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Abstract

In this paper, we study the problem of selecting a subset from
a ground set to maximize a monotone objective function f
such that a monotone cost function c is bounded by an up-
per limit. State-of-the-art algorithms include the generalized
greedy algorithm and POMC. The former is an efficient fixed
time algorithm, but the performance is limited by the greedy
nature. The latter is an anytime algorithm that can find better
subsets using more time, but without any polynomial-time ap-
proximation guarantee. In this paper, we propose a new any-
time algorithm EAMC, which employs a simple evolutionary
algorithm to optimize a surrogate objective integrating f and
c. We prove that EAMC achieves the best known approxi-
mation guarantee in polynomial expected running time. Ex-
perimental results on the applications of maximum coverage,
influence maximization and sensor placement show the ex-
cellent performance of EAMC.

Introduction
The subset selection problem is a general NP-hard problem
with many applications, such as maximum coverage (Feige
1998), influence maximization (Kempe, Kleinberg, and
Tardos 2003) and sensor placement (Krause, Singh, and
Guestrin 2008), to name a few. The goal is to select a subset
of size at most B from a ground set of n items for maximiz-
ing some given monotone submodular function f , i.e.,

argmaxX⊆V f(X) s.t. |X| ≤ B,

where f : 2V → R is monotone submodular. Note that
submodularity is an attractive property encoding a natural
diminishing returns condition. It is known that the greedy
algorithm, which iteratively adds one item with the largest
marginal gain on f , achieves the optimal polynomial-time
approximation guarantee of (1− 1/e) (Nemhauser, Wolsey,
and Fisher 1978; Nemhauser and Wolsey 1978).

Since there are also many applications involving complex
constraints, much attention has been drawn to the problem

∗This work was supported by the NSFC (61603367, 61876077)
and the JiangsuSF (BK20170013). Chao Qian is the corresponding
author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with general cost constraints c(X) ≤ B. The linear cost con-
straint (i.e., c is a positive linear function) was first consid-
ered. Khuller et al. (1999) showed that the greedy algorithm
fails to guarantee a bounded approximation ratio. Krause
and Guestrin (2005) proved that the generalized greedy algo-
rithm can achieve an approximation ratio of (1/2)(1−1/e).
In each iteration, the generalized greedy algorithm adds one
item with the largest ratio of the marginal gain on f and c.
The subset found by this rule is compared with the best sin-
gle item, and the better one is returned as the final output.
Its approximation ratio can be improved to (1 − 1/e) by a
partial enumeration heuristic (Krause and Guestrin 2005),
which, however, leads to impractical computation time.

Later, the monotone submodular cost constraint (i.e., c
is a monotone submodular function) was considered. Note
that a positive linear function must be monotone submodu-
lar. Iyer and Bilmes (2013) proposed several algorithms with
bounded approximation guarantees by using suitable surro-
gate functions for f and c to optimize over. Considering that
the cost function c can be non-submodular in some real ap-
plications such as mobile robotic sensing and door-to-door
marketing, Zhang and Vorobeychik (2016) studied the more
general case where c is only required to be monotone. They
proved that the generalized greedy algorithm can achieve an
approximation ratio of (1/2)(1 − 1/e), but compared with
the optimal solution for a budget slightly smaller than B.

Besides relaxing the constraints, non-submodular objec-
tive functions have also been studied, e.g., (Bian et al. 2017;
Elenberg et al. 2018; Bogunovic, Zhao, and Cevher 2018;
Qian et al. 2019). They have many applications, such as
Bayesian experimental design (Krause, Singh, and Guestrin
2008), dictionary selection (Krause and Cevher 2010),
sparse regression (Das and Kempe 2011), and unsupervised
feature selection (Feng, Qian, and Tang 2019).

Recently, Qian et al. (2017) considered the very general
problem of maximizing monotone functions with monotone
cost constraints, i.e.,

argmaxX⊆V f(X) s.t. c(X) ≤ B, (1)

where both f and c are monotone, but not necessarily sub-
modular. They proved that the generalized greedy algorithm
is still a good approximation solver, achieving an approxi-



mation ratio of (αf/2)(1− e−αf ), where αf is the submod-
ularity ratio measuring how close f is to submodularity.

It is also well known that the performance of the gen-
eralized greedy algorithm may be limited by the greedy
nature. Qian et al. (2017) thus proposed an anytime algo-
rithm POMC which can use more time to find better solu-
tions. Note that the generalized greedy algorithm is a fixed
time algorithm. By adopting the Pareto optimization tech-
nique (Friedrich and Neumann 2015; Qian, Yu, and Zhou
2015), POMC employs a simple multi-objective evolution-
ary algorithm (EA) to maximize f and minimize c simulta-
neously. POMC can also achieve the approximation ratio of
(αf/2)(1 − e−αf ). Furthermore, Roostapour et al. (2019)
showed the advantage of POMC in dynamic environments.
When the budget B changes dynamically, POMC can main-
tain the (αf/2)(1 − e−αf )-approximation ratio, while the
generalized greedy algorithm cannot.

However, we find from the theoretical results in (Qian et
al. 2017; Roostapour et al. 2019) that either to achieve the
approximation ratio of (αf/2)(1 − e−αf ) in static environ-
ments or to maintain this approximation ratio in dynamic
environments, the required expected running time of POMC
is unbounded, which can be exponential. This implies that
POMC is not a polynomial-time approximation algorithm,
making it undesirable for the concerned problem Eq. (1).

In this paper, we propose a new anytime algorithm called
EAMC, which employs a simple EA to maximize the sur-
rogate objective f(X)/(1 − e−αf c(X)/B). We prove that
EAMC can achieve the (αf/2)(1−e−αf )-approximation ra-
tio in at most 2en2(n+1) expected running time, where n is
the size of the ground set V . We empirically evaluate the per-
formance of EAMC on the applications of maximum cover-
age, influence maximization and sensor placement. The lin-
ear cost constraint as well as the routing constraint (where
the cost function is monotone non-submodular) are consid-
ered. Experimental results show that compared with the gen-
eralized greedy algorithm, EAMC can always find better so-
lutions using a little more running time, providing an alter-
native for solving the problem Eq. (1) as more computational
resources are available nowadays.

Preliminaries
Let R and R+ denote the set of reals and non-negative reals,
respectively. Given a ground set V = {v1, v2, . . . , vn}, we
study the functions f : 2V → R over subsets of V . A set
function f is monotone if ∀X ⊆ Y , f(X) ≤ f(Y ), which
implies that adding more items to a set never decreases the
function value. Assume w.l.o.g. that monotone functions are
normalized, i.e., f(∅) = 0. A set function f is submodu-
lar (Nemhauser, Wolsey, and Fisher 1978) if for any X ⊆
Y ⊆ V and v /∈ Y , f(X∪{v})−f(X)≥f(Y ∪{v})−f(Y ),
which intuitively represents the diminishing returns prop-
erty, i.e., adding an item to a set X gives a larger benefit
than adding the same item to a superset Y of X .

For a general set function f , the notion of submodular-
ity ratio as presented in Definition 1 is used to measure
to what extent f has the submodular property. When f is
monotone, it holds that (1) 0 ≤ αf ≤ 1, and (2) f is sub-

modular iff αf = 1. Note that there are also other notions,
e.g., in (Krause and Cevher 2010; Das and Kempe 2011;
Zhou and Spanos 2016), to characterize the closeness of f
to submodularity.
Definition 1 (Submodularity Ratio (Zhang and Vorobeychik
2016)). The submodularity ratio of a non-negative set func-
tion f is defined as

αf = min
X⊆Y,v/∈Y

f(X ∪ {v})− f(X)

f(Y ∪ {v})− f(Y )
. (2)

The total curvature as presented in Definition 2 charac-
terizes how close a monotone submodular function f is to
modularity. It is easy to verify that 1 ≥ 1 − κf ≥ 0.
In this paper, we use κf for a general monotone function
f as in (Zhang and Vorobeychik 2016; Bian et al. 2017;
Qian et al. 2017). Without the submodular property, it holds
that 1/αf ≥ 1− κf ≥ 0 by Eq. (2).
Definition 2 (Total Curvature (Conforti and Cornuéjols
1984; Vondrák 2010)). Let f be a monotone submodular
set function. The total curvature of f is

κf = 1− min
v∈V :f({v})>0

f(V )− f(V \ {v})
f({v})

.

The concerned problem is presented in Definition 3,
which is to maximize a monotone objective function f
such that a monotone cost function c is upper bounded by
a budget B. Both f and c are not necessarily submod-
ular. Assume that f is given by a value oracle, i.e., for
any subset X , an algorithm can query an oracle to obtain
the value of f(X). As in (Zhang and Vorobeychik 2016;
Qian et al. 2017), we assume that instead of the exact cost
function c, only an ψ(n)-approximation ĉ can be obtained,
where ∀X ⊆ V : c(X) ≤ ĉ(X) ≤ ψ(n) · c(X). This is
because the exact computation of c may require exponential
time in some real-world applications.
Definition 3 (The General Problem). Given a monotone ob-
jective function f : 2V → R+, a monotone cost function
c : 2V → R+ and a budget B, to find

argmaxX⊆V f(X) s.t. c(X) ≤ B. (3)

Here are three applications with monotone submodular
objective functions, that will be empirically studied in this
paper. Given a family of sets that cover a universe of ele-
ments, maximum coverage (Feige 1998) is to select some
sets whose union is maximal under a cost budget. It is easy
to verify that f is monotone and submodular.
Definition 4 (Maximum Coverage). Given a set U of ele-
ments, a collection V ={S1, S2, . . . , Sn} of subsets of U , a
monotone cost function c : 2V →R+ and a budgetB, to find

argmaxX⊆V f(X) =
∣∣⋃

Si∈XSi
∣∣ s.t. c(X) ≤ B.

Influence maximization is to identify a set of influential
users in social networks. Let a directed graph G = (V,E)
represent a social network, where each node is a user and
each edge (u, v) ∈ E has a probability pu,v representing the
influence strength from user u to v. Given a budget B, influ-
ence maximization is to find a subset X of V such that the



expected number of nodes activated by propagating from X
is maximized (Kempe, Kleinberg, and Tardos 2003). A fun-
damental propagation model is Independence Cascade (IC).
It uses a set At to record the nodes activated at time t, and at
time t+ 1, each inactive neighbor v of u ∈ At becomes ac-
tive with probability pu,v . This process is repeated until no
nodes get activated at some time. The set of nodes activated
by propagating from X is denoted as IC(X), which is a
random variable. The objective E[|IC(X)|] called influence
spread is monotone and submodular. Note that E[·] denotes
the expectation of a random variable.
Definition 5 (Influence Maximization). Given a directed
graphG = (V,E), edge probabilities pu,v where (u, v)∈E,
a monotone cost function c :2V→R+ and a budgetB, to find

argmaxX⊆V f(X) = E[|IC(X)|] s.t. c(X) ≤ B.
Sensor placement (Krause, Singh, and Guestrin 2008) is

to decide where to place a limited number of sensors such
that the uncertainty is mostly reduced. Let oj denote a ran-
dom variable representing the observations collected from
location vj by installing a sensor. Note that the conditional
entropy (i.e., remaining uncertainty) of a total set U of ran-
dom variables having observed a subset S is H(U | S) =
H(U) − H(S), where H(·) denotes the entropy. Thus, the
goal is to select a subset X of locations maximizing the en-
tropy of {oj | vj ∈ X}. It is known that the entropy H(·) is
monotone and submodular.
Definition 6 (Sensor Placement). Given n locations V =
{v1, v2, . . . , vn}, a monotone cost function c : 2V → R+

and a budget B, to find

argmaxX⊆V H({oj | vj ∈ X}) s.t. c(X) ≤ B.
For these applications, the cost constraint can be a sim-

ple size constraint, i.e., c(X) = |X|, or a general linear cost
constraint, i.e., c(X) =

∑
i:vi∈X ci. In some situations, it,

however, can be more complex, e.g., a routing constraint,
which is monotone non-submodular. For example, in mo-
bile robotic sensing domains, the costs of moving between
locations as well as that of making measurements at loca-
tions need to be counted. Let a graph G = (V,E) char-
acterize the routing network of all locations, where ce de-
notes the cost of traversing an edge e ∈ E and cv de-
notes the cost of visiting a node v ∈ V . The cost func-
tion is c(X) = cR(X) +

∑
v∈X cv (Zhang and Vorobey-

chik 2016), where cR(X) is the cost of the shortest walk to
visit each node in X at least once, which is generally non-
submodular (Herer 1999) and cannot be exactly computed
in polynomial time. In the experiments, both linear cost and
routing constraints will be used.

Previous Algorithms
In this section, we introduce two state-of-the-art algorithms
for the concerned problem, i.e., maximizing monotone func-
tions with monotone cost constraints.

The Generalized Greedy Algorithm
As shown in Algorithm 1, the generalized greedy algorithm
selects one item maximizing the ratio of the marginal gain

Algorithm 1 Generalized Greedy Algorithm
Input: a monotone objective function f , a monotone ap-
proximate cost function ĉ, and a budget B
Output: a solution X ⊆ V with ĉ(X) ≤ B
Process:

1: Let X = ∅ and V ′ = V ;
2: repeat
3: v∗ ∈ argmaxv∈V ′

f(X∪{v})−f(X)
ĉ(X∪{v})−ĉ(X) ;

4: if ĉ(X ∪ {v∗}) ≤ B then
5: X = X ∪ {v∗}
6: end if
7: V ′ = V ′ \ {v∗}
8: until V ′ = ∅
9: Let u∗ ∈ argmaxu∈V :ĉ({u})≤B f({u})

10: return argmaxS∈{X,{u∗}} f(S)

on f and ĉ in each iteration. After examining all items (i.e.,
V ′ = ∅), the found subset is compared with the best single
item (i.e., u∗ in line 9), and the better one is returned.

Zhang and Vorobeychik (2016) first proved that for the
problem in Definition 3 where f is submodular, the general-
ized greedy algorithm can obtain a subset X satisfying

f(X) ≥ (1/2)(1− 1/e) · f(X̃),

where

f(X̃) = max {f(X) | (4)

c(X) ≤ B · αĉ(1 + α2
c(Kc − 1)(1− κc))
ψ(n)Kc

}
,

and Kc = max{|X| | c(X) ≤ B}, i.e., the largest size
of a subset satisfying the constraint. As 0 ≤ αĉ, αc ≤ 1,
1− κc ≤ 1/αc and ψ(n) ≥ 1, it holds that

αĉ(1 + α2
c(Kc − 1)(1− κc))
ψ(n)Kc

≤ 1.

Thus, X̃ is actually an optimal solution of the problem
Eq. (3) with a slightly smaller budget constraint. Qian et
al. (2017) extended the analysis to the general situation
where f is not necessarily submodular, and proved the ap-
proximation ratio of (αf/2)(1−e−αf ) w.r.t. f(X̃), as shown
in Theorem 1.
Theorem 1. (Qian et al. 2017) For the problem in Def-
inition 3, the generalized greedy algorithm finds a subset
X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf ) · f(X̃),

where f(X̃) is defined in Eq. (4).

The POMC Algorithm
Though the generalized greedy algorithm is an efficient
fixed time algorithm, its performance may be limited due to
the greedy nature. Based on Pareto Optimization (Friedrich
and Neumann 2015; Qian, Yu, and Zhou 2015), Qian
et al. (2017) proposed an anytime algorithm POMC for



maximizing Monotone functions with monotone Cost con-
straints. POMC can use more time to find better subsets.

A subset X ⊆ V can be naturally represented by a
Boolean vector x ∈ {0, 1}n, where the i-th bit xi = 1 iff
vi ∈ X . For notational convenience, we will not distinguish
x ∈ {0, 1}n and its corresponding subset X . The idea of
POMC is to reformulate the constrained problem Eq. (3) as
a bi-objective maximization problem

argmaxx∈{0,1}n
(
f1(x), f2(x)

)
, (5)

where f1(x) = f(x) and f2(x) = −ĉ(x). In other
words, POMC tries to maximize the objective function f and
minimize the approximate cost function ĉ simultaneously.
Note that the solutions with large constraint violation (e.g.,
ĉ(x) ≥ 2B in (Qian et al. 2017)) can be excluded from the
optimization process by setting their f1 values to −∞.

The domination relationship is used to compare solutions
in the bi-objective setting. For two solutions x and x′, x
weakly dominates x′, denoted as x � x′, if f1(x) ≥
f1(x

′) ∧ f2(x) ≥ f2(x
′); x dominates x′, denoted as x �

x′, if x � x′ and either f1(x) > f1(x
′) or f2(x) > f2(x

′);
they are incomparable if neither x � x′ nor x′ � x.

To solve the transformed bi-objective maximization prob-
lem Eq. (5), POMC employs a simple multi-objective EA,
i.e., lines 1-9 of Algorithm 2, inspired from the GSEMO
algorithm (Laumanns, Thiele, and Zitzler 2004). Starting
from the special solution 0n which represents the empty set
(line 1), it iteratively uses bit-wise mutation and domination-
based comparison to improve the solutions maintained in
the population P (lines 2-9). In each iteration, a parent
solution x is first selected from P uniformly at random
(line 3); then an offspring solution x′ is generated by ap-
plying the bit-wise mutation operator to x (line 4); finally
the generated offspring solution x′ is used to update the
population P according to the domination-based compari-
son (lines 5-7), making P always contain non-dominated
solutions generated-so-far. After running T iterations, the
solution with the largest f value while satisfying the cost
constraint in P is output as the final solution (line 10).

The bit-wise mutation operator as presented in Defini-
tion 7 is a global search operator, which can generate any
solution x′ ∈ {0, 1}n from a solution x, with probability
(1/n)H(x,x′)(1− 1/n)n−H(x,x′), where H(·, ·) denotes the
Hamming distance.
Definition 7 (Bit-wise Mutation). For a solution x ∈
{0, 1}n, the bit-wise mutation operator generates a new off-
spring solution by flipping each bit of x independently with
probability 1/n.

Qian et al. (2017) proved that POMC can achieve the ap-
proximation ratio of (αf/2)(1−e−αf ) w.r.t. f(X̃) by using
at most enBPmax/δĉ iterations in expectation, as shown in
Theorem 2. Note that the population size of POMC will in-
crease by 1 in one iteration if the newly generated solution is
incomparable with the solutions in P . Thus, if any two solu-
tions in {0, 1}n are incomparable, e.g., when f(x) = ĉ(x)
and each x has a unique f value, P will continue to increase,
resulting in an exponential population size. Furthermore, B
and 1/δĉ can also be exponentially large w.r.t. n. Thus, the
running time of POMC is not polynomially upper bounded.

Algorithm 2 POMC Algorithm
Input: a monotone objective function f , a monotone ap-
proximate cost function ĉ, and a budget B
Parameter: the number T of iterations
Output: a solution x ∈ {0, 1}n with ĉ(x) ≤ B
Process:

1: Let x = 0n, P = {x} and t = 0;
2: while t < T do
3: Select x from P uniformly at random;
4: Generate x′ by applying bit-wise mutation to x;
5: if @z ∈ P such that z � x′ then
6: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}
7: end if
8: t = t+ 1
9: end while

10: return argmaxx∈P :ĉ(x)≤B f(x)

Theorem 2. (Qian et al. 2017) For the problem in Defi-
nition 3, POMC with E[T ] ≤ enBPmax/δĉ finds a subset
X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf ) · f(X̃),

where Pmax denotes the largest size of the population P dur-
ing the running of POMC, δĉ = min{ĉ(X ∪ {v})− ĉ(X) |
X ⊆ V, v /∈ X} denotes the minimum increment on ĉ by
adding a single item, and f(X̃) is defined in Eq. (4).

As more and more computational resources are available,
anytime algorithms are appealing now. It, however, still re-
quires polynomial-time approximation guarantees to make
the algorithms reliable. Our focus of this work is to de-
velop an anytime algorithm with polynomial-time bounded
approximation guarantees for solving the problem Eq. (3).

The EAMC Algorithm
In this section, we propose a simple EA for maximizing
Monotone functions with monotone Cost constraints, called
EAMC. Instead of maximizing f in Eq. (3), EAMC intro-
duces a surrogate objective g to be maximized, which can
be formally defined as

g(x) =

{
f(x) |x| = 0,

f(x)/(1− e−αf ĉ(x)/B) |x| ≥ 1.
(6)

It can be seen that g takes into account both the original
objective f and the cost ĉ. A smaller ĉ value or a larger f
value will result in a larger g value.

During the optimization procedure, EAMC maintains a
population P of solutions, and a newly generated solution
x′ will be compared only with the solutions in bin(|x′|),
which can be formally defined as

bin(|x′|) = {z ∈ P | |z| = |x′|}.

That is, x′ is only compared with the solutions in P which
have the same size as x′. Such a setting can make the popu-
lation P have a large diversity, and thus, improve the search
ability of the algorithm. As the problem Eq. (3) requires to



Algorithm 3 EAMC Algorithm
Input: a monotone objective function f , a monotone ap-
proximate cost function ĉ, and a budget B
Parameter: the number T of iterations
Output: a solution x ∈ {0, 1}n with ĉ(x) ≤ B
Process:

1: Let u0 = v0 = x = 0n, P = {x} and t = 0;
2: while t < T do
3: Select x from P uniformly at random;
4: Generate x′ by applying bit-wise mutation to x;
5: if ĉ(x′) ≤ B then
6: Let i = |x′|;
7: if bin(i) = ∅ then
8: P = P ∪ {x′};
9: ui = vi = x′

10: else
11: if g(x′) ≥ g(ui) then
12: ui = x′

13: end if
14: if f(x′) ≥ f(vi) then
15: vi = x′

16: end if
17: P = (P \ bin(i)) ∪ {ui} ∪ {vi}
18: end if
19: end if
20: t = t+ 1
21: end while
22: return argmaxx∈P f(x)

maximize f while satisfying the budget constraint, EAMC
only considersx′with ĉ(x′)≤B; during the running process,
besides the solution with the largest g value, each binmain-
tains the solution with the largestf value generated-so-far.

The procedure of EAMC is described in Algorithm 3.
Starting from the empty set 0n (line 1), it repeatedly tries
to improve the g value of solutions in each bin (lines 2-21).
In each iteration, a new solution x′ is generated by randomly
flipping bits of an archived solution x selected from the cur-
rent P (lines 3-4), and only x′ satisfying the constraint can
be included into P (line 5). If bin(|x′|) = ∅, x′ is added
into P , and u|x

′|,v|x
′| are used to maintain the two solu-

tions of size |x′| with the largest g and f value generated-
so-far, respectively (lines 7-9); otherwise, x′ is compared
with the solutions in bin(|x′|), and bin(|x′|) will be up-
dated if the largest g or f value generated-so-far is improved
(lines 10-18). It can be seen that each bin(i) contains only
the solutions ui and vi, which can be the same. After T it-
erations, the solution with the largest f value in P is output
(line 22). Note that all solutions in P must satisfy the budget
constraint due to line 5.

EAMC requires to know the submodularity ratio αf ,
which is used in the surrogate objective g. For submodular f ,
αf = 1. For non-submodular f , the exact computation of αf
may require exponential time, and a lower bound on αf can
be used instead. Note that lower bounds on αf have been de-
rived for some monotone non-submodular applications, e.g.,
Bayesian experimental design (Chamon and Ribeiro 2017;

Qian, Yu, and Tang 2018; Hashemi et al. 2019) and determi-
nantal function maximization (Qian, Yu, and Tang 2018).

Theoretical Analysis
In this section, we prove the general approximation bound
of EAMC, as shown in Theorem 3. Compared with The-
orem 2, EAMC achieves the same approximation guaran-
tee, i.e., (αf/2)(1 − e−αf ), as POMC, but the expected
running time is polynomially upper bounded. The proof
relies on Lemma 1, which intuitively means that for any
subset, the inclusion of some specific item can improve
f by at least a quantity proportional to the current dis-
tance to the optimum. As in (Zhang and Vorobeychik 2016;
Qian et al. 2017), we can assume that ∀v ∈ V : ĉ({v}) ≤ B,
because any v with ĉ({v}) > B can be directly removed be-
fore optimization.
Lemma 1. (Qian et al. 2017) For any X ⊆ V , let v∗ ∈
argmaxv/∈X

f(X∪{v})−f(X)
ĉ(X∪{v})−ĉ(X) . It holds that

f(X ∪ {v∗})− f(X)

≥ αf
ĉ(X ∪ {v∗})− ĉ(X)

B
· (f(X̃)− f(X)),

where f(X̃) is defined in Eq. (4).
Theorem 3. For the problem in Definition 3, EAMC with
E[T ] ≤ 2en2(n+ 1) finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf ) · f(X̃),

where f(X̃) is defined in Eq. (4).

Proof. The theorem is proved by analyzing the increase of a
quantity Jmax, which is defined as

Jmax = max{i | ∃x ∈ bin(i) : g(x) ≥ f(X̃)}.
Let Pmax denote the largest size of the population P dur-

ing the running of EAMC. We first show that Jmax ≥ 1 after
at most enPmax expected number of iterations. It is easy to
see that the solution 0n will always be in P , because only the
solutions with the same size can be compared and 0n is the
unique solution with size 0. By Lemma 1, flipping a specific
0-bit of 0n (i.e., adding a specific item) can generate a new
solution x′ such that

f(x′) ≥ αf
ĉ(x′)

B
·f(X̃) ≥ (1− e−αf ĉ(x

′)/B)·f(X̃), (7)

where the last inequality holds by ∀r ∈ R : 1− r ≤ e−r. In
each iteration, x′ can be generated with probability at least

1
Pmax

· 1n (1−
1
n )
n−1 ≥ 1

enPmax
, where 1

Pmax
is a lower bound

on the probability of selecting 0n from the population and
1
n (1−

1
n )
n−1 is the probability of flipping a specific bit of 0n

while keeping the other bits unchanged. Thus, the expected
number of iterations to generate x′ is at most enPmax . Note
that g(x′) ≥ f(X̃) by Eqs. (6) and (7). If x′ is included
into P , we have Jmax ≥ 1; otherwise, there must exist one
solution in bin(1) with a larger g value, implying Jmax≥1.

Assume that currently Jmax = i. According to lines 11-
13 and line 17 of Algorithm 3, the largest g value of solu-
tions in bin(i) will not decrease, and thus, Jmax will not



decrease. This implies that there always exists x ∈ bin(i)
with g(x) ≥ f(X̃).

Next we consider the increase of Jmax until a solution
with the f value at least (αf/2)(1− e−αf ) · f(X̃) is found.
Let x denote the solution with the largest g value. By
Lemma 1, flipping a specific 0-bit of x can generate a so-
lution x′ with |x′| = i+ 1 and

f(x′) ≥ αf
ĉ(x′)− ĉ(x)

B
· f(X̃) (8)

+
(
1−αf

ĉ(x′)−ĉ(x)
B

)
(1− e−αf ĉ(x)/B)f(X̃)

=

(
1−

(
1−αf

ĉ(x′)−ĉ(x)
B

)
e−αf ĉ(x)/B

)
f(X̃)

≥ (1− e−αf ĉ(x
′)/B) · f(X̃),

where the first inequality holds by g(x) = f(x)/(1 −
e−αf ĉ(x)/B) ≥ f(X̃) due to Jmax = i, and the last in-
equality holds by ∀r ∈ R : 1 − r ≤ e−r. Thus, we have
g(x′) ≥ f(X̃). In each iteration, x′ can be generated with
probability at least 1

Pmax
· 1
n (1 −

1
n )
n−1 ≥ 1

enPmax
, imply-

ing that the expected number of iterations until generating
x′ with |x′| = i+ 1 and g(x′) ≥ f(X̃) is at most enPmax.
We then consider two cases for ĉ(x′).
(1) If ĉ(x′) > B, Eq. (8) implies f(x′) ≥ (1− e−αf )f(X̃).
Let y ∈ argmaxu∈V :ĉ({u})≤B f({u}). We have

f(x′) = f(x) + (f(x′)− f(x)) (9)

≤ f(x) + f(x′ \ x)/αf
≤ f(x) + f(y)/αf

≤ (f(x) + f(y))/αf ,

where the first inequality holds by Definition 1, and the last
holds by αf ∈ [0, 1]. In each iteration, y can be generated
by selecting 0n and flipping a specific 0-bit, occurring with
probability at least 1

enPmax
. Thus, y can be generated in at

most enPmax expected number of iterations. According to
the updating procedure of P in lines 7-10 and 14-17, we
know that once y is generated, P will always contain a so-
lution z ∈ bin(1) with f(z) ≥ f(y). It can also be veri-
fied that there always exists one solution z′ ∈ bin(i) with
f(z′) ≥ f(x). By line 22 of Algorithm 3, the solution with
the largest f value will be finally returned. Thus, EAMC can
output a solution with the f value at least

max{f(x), f(y)} ≥ (αf/2)(1− e−αf ) · f(X̃).

(2) If ĉ(x′) ≤ B, according to the updating procedure of P
in lines 7-13 and 17, we know that x′ will be added into P ,
because there does not exist z ∈ bin(i + 1) with g(z) ≥
g(x′); otherwise, g(z) ≥ g(x′) ≥ f(X̃), contradicting with
the definition of Jmax. Now, Jmax = i+ 1.

Repeating the above analysis, EAMC will output a so-
lution z with f(z) ≥ (αf/2)(1 − e−αf ) · f(X̃), which
achieves the desired approximation guarantee, or Jmax will
continue to increase until reaching the maximum value n.
The latter case implies ĉ(1n) ≤ B, and EAMC will output
1n, which is optimal as f is monotone.

Now we examine the total expected number of iterations.
To make Jmax ≥ 1, the expected number of iterations is at
most enPmax; to increase Jmax from 1 to n, the expected
number of iterations is at most (n − 1) · enPmax; to gener-
ate y, the expected number of iterations is at most enPmax.
Because there are at most two solutions in bin(i), where
1 ≤ i ≤ n − 1 (line 17 of Algorithm 3), and at most
one solution in bin(0) and bin(n), we have Pmax ≤ 2n.
Thus, the total expected number of iterations is at most
(n+ 1) · enPmax ≤ 2en2(n+ 1).

When the exact computation of αf is difficult, a lower
bound (denoted by α) on αf can be used in the surrogate
objective g, and EAMC achieves the approximation ratio of
(αf/2) · (1− e−α), as shown in Corollary 1. In the proof of
Theorem 3, the factor containing the first αf (i.e., αf/2) in
the approximation ratio is derived from Eq. (9), which does
not depend on g. Thus, this factor keeps unchanged. The
factor containing the second αf (i.e., 1−e−αf ) is derived
from Eq. (8), which applies the definition of g. As α is used
in g now, the αf in this factor changes to α accordingly.

Corollary 1. For the problem in Definition 3, when a lower
bound (denoted by α) on αf is applied to the surrogate ob-
jective g in Eq. (6), EAMC with E(T ) ≤ 2en2(n + 1) finds
a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−α) · f(X̃),

where f(X̃) is defined in Eq. (4).

Empirical Study
In this section, we empirically examine the performance of
EAMC on the applications of maximum coverage, influence
maximization, and sensor placement. For each tested in-
stance of each application, we select the generalized greedy
algorithm for the baseline, and plot the curve of f over the
running time for EAMC. As EAMC is a randomized algo-
rithm, we repeat the run 10 times independently and report
the average results.

Maximum Coverage. We use two real-world data sets
frb30-15-mis-1 and frb35-17-mis-1, from (https://turing.cs.
hbg.psu.edu/txn131/vertex cover.html). Both of them are
graphs. The former contains 450 vertices and 17,827 edges,
and the latter contains 595 vertices and 27,856 edges. For
each vertex, we generate a set which contains the vertex it-
self and its adjacent vertices. Linear cost constraints are con-
sidered, where c(X) =

∑
v∈X cv . We use two settings of cv:

(1) as in (Harshaw et al. 2019), cv = 1+max{d(v)− q, 0},
where d(v) is the out-degree of vertex v and q is a constant
(which is set to 6 in our experiment); (2) cv is assigned a ran-
dom number from (0, 1]. They are called “out-degree” and
“random” linear cost constraints, respectively. The budgets
B are set to 500 and 1, respectively, for these two kinds of
settings. The curves are plotted in Figure 1.

Influence Maximization. Another two graphs ran-
dom graphs with 100 vertices (100 vertices, 3,465 edges)
and random graphs with 200 vertices (200 vertices, 9,950
edges) from (https://turing.cs.hbg.psu.edu/txn131/vertex
cover.html) are used as the social networks, which are briefly
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Figure 1: Maximum coverage with two kinds of linear cost
constraints (out-degree and random). Number of covered
vertices: the larger, the better.

called graph100 and graph200, respectively. The probability
of each edge is set to 0.05. We also consider two settings for
the linear cost constraint: out-degree and random. Note that
the out-degree linear cost constraint is different from that
used in the experiment of maximum coverage. As in (Craw-
ford 2019), cv = 1 + (1 + |ξ|) · d(v), where ξ is a random
number drawn from the normal distributionN (0, 0.52). The
budgets B are set to 50 and 3, respectively.

Note that for estimating the influence spread (i.e., the ex-
pected number of nodes activated), we simulate the diffu-
sion process 100 times independently and use the average as
an estimation. That is, the objective function evaluation is
noisy. But for the output solutions of the algorithms, we av-
erage over 10,000 times for more accurate estimation. Since
the behavior of the greedy algorithm is randomized under
noise, we also repeat its run 10 times independently and re-
port the average results. The curves are plotted in Figure 2.

Sensor Placement. We use the same setting as in (Qian
et al. 2017). Two real-world data sets and the routing
constraint are tested. One data set (http://db.csail.mit.edu/
labdata/labdata.html) is collected from sensors installed at
54 locations of the Intel Berkeley Research lab, and the
other (Zheng, Liu, and Hsieh 2013) is air quality data col-
lected from 36 monitoring stations in Beijing. The light and
temperature measures are extracted, respectively. A com-
plete graph is used for the routing network, where the cost
of each node is assigned a random number drawn from
the normal distribution N (0.08, 0.12), and the cost of each
edge corresponds to the physical distance between two loca-
tions, which is normalized to [0, 0.01]. Note that the entropy
is calculated using the observed frequency, and the rout-
ing cost is computed approximately by the nearest neighbor
method (Rosenkrantz, Stearns, and Lewis 1977). The budget
B is set to 1. The curves are plotted in Figure 3.

In Figures 1, 2 and 3, the running time is considered in the
number of objective function evaluations, and one unit on
the x-axis corresponds to n2 evaluations, the running time
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Figure 2: Influence maximization with two kinds of linear
cost constraints (out-degree and random). Influence spread:
the larger, the better.
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Figure 3: Sensor placement with the routing constraint. En-
tropy: the larger, the better.

order of the generalized greedy algorithm. We can observe
that EAMC can always find better solutions than the gener-
alized greedy algorithm by performing more objective func-
tion evaluations, verifying that EAMC, as an anytime algo-
rithm, can use more time to find better solutions. Note that
the curves of EAMC may decrease in Figure 2, which is be-
cause the better solution may be deleted due to the noise in
evaluating the objective influence spread.

We also plot the curve of f over the running time for
POMC. It can be observed that the performance of POMC
is not very stable. POMC can perform the best in several
cases, but can also perform even worse than the general-
ized greedy algorithm in Figure 2(b). This may be because
the population size of POMC can be very large sometimes.
For example, in Figure 2(b), the population size of POMC
can reach 70 while that of EAMC is at most 23; in Fig-
ure 3(b), the largest population size of POMC can be over
7 (137/19) times that of EAMC. Note that an overly large
population size will lead to a small probability of select-
ing a specific solution for mutation, and thus, deteriorate the
efficiency of POMC. The empirical observation is actually
consistent with the known theoretical result, i.e., Theorem 2
showing that the upper bound on the expected number of it-
erations until POMC achieves a desired approximation ratio
increases linearly with the largest population size.



Conclusion
In this paper, we propose an anytime algorithm EAMC for
the problem of maximizing monotone functions with mono-
tone cost constraints. We prove that EAMC can achieve
the best known approximation guarantee, i.e., (αf/2)(1 −
e−αf ), in polynomial expected running time, which over-
comes the limitation, i.e., no polynomial-time approxima-
tion guarantee, of the existing anytime algorithm POMC.
The consistently superior performance of EAMC over the
fixed time algorithm, i.e., the generalized greedy algorithm,
is empirically shown on various applications.
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