
Evolutionary Multi-objective Optimization Made
Faster by Sequential Decomposition

Jing-Cheng Shi
National Key Laboratory for
Novel Software Technology

Nanjing University
Nanjing 210023, China

Email: shijc@lamda.nju.edu.cn

Chao Qian
School of Computer Science and Technology

University of Science and Technology of China
Hefei 230027, China

Email: chaoqian@ustc.edu.cn

Yang Yu
National Key Laboratory for
Novel Software Technology

Nanjing University
Nanjing 210023, China
Email: yuy@nju.edu.cn

Abstract—Multi-objective evolutionary algorithms (MOEAs)
can be mainly divided into set approximation methods and
decomposition methods. The former approximates the Pareto
front by the whole population directly, while the latter solves
decomposed subproblems. The theoretical understanding of these
methods is, however, quite insufficient. In this paper, we try
to gain more understanding by investigating a combination
of set approximation MOEAs with a sequential decomposition
mechanism. Our theoretical analysis shows that, the combina-
tion achieves a better running time than the corresponding
set approximation MOEAs by a factor n (the problem size)
on synthetic problems as well as the minimum spanning tree
problem, which hints that the two types of MOEAs might be
mutually complemental.

I. INTRODUCTION

In real-world optimization tasks, we often need to consider
two or more objective functions. The optimized objectives are
usually conflicting, and thus multi-objective optimization is to
find a set of Pareto optimal solutions, which represent dif-
ferent trade-offs between objectives. Evolutionary algorithms
(EAs) [1] are a kind of randomized heuristic optimization
algorithms, inspired by nature phenomena. They maintain
a set of solutions (called a population), and repeatedly try
to improve the population by using genetic operators (e.g.,
mutation and crossover). Due to their population-based nature,
EAs have been widely and successfully applied for solving
multi-objective optimization problems [2].

Previous multi-objective EAs (MOEAs) can be mainly
divided into two categories: set approximation methods and
decomposition methods. The former approximates the Pareto
front by the whole population directly, e.g., SPEA-II [3] and
NSGA-II [4]. The latter first decomposes a multi-objective
optimization problem into a number of single-objective (or
multi-objective) optimization subproblems, and then employs
a population-based method to optimize these subproblems
simultaneously. The decomposition strategy was introduced
into MOEAs early, e.g., [5], [6]. The most popular MOEA with
a decomposition strategy is the MOEA/D algorithm [7], which
uses traditional aggregation methods to construct a series of
single-objective subproblems. Many variants of MOEA/D have
been developed, e.g., the decomposition based memetic algo-

rithm [8] and the MOEA/D-M2M algorithm [9]. A literature
review on MOEA/D can be seen in [10].

The theoretical analysis of MOEAs is difficult due to their
complexity and randomness. For the running time analysis
(one essential theoretical aspect [11], [12]), only a few pieces
of studies have been reported. Laumanns et al. [13], [14] first
analyzed the running time of SEMO and GSEMO (two simple
MOEAs) on two artificial bi-objective pseudo-Boolean prob-
lems LOTZ and COCZ. Later, the running time bounds were
derived for solving some combinatorial optimization problems,
e.g., minimum spanning tree [15], minimum set cover [16],
minimum cuts [17] and minimum cost coverage [18]. Qian et
al. [19] proved the effectiveness of selection hyper-heuristics
for GSEMO solving some artificial problems. That is, using
selection hyper-heuristics can reduce the running time from
exponential to polynomial. Note that SEMO and GSEMO do
not involve crossover operators. The helpfulness of crossover
was then proved for MOEAs solving the multi-criteria all-
pairs-shortest-path problem [20] as well as the multi-objective
minimum spanning tree problem [21]. Recently, the running
time of SMO-GP (a simple multi-objective genetic program-
ming algorithm) has been analyzed on the Order, Majority
and Sorting problems [22], [23], [24] as well as the minimum
spanning tree problem [25]. The MOEAs investigated in the
above-mentioned studies do not use a decomposition strategy.
To the best of our knowledge, the only theoretical work on
decomposition based MOEAs is that Li et al. [26] analyzed
the running time of MOEA/D on some simple artificial bi-
objective functions.

In this paper, we try to gain more understanding of MOEAs
by investigating a combination of set approximation MOEAs
with a sequential decomposition mechanism. The original
multi-objective problem is first decomposed into a set of
ordered multi-objective subproblems according to the range
of values on some selected objective, and then an existing set
approximation MOEA is employed to solve these subproblems
sequentially. We show that using sequential decomposition
can make MOEAs faster by rigorous running time analysis.
Particularly, the running time of an MOEA with and without
sequential decomposition is compared for solving synthetic
problems as well as the minimum spanning tree problem.

978-1-5090-4601-0/17/$31.00 c©2017 IEEE

Problem SEMO/GSEMO SEMO/GSEMO-SD
LOTZ Θ(n3) [14]/O(n3) [13] O(n2)

Minimum Spanning Tree O(mn(n + logwmax)) [15] O(m(n + logwmax))

Problem SMO-GP SMO-GP-SD

Sorting O(nTinit + n4) [24] O(Tinit + n3)

Table I
COMPARISON BETWEEN THE EXPECTED RUNNING TIME OF AN MOEA WITH AND WITHOUT SEQUENTIAL DECOMPOSITION, WHERE MOEA-SD

DENOTES THE MOEA WITH SEQUENTIAL DECOMPOSITION.

As shown in Table I, sequential decomposition can bring a
speedup of n, where n is the problem size. Our theoretical
results imply that the two types of MOEAs might be mutually
complemental.

The rest of this paper is organized as follows. Section II
introduces some preliminaries. Section III introduces the pro-
posed decomposition approach, the effectiveness of which is
then theoretically analyzed in Section IV. Section V concludes
the paper.

II. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization requires to simultaneously op-
timize two or more objective functions, as shown in Defini-
tion 1. Note that maximization is considered since minimizing
f is equivalent to maximizing −f . The objectives are usually
conflicted, and thus there is no canonical complete order on
the solution space X . The comparison between solutions relies
on the domination relationship, as presented in Definition 2.
A solution x is Pareto optimal if there is no other solution
in X that dominates it. The set of objective vectors of all the
Pareto optimal solutions constitutes the Pareto front. The goal
of multi-objective optimization is to find the Pareto front, that
is, to find at least one corresponding solution for each objective
vector in the Pareto front.

Definition 1 (Multi-Objective Optimization). Given a feasible
solution space X and m objective functions f1, . . . , fm with
fi : X → R, multi-objective optimization is to solve the
following problem:

maxx∈X
(
f1(x), f2(x), ..., fm(x)

)
. (1)

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X →
Rm be the objective vector. For two solutions x and x′ ∈ X :

1) x weakly dominates x′ if, ∀1 ≤ i ≤ m, fi(x) ≥ fi(x′),
denoted as x � x′;

2) x dominates x′ if, x � x′ and fi(x) > fi(x
′) for some

i, denoted as x � x′.

Evolutionary algorithms (EAs) have become a popular tool
for multi-objective optimization. In previous theoretical analy-
ses of multi-objective EAs (MOEAs), a general framework, as
described in Algorithm 1, is widely used [14], [22], [21]. It first
randomly selects an initial solution, and then tries to repeatedly
improve the quality of the solutions in the population. In
each iteration, a solution uniformly selected from the current
population is first used to generate a new solution by applying

Algorithm 1 A Simple Framework of MOEA
Given a solution space X and an objective vector f , the
procedure:

1: Choose x ∈ X uniformly at random
2: P ← x
3: repeat
4: Choose x from P uniformly at random
5: x′ := mutation(x)
6: if @z ∈ P such that z � x′

7: P ← (P \ {z ∈ P | x′ � z}) ∪ {x′}
8: end if
9: until some criterion is met

mutation; then the newly generated solution is compared
with the solutions in the population, and only non-dominated
solutions are kept. Although simple, Algorithm 1 explains the
common structure of various MOEAs, and hence will also be
used in our theoretical analysis.

III. THE PROPOSED SEQUENTIAL DECOMPOSITION
APPROACH

In this section, we propose a sequential decomposition
approach for evolutionary multi-objective optimization, called
MOEA-SD. The main idea is to decompose the original
problem into a set of ordered multi-objective subproblems
according to the range of values on some objective, and then
employ an existing set approximation MOEA to solve these
subproblems sequentially.

The MOEA-SD approach is described in Algorithm 2.
It first selects one objective f ∈ {f1, f2, . . . , fm}, and
then divides the range of values on f into N intervals
[l1, u1], . . . , [lN , uN], where li−1 < li ≤ ui−1 < ui, l1 and uN
are the lower and upper bounds of f , respectively. The original
problem Eq. (1) is then decomposed into N subproblems,
where the i-th subproblem is

maxx∈X
(
f1(x), f2(x), ..., fm(x)

)
(2)

s.t. f(x) ∈ [li, ui].

That is, the i-th subproblem requires the value on the selected
objective f to be in the interval [li, ui]. After the decomposi-
tion, an existing MOEA is employed to solve these subprob-
lems sequentially according to the search direction (forward
or backward). The solutions found for each subproblem are
finally combined, and only non-dominated solutions are kept
as the output for the original problem.

For the forward search, the subproblems are solved from
i = 1 to N sequentially. If i = 1, the solutions satisfy-
ing f(x) ∈ [l1, u1] are randomly generated as the initial
population. For the i-th subproblem with i ≥ 2, motivated
by the assumption that adjacent Pareto optimal solutions on
one objective might be easily reached from each other, the
solutions with f(x) ≥ li found for the (i− 1)-th subproblem
are used as the initial population. Note that the requirement
that the adjacent intervals are overlapping (i.e., li ≤ ui−1)
makes it possible to find good solutions with f(x) ≥ li in the
process of solving the (i− 1)-th subproblem.

For the backward search, the subproblems are solved from
i = N to 1 sequentially. If i = N , the solutions satisfying
f(x) ∈ [lN , uN] are randomly generated as the initial popu-
lation. For the i-th subproblem with i ≤ N − 1, the solutions
with f(x) ≤ ui found for the (i+ 1)-th subproblem are used
as the initial population.

Note that MOEA-SD can be viewed as a combination of
set approximation MOEAs with a sequential decomposition
mechanism. It solves the decomposed multi-objective sub-
problems sequentially by using an existing set approximation
MOEA. MOEA-SD is different from previous decomposition
based MOEAs, which solve the single (or multi)-objective
subproblems simultaneously by designing a population-based
method.

IV. THEORETICAL ANALYSIS

In this section, we compare the running time of an MOEA
with and without sequential decomposition for solving a
problem. Note that running time analysis has been a leading
theoretical aspect for randomized search heuristics [11], [12].
With the goal of finding the Pareto front, the running time of
an MOEA is counted by the number of fitness evaluations (the
most costly computational process) until finding at least one
corresponding solution for each objective vector in the Pareto
front [14], [21].

A. SEMO/GSEMO on LOTZ

We first consider that SEMO and GSEMO are used for solv-
ing the bi-objective pseudo-Boolean problem LOTZ (Leading
Ones Trailing Zeros). SEMO and GSEMO are two simple
MOEAs for multi-objective optimization over the Boolean
solution space X = {0, 1}n. They have the same structure as
Algorithm 1, and the only difference is the mutation operator.
SEMO uses one-bit mutation, i.e., line 5 of Algorithm 1 is
“Create x′ by flipping a randomly chosen bit of x”, while
GSEMO uses bit-wise mutation, i.e., “Create x′ by flipping
each bit of x with probability 1/n”. These two algorithms
have been widely used in previous theoretical analyses of
MOEAs [14], [15], [21].

For LOTZ as presented in Definition 3, the first objective
LO is to maximize the number of leading 1-bits, and the other
objective TZ is to maximize the number of trailing 0-bits. The
Pareto front is {(i, n− i) | 0 ≤ i ≤ n}, and the corresponding
Pareto optimal solutions are {0n, 10n−1, . . . , 1n−10, 1n}.

Algorithm 2 MOEA-SD
Input: a multi-objective optimization problem f =
(f1, f2, . . . , fm) and an existing MOEA A
Parameter: one selected objective f ∈ {f1, f2, . . . , fm}, a
division of the range of f : {[li, ui] | 1 ≤ i ≤ N, li−1 < li ≤
ui−1 < ui}, a search direction: forward or backward
Output: a set of non-dominated solutions
Process:

1: if forward search
2: for i = 1, 2, ..., N
3: Apply A to solve Eq. (2)
4: if i = 1
5: The solutions with f(x) ∈ [l1, u1] are randomly

generated as the initial population
6: else
7: The solutions with f(x) ≥ li in Ri−1 are used as

the initial population
8: end if
9: Let Ri denote the set of solutions output in this phase

10: end for
11: else
12: for i = N,N − 1, ..., 1
13: Apply A to solve Eq. (2)
14: if i = N
15: The solutions with f(x) ∈ [lN , uN] are randomly

generated as the initial population
16: else
17: The solutions with f(x) ≤ ui in Ri+1 are used as

the initial population
18: end if
19: Let Ri denote the set of solutions output in this phase
20: end for
21: end if
22: return the non-dominated solutions in R1∪R2∪ . . .∪RN

Definition 3 (LOTZ [14]). The pseudo-Boolean function
LOTZ: {0, 1}n → N2 is defined as follows:

LOTZ(x) =

(∑n

i=1

∏i

j=1
xj ,
∑n

i=1

∏n

j=i
(1− xj)

)
,

where xj ∈ {0, 1} is the j-th bit of x.

We prove in Theorem 1 that the expected running time
of SEMO/GSEMO using sequential decomposition is O(n2),
which decreases by a factor n from that of SEMO/GSEMO
(i.e., Θ(n3) [14] and O(n3) [13]). The proof idea is to analyze
the expected running time for solving each subproblem and
then sum up them to get the total expected running time.

Theorem 1. For SEMO/GSEMO-SD on LOTZ, if the selected
objective is the first objective LO, the division satisfies that
ui−1 = li ∧ ui − li = c with c being a constant, and the
search direction is backward, then the expected running time
is O(n2).

Proof. Since the backward search is used, the subproblems

will be solved from i = N to 1 sequentially. Note that the
possible values of the selected objective LO are {0, 1, . . . , n}.
Because the population contains at most one solution for each
LO value and ui − li = c, the population size for solving
each subproblem is always upper bounded by c + 1. For the
simplicity of analysis, we assume that n = Nc.

For solving the N -th subproblem, it is to find the Pareto
optimal solutions with the LO value from lN = n − c to
uN = n. We first analyze the expected running time until the
Pareto optimal solution with the largest LO value (i.e., 1n) is
found. Let J denote the largest LO value of the solutions in
the current population, and let x denote the corresponding
solution. It is easy to see that J cannot decrease, since a
solution with a smaller LO value cannot dominate a solution
with a larger LO value. By selecting x for mutation and
flipping only its first 0-bit, J can increase by at least 1.
The probability of selecting x is at least 1

c+1 , since the
population size is not larger than c + 1 and a solution is
uniformly selected at random (i.e., line 4 of Algorithm 1).
The probability of flipping only a specific bit is 1

n for SEMO,
and 1

n (1 − 1
n)n−1 ≥ 1

en for GSEMO. Thus, J can increase
in one step with probability at least 1

(c+1)en . Note that the
initial solution in this phase has the LO value in [lN , uN].
Thus, J must be at least lN = n − c, which implies that
increasing J by c times is sufficient to reach the solution 1n.
We then get that the expected running time for finding 1n is at
most c(c+ 1)en. After the Pareto optimal solution 1i0n−i has
been found, 1i−10n−i+1 can be generated by flipping only
the last 1-bit, the probability of which is at least 1

(c+1)en .
Note that a Pareto optimal solution will never be lost once
found. Thus, by combining the running time of finding 1n,
1n → 1n−10, · · · , 1n−c+10c−1 → 1n−c0c, we get that the
expected running time for solving the N -th subproblem is at
most c(c+ 1)en+ c · (c+ 1)en.

For solving the i-th subproblem with i ≤ N−1, it is to find
the Pareto optimal solutions with the LO value from (i−1)c to
ic. Since the Pareto optimal solution with the LO value ic has
been found in the process of solving the (i+1)-th subproblem
and will be used as the initial solution in this phase, it only
needs to find the remaining c Pareto optimal solutions. Using
the above analysis of reaching 1i−10n−i+1 from 1i0n−i, we
can easily derive that the expected running time of this phase
is at most c · (c+ 1)en.

By combining the running time for solving each subprob-
lem, the expected running time for finding the Pareto front is
at most c(c+ 1)en+N · c · (c+ 1)en, i.e., O(n2).

B. SEMO/GSEMO on Minimum Spanning Tree

We then consider that SEMO/GSEMO is used for solving
the combinatorial optimization problem, minimum spanning
tree (MST). The MST problem can be described as follows.
Given an undirected connected graph G = (V,E) on n
vertices and m edges, where V and E are the vertex set
and edge set, respectively, the MST problem is to find a
subgraph of G with the minimum weight, which connects
all the vertices. A subgraph can be represented as a Boolean

solution x ∈ {0, 1}m, where xi = 1 means that the i-th edge
is selected. Let wi > 0 denote the weight of the i-th edge and
let wmax = max{wi | 1 ≤ i ≤ m}. The MO-MST problem
is presented in Definition 4, which requires minimizing the
weight and the number of connected components of a subgraph
simultaneously.

Definition 4 (MO-MST [15]). The bi-objective minimum
spanning tree problem MO-MST: {0, 1}m → N2 is defined
as follows:

MO-MST(x) =
(∑m

i=1
wixi, C(x)

)
,

where C(x) is the number of connected components and wi

is a positive integer.

The Pareto front of MO-MST is {(Wi, i) | 1 ≤ i ≤
n,Wi is the minimum weight among all possible subgraphs
with i connected components}. We prove in Theorem 2
that SEMO/GSEMO-SD can solve MO-MST in O(m(n +
logwmax)) expected running time. Compared with that of
SEMO/GSEMO (i.e., O(mn(n + logwmax)) [15]), using
sequential decomposition brings a speedup of n.

Theorem 2. For SEMO/GSEMO-SD on MO-MST, if the
selected objective is C(x), the division satisfies that ui−1 =
li ∧ ui − li = c with c being a constant, and the search
direction is backward, then the expected running time is
O(m(n+ logwmax)).

Proof. The subproblems will be solved from i = N to 1
sequentially due to the backward search. Note that the possible
values of the selected objective C(x) are {1, . . . , n}. For the
simplicity of analysis, we assume that n− 1 = Nc.

For solving the N -th subproblem, it is to find the Pareto
optimal solutions with the C(x) value from n−c to n. We first
derive the upper bound 2e(c+1)d(log 2)m(logm+logwmax+
1)e ∈ O(m(log n+ logwmax)) on the expected running time
until finding the Pareto optimal solution with C(x) = n
(i.e., the empty graph). The proof is similar to Theorem 1
in [15], which derives an upper bound on the expected running
time of SEMO/GSEMO for finding the empty graph. The
only difference is that the probability of selecting a specific
solution for mutation is at least 1

c+1 instead of 1
n , because the

population size is upper bounded by c + 1 here instead of n
in [15]. We know that a subgraph with the minimum weight
among all possible subgraphs with i−1 connected components
can be found by inserting the lightest edge which will not
lead to a cycle into a subgraph with the minimum weight
among all possible subgraphs with i connected components.
Thus, after finding a Pareto optimal solution with C(x) = i,
a Pareto optimal solution with C(x) = i−1 can be generated
in one step with probability at least 1

c+1 ·
1
em , because the

probability of selecting a specific solution is at least 1
c+1 and

the probabilities of flipping only one specific bit for SEMO
and GSEMO are 1

m and 1
m (1 − 1

m)m−1 ≥ 1
em , respectively.

We then get that the expected running time of this phase is at
most O(m(log n+ logwmax)) + c · (c+ 1)em.

For solving the i-th subproblem with i ≤ N − 1, it is to
find the Pareto optimal solutions with the C(x) value from
(i− 1)c+ 1 to ic+ 1. Since the Pareto optimal solution with
C(x) = ic+1 found in the previous phase will be used as the
initial solution of this phase, it only needs to find the remaining
c Pareto optimal solutions. Thus, the expected running time of
this phase is at most c · (c+ 1)em.

Therefore, the total expected running time is at most
O(m(log n + logwmax)) + N · c · (c + 1)em, i.e., O(m(n +
logwmax)).

C. SMO-GP-single/multi on Sorting

In this subsection, genetic programming (GP) using
variable-length representations is considered. A solution is
usually represented by the tree data structure. Given a set of
functions F (e.g., arithmetic operators) and a set of terminals
T (e.g., variables), an internal node of the tree denotes a
function in F and a leaf node denotes a terminal in T . SMO-
GP is a widely used multi-objective GP in previous theoretical
analyses [22], [23], [24]. It has the same structure as Al-
gorithm 1. The employed mutation operator is described in
Definition 5. It applies one of the three operators, substitution,
insertion and deletion, uniformly at random and repeats this
process k times independently. For SMO-GP-single, k = 1,
and for SMO-GP-multi, k is a random number sampled from
1 + Pois(1), where Pois(1) is the Poisson distribution with
the parameter value λ = 1. Note that the arity of each function
in F studied in this paper is 2.

Definition 5 (HVL-Prime Mutation). Repeat the following
procedure k times independently. Procedure: Apply one of the
following three operators uniformly at random.

• [Substitution] Replace a randomly chosen leaf node of
the solution with a new node selected randomly from T .

• [Insertion] Select a node v of the solution randomly,
select a node u from F randomly, and select a node w
from T randomly. Replace v with u whose children are
v and w, the order of which is random.

• [Deletion] Select a leaf node v of the solution randomly,
the parent and the sibling of which are p and u, respec-
tively. Replace p with u, and delete p and v.

We consider that SMO-GP is used for solving the sorting
problem, where F = {J} and T = {1, 2, . . . , n}. The HAM
function as described in Definition 6 is one commonly used
sortedness measure, which counts the number of elements at
the correct position. In [24], the sorting problem has been
formulated as a bi-objective optimization problem MO-HAM
as presented in Definition 7, which requires maximizing HAM
and minimizing the complexity of the tree simultaneously.

Definition 6 (HAM [27]). The procedure:

1) Parse the tree x inorder, and add the leaf nodes into a
list l;

2) Parse l from left to right, and add the leaf into a list P
if it has not yet been in P ;

3) HAM(x) = |{i ∈ P | Pos(i) = i}|, where Pos(i) is
the position of i in P .

Definition 7 (MO-HAM [24]). The bi-objective sorting prob-
lem MO-HAM: X → N2 is defined as follows:

MO-HAM(x) =
(
HAM(x), C(x)

)
,

where C(x) is the complexity of x, i.e., the number of nodes
of x.

The Pareto front of MO-HAM is {(0, 0)} ∪ {(i, 2i − 1) |
1 ≤ i ≤ n}. For (i, 2i− 1), the corresponding Pareto optimal
solution is a tree with i leaf nodes 1, 2, . . . , i from left to right,
and for (0, 0), the corresponding solution is the empty tree. Let
Tinit denote the number of nodes of the initial solution. We
prove in Theorem 3 that the expected running time of SMO-
GP-single/multi-SD for solving MO-HAM is O(Tinit + n3).
Compared with the expected running time O(nTinit + n4)
of SMO-GP-single/multi [24], using sequential decomposition
has reduced the expected running time by a factor n.

Theorem 3. For SMO-GP-single/multi-SD on MO-HAM, if
the selected objective is HAM, the division satisfies that
ui−1 = li ∧ ui − li = c with c being a constant, and the
search direction is forward, then the expected running time is
O(Tinit + n3).

Proof. The subproblems will be solved from i = 1 to N
sequentially due to the forward search. Note that the possible
values of the selected objective HAM are {0, 1, . . . , n}. For
the simplicity of analysis, we assume that n = Nc.

For solving the first subproblem, it is to find the Pareto
optimal solutions with the HAM value from 0 to c. Let L
denote the minimum complexity of the solutions in the current
population, and let x denote the corresponding solution. It
is easy to see that L cannot increase, and can decrease by
selecting x for mutation and applying deletion once. The
probability of selecting x is at least 1

c+1 since the population
size is not larger than c + 1. The probability of applying
deletion once in mutation is 1

3 for SMO-GP-single, and 1
e ·

1
3

for SMO-GP-multi. Thus, the expected number of steps for
decreasing L is at most 3e(c+1). We then get that the expected
running time for finding the empty tree with the HAM value
0 is at most 3e(c + 1)Tinit. After finding the Pareto optimal
solution x with HAM(x) = i, the Pareto optimal solution with
the HAM value i+1 can be generated by inserting the element
i+1 into x at the correct position. The probability of selecting
x is at least 1

c+1 , and the probability of applying insertion once
in mutation is 1

3 for SMO-GP-single and 1
3e for SMO-GP-

multi. For insertion, the probability of selecting the element
i+1 from T is 1

n and the probability of inserting at the correct
position is at least 1

2n−1 ·
1
2 , where 1

2n−1 is a lower bound on
the probability of selecting the proper node from the current
tree for insertion and 1

2 is the probability of inserting before or
after the node. Thus, the probability of generating the Pareto
optimal solution with the HAM value i+1 in one step is at least

1
6e(c+1)n(2n−1) . We then get that the expected running time of
this phase is at most 3e(c+ 1)Tinit + c · 6e(c+ 1)n(2n− 1).

For solving the i-th subproblem with i ≥ 2, it is to
find the Pareto optimal solutions with the HAM value from
(i − 1)c to ic. Since the Pareto optimal solution with the
HAM value (i − 1)c found in the previous phase will be
used as the initial solution of this phase, it is easy to see that
the expected running time for finding the remaining c Pareto
optimal solutions is at most c · 6e(c+ 1)n(2n− 1).

By combining the running time of each phase, we get that
the total expected running time is at most 3e(c+1)Tinit +N ·
c · 6e(c+ 1)n(2n− 1), i.e., O(Tinit + n3).

V. CONCLUSION

This paper theoretically investigates the effectiveness of
combining set approximation MOEAs with a sequential de-
composition mechanism. We prove that using sequential de-
composition can decrease the expected running time of a
set approximation MOEA by a factor n (the problem size)
on synthetic problems as well as the minimum spanning
tree problem. Our results might be helpful for designing
efficient MOEAs in practice. However, the effectiveness of
the proposed sequential decomposition approach has been only
verified with very specific MOEAs and problems. In the future,
we will try to apply sequential decomposition for real MOEAs
solving real-world multi-objective optimization problems.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the NSFC
(61603367), the Jiangsu Science Foundation (BK20160066),
the Fundamental Research Funds for the Central Universities
(WK2150110002) and the CCF-Tencent Open Research Fund.

REFERENCES

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford,
UK: Oxford University Press, 1996.

[2] C. Coello and G. Lamont, Applications of Multi-Objective Evolutionary
Algorithms. Singapore: World Scientific, 2004.

[3] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization,” in Pro-
ceedings of the 4th Internatioal Conference on Evolutionary Methods
for Design, Optimisation and Control with Application to Industrial
Problems (EUROGEN’01), Athens, Greece, 2001, pp. 95–100.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[5] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European Journal of Operational Research, vol. 137,
no. 1, pp. 50–71, 2002.

[6] ——, “On the performance of multiple-objective genetic local search
on the 0/1 knapsack problem-a comparative experiment,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 4, pp. 402–412, 2002.

[7] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[8] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[9] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective
optimization problem into a number of simple multiobjective subprob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 3,
pp. 450–455, 2014.

[10] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A sur-
vey of multiobjective evolutionary algorithms based on decomposi-
tion,” IEEE Transactions on Evolutionary Computation, 2016, DOI:
10.1109/TEVC.2016.2608507.

[11] A. Auger and B. Doerr, Theory of Randomized Search Heuristics:
Foundations and Recent Developments. Singapore: World Scientific,
2011.

[12] F. Neumann and C. Witt, Bioinspired Computation in Combinatorial
Optimization: Algorithms and Their Computational Complexity. Berlin,
Germany: Springer-Verlag, 2010.

[13] O. Giel, “Expected runtimes of a simple multi-objective evolutionary
algorithm,” in Proceedings of the 2003 IEEE Congress on Evolutionary
Computation (CEC’03), Canberra, Australia, 2003, pp. 1918–1925.

[14] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis of
multiobjective evolutionary algorithms on pseudo-Boolean functions,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 170–
182, 2004.

[15] F. Neumann and I. Wegener, “Minimum spanning trees made easier
via multi-objective optimization,” Natural Computing, vol. 5, no. 3, pp.
305–319, 2006.

[16] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Ap-
proximating covering problems by randomized search heuristics using
multi-objective models,” Evolutionary Computation, vol. 18, no. 4, pp.
617–633, 2010.

[17] F. Neumann, J. Reichel, and M. Skutella, “Computing minimum cuts by
randomized search heuristics,” Algorithmica, vol. 59, no. 3, pp. 323–342,
2011.

[18] C. Qian, Y. Yu, and Z.-H. Zhou, “On constrained Boolean Pareto
optimization,” in Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI’15), Buenos Aires, Argentina, 2015, pp.
389–395.

[19] C. Qian, K. Tang, and Z.-H. Zhou, “Selection hyper-heuristics can
provably be helpful in evolutionary multi-objective optimization,” in
Proceedings of the 14th International Conference on Parallel Problem
Solving from Nature (PPSN’16), Edinburgh, Scotland, 2016, pp. 835–
846.

[20] F. Neumann and M. Theile, “How crossover speeds up evolutionary
algorithms for the multi-criteria all-pairs-shortest-path problem,” in
Proceedings of the 11th International Conference on Parallel Problem
Solving from Nature (PPSN’10), Krakow, Poland, 2010, pp. 667–676.

[21] C. Qian, Y. Yu, and Z.-H. Zhou, “An analysis on recombination in multi-
objective evolutionary optimization,” Artificial Intelligence, vol. 204, pp.
99–119, 2013.

[22] F. Neumann, “Computational complexity analysis of multi-objective ge-
netic programming,” in Proceedings of the 14th ACM Annual Conference
on Genetic and Evolutionary Computation (GECCO’12), Philadelphia,
PA, 2012, pp. 799–806.

[23] A. Nguyen, T. Urli, and M. Wagner, “Single- and multi-objective
genetic programming: New bounds for weighted order and majority,”
in Proceedings of the 12th International Workshop on Foundations of
Genetic Algorithms (FOGA’13), Adelaide, Australia, 2013, pp. 161–172.

[24] M. Wagner and F. Neumann, “Parsimony pressure versus multi-objective
optimization for variable length representations,” in Proceedings of the
12th International Conference on Parallel Problem Solving from Nature
(PPSN’12), Taormina, Italy, 2012, pp. 133–142.

[25] C. Qian, Y. Yu, and Z.-H. Zhou, “Variable solution structure can
be helpful in evolutionary optimization,” Science China: Information
Sciences, vol. 58, no. 11, pp. 1–17, 2015.

[26] Y.-L. Li, Y. Zhou, Z.-H. Zhan, and J. Zhang, “A primary theoretical
study on decomposition based multiobjective evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 4, pp.
563–576, 2016.

[27] J. Scharnow, K. Tinnefeld, and I. Wegener, “The analysis of evolutionary
algorithms on sorting and shortest paths problems,” Journal of Mathe-
matical Modelling and Algorithms, vol. 3, no. 4, pp. 349–366, 2004.

