Hovering step Success rate

SRACOS −9.72× 105 ± 2.17× 106 1,837±364 4/15
RACOS −3.18× 106 ± 3.34× 106 1,477±535 2/15

CMA-ES −5.29× 106 ± 4.88× 106 1,280±673 2/15
DE −1.02× 107 ± 5.92× 105 453±74 0/15
CE −5.48× 106 ± 3.35× 106 1,121±525 1/15

IMGPO −1.18× 107 ± 2.66× 105 256±31 0/15

Table 2: The mean reward and the standard deviation of the best found policy by each algorithm. The numbers in bold mean
the best cumulated reward in each row. The mark ↓ means the reward is the smaller the better, and ↑ means the larger the better.
Task SRACOS RACOS CMA-ES DE CE IMGPO

Acrobot↓ 156.60±18.48 169.70±14.15 181.10±42.66 161.10±45.91 534.00±774.69 1545.00±736.14
MountainCar↓ 132.40±39.60 141.50±0.97 190.60±26.89 153.00±48.44 3048.90±4796.7 5171.40±5090.29
HalfCheetah↑ 36719.90±8288.84 27961.18±7493.08 20191.83±984.95 17250.21±305.01 14714.05±5169.94 10355.83±93.16
Humanoid↑ 502.57±88.03 398.03±19.23 357.09±124.77 428.97±67.89 423.58±27.88 209.75±3.16
Swimmer↑ 3692.65±7.89 3495.16±72.75 3202.33±11.98 3096.44±20.08 3002.26±46.14 270.73±3.27
Ant↑ 2114.14±2290.57 1215.28±1487.81 63.66±12.00 653.56±969.84 722.88±531.73 42.52±3.57
Hopper↑ 10818.98±501.11 9892.70±417.85 9986.81±0.96 9931.70±1.35 5149.48±5006.35 136.28±23.04
LunarLander↑ 238.14±15.61 193.45±35.62 132.62±35.18 125.00±93.86 92.45±110.81 64.29±27.32

Table 3: Parameters of the Gym tasks, including the dimen-
sionally of the state space dState, the number of actions, the
layers and the nodes of the feed-forward neural networks,
the number of weights, and the horizon steps.
Task name dState #Actions NN nodes #Weights Horizon

Acrobot 6 1 5, 3 48 2,000
MountainCar 2 1 5 15 10,000
HalfCheetah 17 6 10 230 10,000
Humanoid 376 17 25 9825 50,000
Swimmer 8 2 5, 3 61 10,000
Ant 111 8 15 1785 10,000
Hopper 11 3 9, 5 159 10,000
LunarLander 8 1 5, 3 58 10,000

−2× 106, it indicates that helicopter has not crashed within
2,000 steps. Table 1 shows the top-5 average performance
on the rewards and the hovering steps, and the success rates
(hovering for 2,000 steps is a successful try) of the 15 re-
peats. The numbers in bold mean best performance in each
item. It indicates that SRACOS has best performance in ev-
ery item. We can get same conclusions from (a) and (b) in
Figure 5: the policies generated by SRACOS, RACOS, CMA-
ES and CE can reach maximum step within 105 evaluations.
But the helicopter can’t hover more than 500 steps with the
policies from DE and IMGPO. And it only costs SRACOS
about 40, 000 evaluations to reach the maximum step, faster
than RACOS, CMA-ES and CE.

Gym tasks In the OpenAI Gym environment, we use
eight existing controlling tasks, ‘Acrobot’, ‘MountainCar’,
‘HalfCheetah’, ‘Humanoid’, ‘Swimmer’, ‘Ant’, ‘Hopper’
and ‘LunarLander’ to test the algorithms. We also apply
neural network as policy. The task information and neural
network structures are showed in Table 3. For example, on
‘Acrobot’: |S| = 6, |A| = 1, the neural network has two
hidden layers with 5 and 3 neurons each, |w| = 48 and the
maximum number of steps is 2,000. We will give a sum-
mary of each task and the details can be found in homepage
of OpenAI Gym . In ‘Acrobot’, system includes two joints
and two links, where the joint between the two links is ac-
tuated. Initially, the links are hanging downwards and the
goal of this task is to swing the end of the low link up to a
given height. In ‘MountainCar’, a car is positioned in a val-

ley between two mountains and wants to drive up the moun-
tain on the right by building up momentum. ‘HalfCheetah’,
‘Humanoid’, ‘Swimmer’, ‘Ant’ and ‘Hopper’ are simula-
tion tasks. In those tasks, policy control simulated objects to
achieve a goal. For example, in ‘HalfCheetah’, policy should
control a cheetah with half body running forward as fast as
possible. ‘LunarLander’ is a video game to control a lander
to land on the surface of moon safely. The tasks of ‘Acrobot’
and ‘MountainCar’ are finding policies with smallest step
number when goals are met. The tasks except for ‘Acrobot’
and ‘MountainCar’ are finding policies to control object get-
ting score from environment as high as possible. Therefore,
in Table2, rows of ‘Acrobot’ and ‘MountainCar’ are step
numbers, the smaller the better. The other rows are scores
from environment, the larger the better. All algorithms use
at most 2,000 evaluations for each task.

We independently execute each method 15 times respec-
tively on every task. And for each running, the result (policy)
will be tested independently for 10 times to calculate the av-
erage cumulated reward (i.e., 20,000 total samples of trajec-
tories in policy search). Finally, we pick up the policy with
the best cumulated reward, and report the mean and standard
deviation of the policy in Table 2. It can be observed that
SRACOS obtained the best results on all of those tasks. Espe-
cially on complex tasks from HalfCheetah to LunarLander,
SRACOS drastically improved the average reward.

Conclusion
In this paper, we propose the sequential classification-

based derivative-free optimization method, SRACOS, for
solving policy optimization problems in direct policy search,
where solutions have to be sampled sequentially. We analyze
the query complexity of SRACOS, and disclose the possibil-
ity that SRACOS can be more efficient than its batch-mode
counterpart. In empirical analysis, we first study the proper-
ties of SRACOS on synthetic functions, showing its better
convergence speed and stronger scalability than the other
state-of-the-art derivative-free methods. On reinforcement
learning tasks, SRACOS demonstrates significantly better
performance than the other compared methods, showing that
SRACOS is suitable for direct policy search with sequential
sampling. Future work include designing better direct policy
search methods using the power of SRACOS, and designing
policy search methods for robust policies with more practi-
cal goals, such as high reward with small variance.

References
Bull, A. D. 2011. Convergence rates of efficient global opti-
mization algorithms. The Journal of Machine Learning Re-
search 12:2879–2904.
de Boer, P.; Kroese, D. P.; Mannor, S.; and Rubinstein, R. Y.
2005. A tutorial on the cross-entropy method. Annals of
Operations Research 134(1):19–67.
de Freitas, N.; Smola, A. J.; ; and Zoghi, M. 2012. Ex-
ponential regret bounds for gaussian process bandits with
deterministic observations. In Proceedings of the 29th Inter-
national Conference on Machine Learning.
El-Fakdi, A.; Carreras, M.; and Palomeras, N. 2005. Di-
rect policy search reinforcement learning for robot control.
In Conference on Artificial Intelligence Research and Devel-
opment, 9–16.
Golberg, D. E. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Reading, Massachusetts:
Addison-Wesley.
Hansen, N.; Müller, S. D.; and Koumoutsakos, P. 2003. Re-
ducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (cma-es). Evolu-
tionary Computation 11(1):1–18.
Kawaguchi, K.; Kaelbling, L.-P.; and Lozano-Pérez, T.
2015. Bayesian optimization with exponential convergence.
In Advances in Neural Information Processing Systems 28,
2791–2799.
Kim, H.; Jordan, M.; Sastry, S.; and Ng, A. 2003. Au-
tonomous helicopter flight via reinforcement learning. Ad-
vances in neural information processing systems.
Larranaga, P., and Lozano, J. 2002. Estimation of Distribu-
tion Algorithms: A New Tool for Evolutionary Computation.
Boston: Massachusetts: Kluwer.
Munos, R. 2011. Optimistic optimization of a deterministic
function without the knowledge of its smoothness. In Ad-
vances in Neural Information Processing Systems, 78–791.
Munos, R. 2014. From bandits to monte-carlo tree search:
The optimistic principle applied to optimization and plan-
ning. Foundations and Trends in Machine Learning 7(1):1–
130.
Neumann, F., and Wegener, I. 2007. Randomized local
search, evolutionary algorithms, and the minimum spanning
tree problem. Theoretical Computer Science 378(1):32–40.
Qian, H., and Yu, Y. 2016. On sampling-and-classification
optimization in discrete domains. In Proceedings of the 2016
IEEE Congress on Evolutionary Computation.
Qian, H.; Hu, Y.-Q.; and Yu, Y. 2016. Derivative-free op-
timization of high-dimensional non-convex functions by se-
quential random embeddings. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015a. Pareto ensemble
pruning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, 2935–2941.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015b. Subset selection
by pareto optimization. In Advances in Neural Information
Processing Systems, 2935–2941.

Rogier, K., and Whiteson, S. 2011. Neuroevolutionary rein-
forcement learning for generalized control of simulated he-
licopters. Evolutionary intelligence 4(4):219–241.
Storn, R., and Price, K. 1997. Differential evolutiona simple
and efficient heuristic for global optimization over continu-
ous spaces. Journal of global optimization 11(4):341–359.
Wang, X.-N.; Chen, W.; Zhang, M.; Xin, X.-U.; and Han-
Gen, H.-E. 2007. A survey of direct policy search methods
in reinforcement learning. Caai Transactions on Intelligent
Systems.
Yu, Y., and Qian, H. 2014. The sampling-and-learning
framework: A statistical view of evolutionary algorithm. In
Proceedings of the 2014 IEEE Congress on Evolutionary
Computation, 149–158.
Yu, Y.; Qian, H.; and Hu, Y.-Q. 2016. Derivative-free opti-
mization via classification. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence.
Yu, Y.; Yao, X.; and Zhou, Z.-H. 2012. On the approxima-
tion ability of evolutionary optimization with application to
minimum set cover. Artificial Intelligence 180-181:20–33.

Appendix of “Sequential Classification-based
Optimization for Direct Policy Search”

Yi-Qi Hu and Hong Qian and Yang Yu
National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210023, China
{huyq,qianh,yuy}@lamda.nju.edu.cn

In this appendix, we first introduce some definitions and notations in Section 1. Then, we prove
Theorem 1 and 2 in Section 2 and 3, respectively.

Definitions and Notations

For a subset D ⊆ X , let #D =
∫
x∈X I[x ∈ D] dx, where I[·] is the indicator function. Define

|D| = #D/#X and thus |D| ∈ [0, 1]. Let Dα = {x ∈ X | f(x) ≤ α}, and Dε = {x ∈
X | f(x) − f(x∗) ≤ ε} for ε > 0. Let ∆ denote the symmetric difference of two sets defined
as A1∆A2 = (A1 ∪ A2) − (A1 ∩ A2). A hypothesis is a mapping h : X → {−1,+1}. Let
H ⊆ {h : X → {−1,+1}} be a hypothesis space. Let Dh = {x ∈ X |h(x) = +1} for hypothesis
h ∈ H, i.e., the positive class region represented by h. Denote UX and UDh the uniform distribution
over X and Dh, respectively, and denote Th the distribution defined on Dh induced by h. Let
St = λUDht + (1 − λ)UX be the sampling distribution in iteration t, Dt be the distribution under
which the classifier is trained in iteration t, RDt denote the generalization error of ht ∈ H under
the distributionDt, andDKL denote the Kullback-Leibler (KL) divergence between two probability
distributions, and N denote the number of iterations. Let log(·) and ln(·) be the base two logarithm
and natural logarithm, respectively.

The complexity of an algorithm is measured by the (ε,δ)-Query Complexity as Definition 1 [1, 2]. It
counts the total number of calls to the objective function by an algorithm before it finds a solution
that reaches the approximation level ε, with high probability.

DEFINITION 1 ((ε,δ)-Query Complexity)
Given f ∈ F , an algorithm A, 0 < δ < 1 and ε > 0, the (ε,δ)-query complexity is the number
of calls to f such that, with probability at least 1 − δ, A finds at least one solution x̃ ∈ X ⊆ Rn
satisfying

f(x̃)− f(x∗) ≤ ε,

where f(x∗) = minx∈X f(x).

Under the conditions of error-target θ-dependence and γ-shrinking rate which are the same as the
batch-mode classification-based optimization [2], we can derive a general upper bound of the query
complexity of sequential classification-based optimization algorithms as Theorem 1. Definition 2
characterizes the dependence between the classification error and the target region. The smaller θ
indicates that they are more independent, and when θ = 0, they are totally independent. We would
want the classification error and the target region to be independent, such that sampling from the
positive region of the classifier may obtain solutions in the target region.

DEFINITION 2 (Error-Target θ-Dependence)
The error-target dependence θ ≥ 0 of a classification-based optimization algorithm is its infimum
such that, for any ε > 0 and any t,

|Dε| · |Dαt∆Dht | − θ|Dε| ≤ |Dε ∩ (Dαt∆Dht)| ≤ |Dε| · |Dαt∆Dht |+ θ|Dε|,

1

where the operator ∆ is the symmetric difference of two sets defined as A1∆A2 = (A1 ∪ A2) −
(A1 ∩A2).

It characterizes, when sampling a solution x from UX , the dependence between the random variable
that whether x ∈ Dαt∆Dht where the operator ∆ is the symmetric difference of two sets defined as
A1∆A2 = (A1∪A2)− (A1∩A2) and the random variable that whether x ∈ Dε. If the dependence
between the classification error and the target region is weak, then sampling from the positive region
of the classifier may get solutions in the target region.

Definition 3 characterizes how large the positive region of the classifier. The smaller γ indicates
the smaller the positive region. When the dependence between the classification error and the target
region is low, we would want the positive region to be small, so that the chance of sampling within
the target region could be high.

DEFINITION 3 (γ-Shrinking Rate)
The shrinking rate γ > 0 of a classification-based optimization algorithm is its infimum such that
|Dht |≤γ|Dαt | for all t.

If the dependence between the classification error and the target region is weak and the positive
region is small, then the probability of sampling within the target region could be high.

Proof of Theorem 1

THEOREM 1
Given f ∈ F , 0 < δ < 1 and ε > 0, if a sequential classification-based optimization algorithm has
error-target θ-dependence and γ-shrinking rate, then its (ε,δ)-query complexity is upper bounded by

O

max

 1

|Dε|

(
(1− λ) +

λ

γ(N − r)

N∑
t=r+1

Φt

)−1
ln

1

δ
,N

 ,

where Φt =
(

1−RDt −#X
√

1
2DKL(Dt‖UX)− θ

)
· |Dαt |−1 and #X is the volume of X .

Before presenting the proof of Theorem 1, we reuse some lemmas for the general classficiation-
based optimization algorithm in the following. For simplicity, let t = 1, · · · , T denote t = r +
1, · · · , N .

LEMMA 1 ([2])
Given f ∈ F , 0 < δ < 1 and ε > 0, the (ε,δ)-query complexity of a classification-based optimiza-
tion algorithm is upper bounded by

O

(
max

{
1

(1− λ)|Dε|+ λPrh
ln

1

δ
,

T∑
t=1

mPrht

})
,

where Prh = 1
T

∑T
t=1 Prht = 1

T

∑T
t=1

∫
Dε
UDht (x) dx is the average success probability of sam-

pling from the learned positive area of ht, and mPrht
is the sample size required to realize the

success probability Prht .

LEMMA 2 ([2])
Given f ∈ F , ε > 0 and any hypothesis ht ∈ H, if the sampling distribution in iteration t is
St = λUDht + (1− λ)UX , then Prht is lower bounded by

Prht ≥
|Dε ∩Dht |
|Dht |

.

In order to derive an more explicit lower bound of Prht , we now derive the bound of |Dε ∩ Dht |
under the error-target θ-dependence condition and the bound of |Dht | under the γ-shrinking rate
condition.

2

LEMMA 3 ([2])
For the classification-based optimization algorithms under the condition of error-target θ-
dependence,

|Dε ∩Dht | ≥ |Dε| · (1−RUX ,t − θ)
holds for all t, where RUX ,t is the generalization error of ht under UX in iteration t.

Since the true distribution under which the classifier is trained in iteration t is Dt instead of UX , we
investigate the relationship between RUX ,t and RDt in order to bound |Dht | and |Dε ∩Dh| by RDt .

LEMMA 4 ([2])
The generalization error RUX of h under UX and the generalization error RD of h under any distri-
bution D have the following relationship:

RUX ≤ RD + #X

√
1

2
DKL(D‖UX).

On the basis of the lemmas presented above, we shows the proof of Theorem 1.

Proof of Theorem 1

Proof. By Lemma 2, we have Prht ≥ |Dε ∩ Dht |/|Dht | for all t. Combining Lemma 3 with
Lemma 4, we can conclude that

|Dε ∩Dht | ≥ |Dε| · (1−RDt −#X

√
1

2
DKL(Dt‖UX)− θ),

where Dt is the true sampling distribution on which ht is learnt. Unlike the batch-mode where
the distribution is a combination of the uniform sampling and the sampling from the model, i.e.,
Dt = λUDht + (1 − λ)UX , the distribution in the sequential model is the combination of the
uniform sampling and the sampling from a model set H determined by the strategy of keeping
previous samples, i.e., Dt = λ 1

Ht

∑
h∈Ht UDh + (1 − λ)UX . For generality, we keep using the

notation of Dt but not specifying it.

Meanwhile, the γ-shrinking rate condition admits |Dht | ≤ γ|Dαt | for all t directly. Let Φt =(
1−RDt −#X

√
1
2DKL(Dt‖UX)− θ

)
· |Dαt |−1. Therefore, Prht ≥ γ−1|Dε|Φt. On the

other hand, by the procedure of sequential classification-based optimization algorithms, we have∑T
t=1mPrht

=
∑N
t=r+1mPrht

∈ O(N). At last, by the definition of Prh and Lemma 1, we prove
the theorem. �

Proof of Theorem 2

In order to explicitly compare the query complexity of the sequential classification-based optimiza-
tion algorithm with the batch-mode, as shown in Theorem 2, we let DSt and DBt denote the distribu-
tion under which the classifier is trained in iteration t of the sequential-mode and the batch-mode,
respectively, and also denote RDSt and RDBt as the generalization error of them, respectively.

THEOREM 2
Ignoring the constant factor and fixing θ and γ, the sequential classification-based optimization
algorithm can have a better (or worse) query complexity upper bound than the batch-mode if for any
iteration t

RDSt < (or >)
1

1− λ
RDBt −#X

√
1

2
DKL(DSt ‖UX).

Before proving Theorem 2, we first recall the (ε,δ)-query complexity bound of batch-mode
classification-based optimization algorithms which has been derived in [2].

THEOREM 3 ([2])
Given f ∈ F , 0 < δ < 1 and ε > 0, if a batch-mode classification-based optimization algorithm

3

has error-target θ-dependence and γ-shrinking rate, its (ε,δ)-query complexity is upper bounded

O

 1

|Dε|

(
(1− λ) +

λ

γT

T∑
t=1

1−Q ·RDBt − θ
|Dαt |

)−1
ln

1

δ

 ,

where Q = 1/(1− λ).

Proof of Theorem 2

Proof. In Theorem 1, ignoring the constant factor and letting ε > 0 be small enough such that we
only need to focus on the part of

1

|Dε|

(
(1− λ) +

λ

γ(N − r)

N∑
t=r+1

Φt

)−1
ln

1

δ
,

where Φt =
(

1−RDSt −#X
√

1
2DKL(DSt ‖UX)− θ

)
· |Dαt |−1 and #X is the volume of X .

On the basis of Theorem 1 and 3, to compare the sequential-mode with batch-mode, it is sufficient

to compare the part of 1 − RDSt − #X
√

1
2DKL(DSt ‖UX) − θ with 1 − (1 − λ)−1RDBt − θ if

we ignore the corresponding constant factors. It can be verified directly that, for any iteration t, if

RDSt < (1−λ)−1RDBt −#X
√

1
2DKL(DSt ‖UX), then the sequential algorithm have a better query

complexity upper bound than the batch-mode; if RDSt > (1−λ)−1RDBt −#X
√

1
2DKL(DSt ‖UX),

then the sequential algorithm is worse. �

References

[1] Y. Yu and H. Qian. The sampling-and-learning framework: A statistical view of evolutionary
algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pages
149–158, Beijing, China, 2014.

[2] Y. Yu, H. Qian, and Y.-Q. Hu. Derivative-free optimization via classification. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence, pages 2286–2292, Phoenix, AZ, 2016.

4

