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ABSTRACT
Learning complex policies is a key step toward real-world
applications of reinforcement learning. While boosting ap-
proaches have been widely applied in state-of-the-art super-
vised learning techniques to adaptively learn nonparametric
functions, in reinforcement learning the boosting-style ap-
proaches have been little investigated. Only a few pieces
of previous work explored this direction, however theoreti-
cal properties are still unclear and empirical performance is
quite limited. In this paper, we propose the PolicyBoost
method. It optimizes a finite-sample objective function,
which leads to maximization of the expected total reward,
by employing the GradientBoost approach. Experimental
results verify the effectiveness as well as the robustness of
PolicyBoost, even without feature engineering.

Categories and Subject Descriptors
H.4 [Machine learning]: Reinforcement learning

General Terms
Algorithms

Keywords
Policy gradient, Boosting, nonparametric model

1. INTRODUCTION
In reinforcement learning, an agent learns from trial-and-

error feedback from its environment, and produces a state-
to-action policy attempting to maximize its long-term total
reward [34]. A good reinforcement learning algorithm would
be able to generalize well from limited feedbacks, sharing
similar principle with supervised learning algorithms. In
supervised learning [24], an algorithm is given fixed train-
ing examples and expected to build a model that correctly
predicts unseen instances. We may learn from successful su-
pervised learning algorithms to design strong reinforcement
learning algorithms.
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A notable off-the-shelf supervised learning algorithm fam-
ily is called boosting, with representatives such as AdaBoost
[10], LogitBoost [11], GradientBoost [12], etc. Most of them
share a common routine [22] that trains an additive combi-
nation of models via gradient decent in some function space.
The success of boosting algorithms is supported by both the-
oretical guarantees and many successful real-world applica-
tions. Particularly, boosting approaches have a strong gen-
eralization ability and a good adaptivity to nonparametric
and highly nonlinear models, which are also quite appealing
properties in reinforcement learning.

Despite the powerful performance of boosting approaches
verified in supervised learning, there are few previous stud-
ies investigating boosting-like approaches in reinforcement
learning. As far as we are aware, the only existing work is
the NPPG [17], by which a policy is formed from an addi-
tive model like the boosting approaches. It trains the model
to directly maximize the total reward objective function via
the gradient ascent in a function space. However, we found
that directly maximizing the objective function on a small
training trajectory set results in overfitting due to optimiz-
ing only the probability of these trajectories, which can be
useful only when the policy is near optimal already. Simi-
lar to boosting approaches, the NPPG method has a strong
learning ability, which makes the overfitting problem even
more severe. Thus NPPG can only work on simple tasks.

In this paper, we firstly derive the finite-sample functional
gradient, the core of boosting methods, for maximizing the
expected total reward. We then show that the functional
gradient method drives policy convergence, and fit the ob-
served best actions. However, it may overfit the observed
samples, we thus make a correction to the finite-sample ob-
jective to alleviate the overfitting problem. The proposed
PolicyBoost optimizes the objective using GradientBoost.
Moreover, for a better assessment of the gradient, it is quite
useful to include some good trajectories in the training set.
Thus unlike NPPG that throws away past samples, Policy-
Boost maintains a pool of experienced good trajectories.

We conduct empirical studies of PolicyBoost on several
domains. Experiment results reveal that NPPG suffers from
the overfitting problem while PolicyBoost does not. More-
over, even using the raw feature representation of states and
actions, PolicyBoost is shown to be not only effective in
achieving good policies on the tested domains with raw state
features, but also highly stable to its configuration parame-
ters, which is desired in practical applications.

The remainder of the paper starts with a section introduc-
ing the related work. The PolicyBoost is then presented in



a section after, which is followed by the section of empirical
studies. The final section suggests future directions.

2. BACKGROUND

2.1 Reinforcement Learning and Policy Gra-
dient

In reinforcement learning, an autonomous agent is put in
an environment. The environment involves a state space
X , an action space A, a transition probability P such that
P (s′|s, a) gives the probability of being in state s′ after tak-
ing action a on state s, and a reward function r : X×X → R
that gives a reward value for every step (i.e., a transition
from a state to another). In this paper, we consider the
state space being a vector space X = Rn of n features. A
policy π is a decision function that gives a probability distri-
bution for actions, with π(a|s) denoting the probability of
choosing action a at state s by the policy. The agent seeks
a policy maximizing its long-term total reward. The long-
term total reward can be evaluated by the expected T -step
reward ρ(π) = limt→∞E{r1 + r2 + · · · + rt | π}/t, and the
expected discounted reward, ρ(π) = E{

∑∞
t=1 γ

t−1rt | π},
where rt is the reward at step t and γ is the discount factor.

Policy gradient methods [38, 18, 28, 25, 29] are a branch of
reinforcement learning approaches, which derive a policy by
directly maximizing the total reward via gradient ascent and
can avoid the policy degradation problem of the value func-
tion estimation approaches [5]. Considering a finite execu-
tion of a policy, i.e., T -step horizon, all the trajectories with
length T constitute the trajectory space T . For each tra-
jectory τ = (s1, s2, . . . , sT ), let R(τ ) be its trajectory-wise

reward, for the T -step setting R(τ ) = 1
T−1

∑T−1
i=1 r(si, si+1)

and for the discounted settingR(τ ) =
∑T−1
i=1 γt−1r(si, si+1).

The expected total reward is then equivalent to,

ρ(π) =

∫
T
pπ(τ )R(τ ) dτ , (1)

where the probability of the trajectory pπ(τ ) is

pπ(τ ) = p(sτ1 )

T−1∏
t=1

pπ(sτt+1 | sτt )

= p(sτ1 )

T−1∏
t=1

∫
A
p(sτt+1 | sτt , a)π(a | st) da.

Several policy gradient methods have been proposed, and
most of them consider the policy as a linear function with
parameter vector θ, i.e., π(a|s) = g(θ>s) for some prob-
ability function g. Then a general expression of the gra-
dient of the expected total reward w.r.t. θ is ∇θρ(πθ) =∫
τ∈T ∇θp

πθ (τ )R(τ )dτ . Once the gradient has been esti-
mated, the parameter can be updated by the gradient ascent
θt+1 = θt + ηt∇θρ(πθt) with a learning rate ηt.

A straightforward way to estimate the gradient is via the
finite difference [27], which estimates the gradient by sam-
pling some neighbors of the current parameter vector. The
REINFORCE [38] uses log-likelihood ratio trick∇θpπθ (τ ) =
pπθ (τ )∇θ log pπθ (τ ), such that the gradient of the objec-
tive ∇θρ(πθ) can be estimated on a sample of trajectories
S = {τ1, . . . , τm} as that, for the k-th dimension,

∇θkρS(πθk ) =
1

m

m∑
i=1

∇θk log pπθk (τi)R(τ )

=
1

m

m∑
i=1

T−1∑
t=1

∇θk log pπθk (sτit+1 | s
τi
t )R(τ ).

Moreover, it usually plugs a constant b into the reward as
(R(τ )− b), aiming to minimize the variance of the gradient
for stability [15]. In the actor-critic framework, policy gra-
dient has also been employed. For example, considering the
stationary distribution of states, the gradient can be [35]

∇θρ(πθ) =

∫
X
dπθ (s)

∑
a∈A

Qπθ (s, a)∇θπθ(a|s)ds, (2)

where dπ(s) is the probability of state s under the stationary
distribution, and Qπ(s, a) is the state-action value. More
variants are proposed in different aspects and settings (e.g.
[4, 14, 30, 6]).

2.2 Supervised Learning and Boosting
Boosting [33] is a family of algorithms for supervised learn-

ing. In supervised learning, we consider an input space X ,
an output space Y (e.g. Y = {−1,+1} ), an underlying
distribution D over X and an underlying ground truth func-
tion f∗ : X → Y. We are given only a finite set of sam-
ples S = {x1,x2, . . . ,xm} drawn i.i.d. from D, together
with their labels yi = f∗(xi) assigned by the underlying
ground truth function f∗. With the given samples, a super-
vised learning algorithm searches for a proper hypothesis
h : X → Y in a hypothesis space H. The properness of the
hypothesis can be commonly measured by the generalization
zero-one error, i.e., εD(h) = Ex∈D[I(h(x) 6= f∗(x))].

An interesting question on the supervised learning is that
whether it is possible to improve a learning algorithm, which
is slightly better than random guess to have a strong gener-
alization ability on learnable tasks [16], and boosting was the
constructive positive answer to this question [32]. which is a
convex spanning of a base hypothesis space Hbase that can
be the hypothesis space of a base learning algorithm. To
search in H, most boosting algorithms employ some kind
of gradient descent methods to minimize some surrogate
losses of the zero-one error on the training set. Despite
the different implementations, they share a common pro-
cedure described as follows. First, a base learning algo-
rithm is involved to produce the initial hypothesis h1 from
the training set, and let the initial combined hypothesis be
H1 = h1. Then an iteration is repeated T − 1 times. In
iteration t = 2, . . . , T , it calculates the gradient value for
Ht−1 point-wisely on every training example, such that a
new training set is formed. After that the base learning al-
gorithm is invoked to train ht from the new training set,
and a coefficient αt is searched to minimize the loss of the
combination Ht = Ht−1 + αtht. After all the iterations, a
hypothesis HT =

∑T
i=1 αihi is obtained, which is called an

additive model.
Different boosting algorithms mainly differ in the em-

ployed gradient methods and surrogate loss functions. They
easily produce highly nonlinear models with small general-
ization error, and thus are among the state-of-the-art learn-
ing approaches and have been widely applied (e.g. [37, 21]).

2.3 NPPG Method
The NPPG (non-parametric policy gradient) method [17]

is, to the best of our knowledge, the only previous boosting
approach for reinforcement learning, following the Gradient-
Boost [12].



In NPPG, A policy π(s, a) is represented as g(Ψ(s, a))
with some potential function Ψ. For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), πΨ(a|s) = exp(Ψ(s,a))∑
a′ exp(Ψ(s,a′)) , and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter σ, πΨ(a|s) = 1√
2πσ2

exp
(
− (Ψ(s)−a)2

σ2

)
. The poten-

tial function Ψ is an additive model Ψ =
∑T
t=1 ht, where the

component function ht is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

∇Ψρ(πΨ)=

∫
X
dπΨ(s)

∑
a∈A

QπΨ(s, a)∇ΨπΨ(a|s)ds.

Given the current potential function Ψt =
∑t
i=1 ht, the

function can be updated as

Ψt+1 = Ψt + ηt∇Ψρ(πΨt).

However, different with the gradient of linear vectors, the
gradient in a function space ∇Ψρ(πΨt) is also a function
but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Qπ(s, a)∇Ψ(s,a)πΨ(a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model ht by regression learning
from this set. Now the update rule is by

Ψt+1 = Ψt + ηtht.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
∇ρS(π) = 1

m

∑m
i=1∇ log pπ(τi)R(τi). Considering the same

action functions of NPPG, a policy is formed from a poten-
tial function Ψ. For a state-action pair (s, a) in a trajectory
τ with the next state s′, the functional gradient with respect
to Ψ(s, a) is

∇Ψ(s,a)ρ(πΨ) =
1

m
R(τ )∇Ψ(s,a) log pπΨ(τ )

=
1

m

p(s′|s, a)

pπΨ(s′|s)R(τ )∇Ψ(s,a)πΨ(a | s)

=
1

m

p(s′|s, a)∑n
t=1 p(s

′|s, at)π(s, at)
R(τ )∇Ψ(s,a)πΨ(a | s).

Then for discrete action space, we have

∇Ψ(s,a)π(a | s) = πΨ(a | s)(1− πΨ(a | s)) (3)

and for continuous action space,

∇Ψ(s,a)π(a | s) = 2πΨ(a | s)(a−Ψ(s))/σ2. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model ht to fit the gra-
dient value on the samples, and update the potential func-
tion as Ψt+1 = Ψt + ηtht with a small positive constant η.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., πΨ(a|s) = exp(Ψ(s,a))∑
a′ exp(Ψ(s,a′)) ,

and study its convergence on the training samples.
Let Ψ0 be a constant function (e.g. always outputs 0),

and recall Ψt+1 = Ψt + η∇ΨρS(πΨ). For simplicity, when
the state s is clear, we make some notations: let Ψt,k be
Ψt(s, ak), let αtk = πΨt(ak|s) for the action ak, βkj =
p(sj |s, ak), γj = pπΨ(sj |s) and ckj =

∑m
i=1 1(sj∈τi)βkjR(τi)

where 1expression is the indicator function that is 1 when
expression is true and 0 otherwise. Denote k∗ the index
of the observed best action of the state s, such that ∀k 6=
k∗ ∀j : ck∗j ≥ ckj .

The functional gradient of total reward on S at a state-
action pair (s, ak) can be rewritten as

∇Ψt,kρS(πΨ)

=
1

m

m∑
i=1

l∑
j=1

1(sj∈τi)
p(sj |s, ak)

pπΨ(sj |s)
R(τi)∇Ψt,kπΨ(ak|s)

=
1

m

m∑
i=1

l∑
j=1

1(sj∈τi)
βkjR(τi)

γj
αk(1− αk)

=
1

m
αk(1− αk)

l∑
j=1

m∑
i=1

1(sj ∈ τi)
βkjR(τi)

γj

=
1

m
αk(1− αk)

l∑
j=1

ckj
γj

We prove below that functional gradient converges to the
observed best action. Denote δ = mink 6=k∗

∑l
j=1 ck∗j − ckj

be the reward margin, which will effect the convergence rate.

Lemma 1
For an observed state s, let ak∗ be the observed best action,
it holds that

∇Ψt,k∗ ρS(πΨt)−∇Ψt,kρS(πΨt) ≥
1

m
αtk∗(1− αtk∗)δ.

Proof. We first need to prove αtk∗ ≥ αtk for all t and k 6= k∗.
The proof is by induction. When t = 0, since Ψ0,ak is a
constant for all k, α0

k∗ = α0
k for all k.

Then inductively assume that αtk∗ ≥ αtk for all k 6= k∗.
From the inductive assumption we have that, for all k 6= k∗,

Ψt,k∗ ≥ Ψt,k since αtk =
exp(Ψtk)∑n
i=1 exp(Ψti)

, and αtk∗(1 − αtk∗) ≥
αtk(1− αtk) since

∑n
k=1 α

t
k = 1. Therefore, we have that

Ψt+1,k∗ −Ψt+1,k

≥ η∇Ψt,k∗ ρS(πΨt)− η∇Ψt,kρS(πΨt)

≥ η

m

(
αtk∗(1− αtk∗)

l∑
j=1

ck∗j
γj
− αtk(1− αtk)

l∑
j=1

ckj
γj

)
≥ 0,



and consequently, αt+1
k∗ ≥ αt+1

k . This induction proves that
∀t ∀k 6= k∗ : αtk∗ ≥ αtk.

We then calculate the difference of the gradient.

∇Ψt,k∗ ρS(πΨt)−∇Ψt,kρS(πΨt)

=
1

m
αtk∗(1− αtk∗)

l∑
j=1

ck∗j
γj
− 1

m
αtk(1− αtk)

l∑
j=1

ckj
γj

≥ 1

m
αtk∗(1− αtk∗)

l∑
j=1

ck∗j − ckj
γj

≥ 1

m
αtk∗(1− αtk∗)δ,

where the first inequality is by ∀k 6= k∗ : αk∗ ≥ αk and∑n
k=1 αk = 1, the last inequality is by γj ∈ (0, 1]. �

Theorem 1
For any ε ∈ (0, 1

n
], let ak∗ be the observed best action,

functional gradient achieves αtk∗ ≥ 1− ε in iterations

t ≤ dm lnn(1− ε)
ηε(1− ε)δ e.

Proof. By Lemma 1, we have, for any k 6= k∗,

Ψt,k∗ −Ψt,k

= Ψt−1,k∗ −Ψt−1,k

+ η
(
∇Ψ(s,ak∗ )ρS(πΨ)−∇Ψ(s,ak)ρS(πΨ)

)
≥ Ψt−1,k∗ −Ψt−1,k + η

1

m
αt−1
k∗ (1− αt−1

k∗ )δ

≥ . . . ≥ Ψ0,k∗ −Ψ0,k +

t−1∑
i=0

η
1

m
αik∗(1− αik∗)δ

=

t−1∑
i=0

η
1

m
αik∗(1− αik∗)δ.

Assume ∀i < t : αik∗ < 1 − ε, otherwise we have already
found a policy satisfying the theorem. Thus

Ψt,k∗ −Ψt,k ≥
t−1∑
i=0

η
1

m
ε(1− ε)δ.

When t = m lnn(1−ε)
ηε(1−ε)δ , Ψt,k∗ −Ψt,k ≥ lnn(1− ε) and thus

αtk∗ =
1∑n

i=1 exp(Ψt,k −Ψt,k∗)
≥ 1− ε

Therefore, αtk∗ ≥ 1 − ε is achieved in t ≤ dm lnn(1−ε)
ηε(1−ε)δ e

iterations. �
The theorem states that the functional policy gradient can

converge to the observed best action very quickly.

3.3 Avoid Overfitting
When fitting the gradient function on samples, state-of-

the-art regression techniques can be employed to fit the gra-
dient quite well. However, as disclosed previously, the gra-
dient converges towards the observed best actions, which
however may not be the real best actions.

When linear models are employed, this problem is com-
monly addressed by the variance reduction trick [15]: for
each dimension, an optimal bias to the reward can be cal-
culated. The bias has no effect over the trajectory space,
but will reduce the variance of the gradient estimation over

Algorithm 1 PolicyBoost

Input:
T : Number of iterations
ε: Probability for ε-greedy (for discrete action)
σ: Gaussian width (for continues action)
m: Sample size
(b, u): Parameters for memory pool size
{ηt}Tt=1: Learning rate
L: Base regression learner

Procedure:
π: The learned policy

1: Poolbest = ∅, Pooluniform = ∅
2: Ψ0(s, a) = 1, ∀(s, a) ∈ S × A (for discrete action), or

Ψ0(s) = 0, ∀s ∈ S (for continues action)
3: for t = 1 to T do
4: Let St be m trajectories sampled by executing πt−1:

πt−1(a|s) = eΨt−1(s,a)/
∑
b e

Ψt−1(s,b)

with ε-greedy for discrete action, or

πt−1(a|s) = 1√
2πσ2

exp
(
− (Ψt−1(s)−a)2

σ2

)
with a width of σ for continues action

5: Generate functional gradient examples Dt as
Dt = {((s, a),∇Ψ(s,a)ρ

′
τ (πΨ))}

for discrete action, or for continues action as
Dt = {(s,∇Ψ(s,a)ρ̃

′
τ (πΨ))}

for all (s, a) in all τ ∈ St ∪ Poolbest ∪ Pooluniform
6: Train a regression model ht using L from Dt
7: Ψt = Ψt−1 + ηtht
8: Update Poolbest and Pooluniform with St
9: end for

10: return πT

limited trajectories. However, this trick cannot straightfor-
wardly apply to functional gradient, since the dimensions
are not directly manipulatable.

We instead consider this problem from the aspect of boost-
ing. There are several possible ways to avoid overfitting:
reduce the model capacity, and do not fit the samples too
well. The model capacity of a boosting algorithm is related
to the number of iteration [10], thus we shall use a small, say
1, number of iterations. To less fit the samples, we prefer
the model fit only the trajectories with better reward. To
do this, note that Theorem 1 says that the best observed
actions with ck∗j > 0 will be fitted. By the definition of cij
it is easy to turn it to be negative by setting the correspond-
ing trajectories to have negative rewards. Therefore, we use
the centralized rewards:

ρ′(π) =

∫
T
p(τ |π)

(
R(τ )− R̄

)
dτ , (5)

where R̄ =
∫
T

1∫
T dτ

R(τ ). Similarly with the variance re-

duction trick, it is easy to verify that maximizing Eq.(1)
is equivalent with maximizing Eq.(5) since

∫
T p(τ |π)dτ=1.

The gradient on a sample S with m trajectories is

∇ρ′S(π) =
1

m

m∑
i=1

∇ log pπ(τi)(R(τi)− R̄S), (6)

where R̄S =
∑m
i=1

1
pπ(τi)zS

R(τi) with zS =
∑m
i=1

1
pπ(τi)

.

Therefore, to use this gradient, we only need to shift the
reward of the sampled trajectories by R̄S , and keep anything
else unchanged.



3.4 The PolicyBoost Algorithm
We then propose an actor-only algorithm, the Policy-

Boost, as in Algorithm 1. The details are explained in the
following.

To better estimate the gradient, instead of through away
all the past sampled trajectories, PolicyBoost employs two
pools Poolbest and Pooluniform to record some past sam-
ples: the former one keeps some best-so-far trajectories, and
the latter one contains randomly selected trajectories. They
are initialized in line 1. Line 2 initializes the potential func-
tion. Then PolicyBoost performs T iterations to update the
policy. Given a potential function Ψ, the policy is formed
by the Gibbs Sampling function for discrete action spaces
and the Gaussian distribution for continuous action spaces,
which is the same as that for NPPG. Line 4 uses the policy
to sample m trajectories, stored in St. In line 5, from the
union of all sets, a training data is constructed for learning
an approximation of the gradient function in line 6, and the
potential function is then updated in line 7 with the learning
rate ηt. Line 8 updates the pools.

For the generation and approximation of the gradient func-
tion, through the point-wise gradient [12], we calculate the
gradient function of Eq.(6) with Eq.(3) or Eq.(4) at every ob-
served state-action pair. Then a data set Dt is constructed
in line 5. This data set expresses the gradient values at some
state-action points. A regression algorithm is then used to
learn a function ht from the data set to approximate the
gradient function, as in line 6.

3.5 Incoporating Demonstrations
Interestingly, PolicyBoost can make use of demonstrated

trajectories that could be provided by experts. When demon-
strated trajectories are available, we can put them into the
Poolbest set at the initialization step. If the demonstration
data is provided with no rewards, we can either assign a
high enough estimated reward, or access the environment
and evaluate the demonstrations when it is possible. When
the demonstrations are put into the Poolbest set, Policy-
Boost will automatically utilize them to better estimate the
gradient, and learn better policies. Note that, unlike in in-
verse reinforcement learning [26], PolicyBoost does not re-
quire optimal demonstrations. When PolicyBoost generates
trajectories better than the demonstrations, it will update
the Poolbest to wipe them out, so that its performance will
not be limited by the quality of the demonstrations.

4. EXPERIMENTS

4.1 Parameter Sensitivity
We employ two typical domains, the Mountain Car and

the Acrobot, to examine the parameter sensitivity.
In the Mountain Car task, a state is a two dimensional

vector, and each dimension is a continuous variable: the hor-
izontal position x and the velocity ẋ, which are restricted to
the ranges [−1.2, 0.6] and [−0.07, 0.07] respectively. Note
that we do not discretize the state space. The agent has
three actions: driving left, driving right, and not to use the
engine at all. The goal of the agent is to reach the moun-
tain top, i.e., x > 0.5, from an initial state in {(x, ẋ)|x ∈
[−0.75,−0.25], ẋ ∈ [−0.025, 0.025]}. We run each episode
at a maximal horizon of 2000 steps. The car receives a re-
ward of −1 before reaching the goal and 1 for reaching the

goal. In the Acrobot task, a state consists of four dimen-
sions. Each is a continuous variable: two joint positions θ1,
θ2 and two joint velocities θ̇1, θ̇2. There are three actions
corresponding to torque to the joint between the first and
second link of −1, 0, 1 respectively. The goal of the agent is
to maintain the tip above the goal line from an initial state
in {(θ1, θ2, θ̇1, θ̇2)|θ1, θ2, θ̇1, θ̇2 ∈ [−0.5, 0.5]}. We run each
episode at a maximal horizon of 2000 steps. It receives a
reward of −1 before reaching the goal line and 1 for reach-
ing the goal. The dynamics of the two domains and other
details can be found in [34]. Note that we use the raw state
features here, but not any better feature encoding.

In the implementation of PolicyBoost, the base regression
learner used in all policies is regression decision trees [7]
as implemented in WEKA [39], and we set m = 50. The
variable parameters include the learning rate, the decision
tree depths, and the size of the pools. The performance with
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Figure 1: Performance of PolicyBoost with different
learning rates
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Figure 2: Performance of PolicyBoost with different
tree depths
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Figure 3: Performance of PolicyBoost with different
pool sizes (best/uniform)

different learning parameters are shown in Figures 1 to 3.
It can be observed that, first from Figure 1, except for

too large learning rates (i.e., 5 and 10), PolicyBoost policies
does not have a significant different performance. We thus
suggest that a fixed learning rate of 1 or 0.1 is good enough
in practice. Second, from Figure 2, the tree depth does not
show a significant difference except for the smallest depth
10. For it’s time consuming to employ deep trees, 100 could
be sufficient. On the pool size from Figure 3, we observe that
the performance is quite bad with zero pool size, while other
pool sizes lead to close performances. We suggest “10/10” in
practice. Overall, these comparisons show that PolicyBoost
is not quite sensitive to its parameters, and some moderate
parameters are suggested.

4.2 Comparisons
We compare the PolicyBoost, using default parameters

and raw features of the states and actions, with fine-tuned
NPPG, REINFORCE, Sarsa(λ) and LSPI using linear func-
tion approximators [31, 13].

For PolicyBoost, we use a fixed setting for all domains:
η = 1, ε = 0, tree depth= 100, and the pool size is 10 for
both pools. For NPPG, the parameters are carefully tuned:
η = 0.1 and ε = 0.2 for Mountain Car, and η = 0.08 and
ε = 0.1 for Acrobot. To compare with a linear model using
policy gradient methods, we further employ REINFORCE
with same parameters: η = 0.1,ε = 0, while the tabular rep-
resentation [31] is used for REINFORCE. Sarsa(λ) is used
as reference of non-policy gradient method. Sarsa(λ) uses
the Fourier features [20], and its parameters are set to be:
γ=1.0, λ=0.9, ε = 0.01 with Fourier bases of order 3. The
learning rate is adaptive as in [9]. LSPI is a batch reinforce-
ment learning algorithm and its parameters are set to be:
γ=1.0, ε = 0.01 with Fourier bases of order 3.

For this group of comparisons, we use an extra domain,
Corridor World [17], which is a very simple task where an
agent from any random position x ∈ [4, 6] in a one di-
mensional corridor [0, 10] needs to reach one of the exits at
both ends (0 and 10). For Corridor World, NPPGopt uses
η = 0.05 and ε = 0.1.
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Figure 4: Performance of different policies at each
iteration. The fewer steps the better. Plots (b) and
(c) share the legend with plot (a).

The comparison results are presented in Figure 4, where
the lines of Sarsa(λ) and LSPI are their performance. De-
spite that PolicyBoost uses the raw features and the fixed
configuration, it produces policies with a clear trend of con-
vergence to the near optimal solution. NPPG works the
same as PolicyBoost only on Corridor World, because this
task is quite simple so that the overfitting issue is not im-
portant. On Acrobot and Mountain Car, NPPG can gain
some improvement only after carefully turning the parame-
ters, but is still much worse than PolicyBoost. REINFORCE
performs quite well on Corridor World, but the performance
degrades badly on Mountain Car. We can conclude that
PolicyBoost is more effective and robust than NPPG and
REINFORCE.

To verify whether the overfitting problem does exists that
encumbers NPPG, we calculated the normalized expected
rewards of NPPG and PolicyBoost, i.e.,∑

τ∈S

R(τ ) · pπ(τ )/
∑
τ ′

pπ(τ ′),

using the Mountain Car task. The result is shown in Figure
5. It is clear that PolicyBoost using the proposed objective



function indeed learns to rank higher the trajectories with
larger rewards, while NPPG fails to do that. This observa-
tion confirms that PolicyBoost can well handle the occurring
probability overfitting problem, which blocks NPPG.
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Figure 5: Normalized rewards of NPPG and Policy-
Boost on the Mountain Car task.

4.3 Application to Helicopter Control
We use a simulator [36] that models one of the Stanford

autonomous helicopters in the flight regime close to hover.
The model was learned from data collected using “frequency
sweeps” (which systematically vary each of the helicopter’s
four controls) around the hover flight regime by [3]. This
is a challenge task that the agent needs to manipulate 4
continuous control inputs simultaneously based on a 12-
dimensional state space. Previously evolutionary algorithm
based method [19], programming method [2], and learning
from demonstrations [8, 1] have been examined on this task.

We set the maximal horizon to 6000 steps. We regard the
four continuous control inputs as independent variables and
set δ = 0.05 for each input. So we will learn four policy
functions simultaneously each for an input, which does not
need to change the structure of the PolicyBoost or NPPG.
The PolicyBoost with the fixed configuration is tested. For
NPPG we did not find any parameter that leads to any im-
provement, so the best performance is reported, as in Figure
6. For Sarsa(λ), even if we set the Fourier basis be order
3, the dimensions of the representation for value-function
approximator is more than 500,000, leading us to decrease
order 3 to 2. LSPI requires too large memory and is not
included in the comparison. For REINFORCE, tabular rep-
resentation would also cause such problem, so we have to use
original features. NPPG is not able to find the right gradient
direction to improve the hovering steps, while PolicyBoost
constantly improves the policy, without any parameter tun-
ing. This observation confirms the advantage of PolicyBoost
in real-world applications.

4.4 Incorporating Demonstrations
Finally, we investigate PolicyBoost with demonstrations

using the Ms. Pac-Man Game1 with random ghosts on
the first level. The state is described by the directions of
the ghosts and directions of the pills with respect to Ms.
Pac-Man. Again, PolicyBoost uses the fixed configuration,
and NPPG uses well turned parameters. For this game, we

1We use the simulator from http://cswww.essex.ac.uk/
staff/sml/pacman/PacManContest.html

Figure 6: Performance of different policies on the
Helicopter Hovering task. The more steps the bet-
ter.

record a starter-level human player’s actions as the demon-
stration data, which are not optimal demonstrations. We
use 10 such demonstration trajectories in PolicyBoost, which
is denoted as PolicyBoostdemo.

Figure 7 shows the performance of different approaches.
It can be observed that PolicyBoost converges better than
NPPG. It is clear that, as the demonstration data is utilized,
PolicyBoostdemo does not only improves the policy much
faster than PolicyBoost alone, but also converges to a better
performance. The experiment results show that PolicyBoost
can well make use of demonstrations to significantly improve
its performance.
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Figure 7: Performance of different policies on the
Ms. Pac-Man Game task. The higher score the
better.

5. CONCLUSION
In this paper, to combine powerful boosting technique

with policy gradient ascent for reinforcement learning prob-
lems, we analyzed the functional gradient method and pro-
posed the PolicyBoost method, which searches in an additive
function space for a policy that maximizes a corrected to-
tal rewards function. Empirical studies on several domains
show that, even without feature engineering, PolicyBoost is
not only effective to achieve good policies, but is also highly
stable to its configuration parameters. Moreover, experi-
ments on the Helicopter Hovering task verifies its applicabil-
ity in real-world problems, and on the Ms. Pac-Man Game
task shows its ability to incorporate non-optimal demon-
strations. The future work will focus on designing more



appropriate mechanisms for trajectory reuse than the cur-
rent pool-based solution, such as integrating the importance
weighting technique with the boosting framework [23].
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