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Abstract. Diversity among individual classifiers is recognized to play a
key role in ensemble, however, few theoretical properties are known for
classification. In this paper, by focusing on the popular ensemble prun-
ing setting (i.e., combining classifier by voting and measuring diversity
in pairwise manner), we present a theoretical study on the effect of di-
versity on the generalization performance of voting in the PAC-learning
framework. It is disclosed that the diversity is closely-related to the hy-
pothesis space complexity, and encouraging diversity can be regarded to
apply regularization on ensemble methods. Guided by this analysis, we
apply explicit diversity regularization to ensemble pruning, and propose
the Diversity Regularized Ensemble Pruning (DREP) method. Experi-
mental results show the effectiveness of DREP.
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1 Introduction

Ensemble methods [33], which train multiple classifiers for one single task, are
among the state-of-the-art machine learning approaches. It is widely accepted
that ensemble methods usually achieve better generalization performance than
single classifiers, and they have achieved great successes in a large variety of
real-word applications.

Generally speaking, an ensemble is built in two steps: first multiple classifiers
are trained for one task, and then these classifiers are combined together to get
a better performance in some manners like voting. Given multiple trained indi-
vidual classifiers, instead of combining all of them, there are many studies tring
to select a subset from them to comprise the ensemble [28]. In the literature, the
task of reducing ensemble sizes is called as ensemble pruning [19], selective en-
semble [35], ensemble selection [6] or ensemble thinning [1]. Currently, we do not
distinguish between them and use ensemble pruning for simplicity. By producing
ensembles of smaller sizes, ensemble pruning has the apparent advantage of im-
proving storage and computational efficiency for predictions. Furthermore, both
theoretical and empirical studies have shown that ensemble pruning can also
improve the generalization performance of ensemble [35, 6, 32, 20], that is, the
pruned ensemble can achieve better performance than the complete ensemble.
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In the ensemble pruning literature, greedy pruning methods which search
the space of possible classifier subsets by taking greedy local search have drawn
much attention [24, 20], it is because compared with methods that directly select
optimal or near-optimal classifier subsets, they are able to achieve comparative
performance and robustness at much smaller computational costs. There are
two salient parameters in greedy pruning methods: the direction for searching
the space (i.e., forward and backward) and the criterion for evaluating available
actions at each search step. Since it is shown that the direction does not signifi-
cantly affect the performance [24], much attention has been paid on the design of
the evaluation criterion. As diversity among individual classifiers is widely recog-
nized to be key to the success of an ensemble, many evaluation criteria have been
developed to select diverse individual classifiers, mainly by smart heuristics [1,
23, 20, 24]. In practice, although positive correlation has been demonstrated be-
tween diversity and accuracy of ensemble [9, 16, 11], few theoretical prosperities
of ensemble diversity is known. Moreover, the usefulness of exploiting diversity
measures in building stronger ensemble was doubted in [15, 27].

In this paper, concentrating on a popular setting of ensemble pruning where
the individual classifiers are combined by voting and the diversity is measured in
the pairwise manner, we present a theoretical analysis on the effect of diversity on
the generalization performance of voting based on the probably approximately
correct learning (PAC-learning) framework [29]. To our best knowledge, this
is the first PAC-style analysis on diversity’s effect on voting. We show that
encouraging larger diversity leads to smaller hypothesis space complexity and
thus better generalization performance, which implies that controlling diversity
can be regarded to apply regularization on ensemble methods. Then, guided by
the theoretical analysis, we propose the DREP method which is a greedy forward
ensemble pruning method with explicit diversity regularization. Experimental
results show the effectiveness of the DREP method.

The remainder of the paper is organized as follows. Section 2 gives a brief
review on ensemble selection and ensemble diversity. Section 3 presents our the-
oretical study on the role of diversity in voting. Based on the theoretical results,
Section 4 proposes the DREP method, followed by Section 5 which reports on
the experimental results. Finally, the paper is concluded in Section 6.

2 Related Work

With the goal of improving storage and computational efficiency as well as gener-
alization performance, ensemble pruning deals with the problem of reducing en-
semble sizes. The first work on this topic was possibly done by Margineantu and
Dietterich [19], which tried to prune AdaBoost, but later Tamon and Xiang [26]
showed that the boosting pruning problem is intractable even to approximate.
Instead of pruning ensembles generated by sequential methods, Zhou et al. [35]
and Caruana et al. [6] respectively studied on pruning ensembles generated by
parallel methods such as Bagging [3] and parallel heterogeneous ensembles con-
sisting of different types of individual classifiers, and it was shown that better
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performance can be obtained at smaller ensemble sizes. Ever since, most ensem-
ble pruning studies were devoted to parallel ensemble methods.

Given a set of trained classifiers, selecting the sub-ensemble with the best
generalization performance is difficult mainly due to two reasons: First, it is
not easy to estimate the generalization performance of a sub-ensemble; second,
finding the optimal subset is a combinatorial search problem with exponential
computational complexity, thus it is unfeasible to compute the exact solution
by exhaustive search and approximate search is needed. In the past decade, a
number of methods have been proposed to overcome this difficulty [28], which can
be roughly classified into two groups based on their employed search methods.
The first group of methods use global search to directly select the optimal or
near-optimal classifier subset. In the literature, many techniques have been used,
such as genetic algorithm [35], semi-definite programming [31], clustering [12, 17],
sparse optimization with sparsity-inducing prior [7] or `1-norm constraint [18],
etc. In practice, this kind of methods can achieve good performance, but their
computational costs are usually quite large.

The second group of ensemble pruning methods is based on greedy local search
of the space of all possible ensemble subsets [20, 24]. According to the search di-
rection, this group of methods can be further divided into greedy forward pruning
methods which start with empty set and iteratively add the classifier optimizing
certain criterion, and greedy backward methods that start with the complete
ensemble and iteratively eliminate classifiers. It has been shown that greedy
pruning methods are able to achieve comparative performance and robustness
with global search methods but at much smaller computational costs [20, 13].
Moreover, based on extensive experiments, Partalas et al. [24] suggested to use
the greedy forward methods because both directions achieve similar performance
but the forward direction produces smaller ensemble sizes. Then, the study of
greedy pruning methods was mainly devoted to the criterion that is used for
evaluating available actions at each local search step. Since the diversity within
an ensemble is widely recognized to be important to its success, many criteria
have been proposed to select diverse individual classifiers, such as Kappa [19, 1],
complementarity [21, 20], orientation [22, 20], margin distance [21, 20], FES [23],
etc. It is easy to see that most of these criteria are based on smart heuristics.

In practice, the importance of diversity was first discovered from error analy-
sis for regression [14], and then extended to classification. For classification, it has
been observed from empirical studies like [9] that there exists positive correlation
between diversity and accuracy of ensemble. Also, some theoretical studies have
shown that encouraging diversity is beneficial. For example, Kuncheva et al. [16]
found that negative dependence between individual classifiers is beneficial to the
accuracy of an ensemble, Fumera and Roli [11] found that the performance of en-
semble depends on the performance of individual classifiers and their correlation.
Based on current results, we can see that it is no problem to reach that encour-
aging diversity is beneficial to the performance of ensemble, but it is hard to tell
the theoretical properties of diversity in ensemble. In the famous margin expla-
nation of voting [25], the diversity is totally not considered in the framework.
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Also, some doubts have been raised on the usefulness of exploiting diversity mea-
sures in building stronger ensembles [15, 27]. Therefore, understanding ensemble
diversity remains an important issue in ensemble learning and further investiga-
tions are needed. Recently, by defining diversity and ensemble combination rule
in the parameter space, our previous work [30] showed that diversity control can
play a role of regularization as in statistical learning methods, which, however,
relies on linear classifiers and average combination and thus cannot be applied
to other kind of classifiers and voting combination. In this work, we consider the
popular ensemble pruning setting, i.e., the diversity is measured in the output
space which leaves the specification of classifiers unimportant, and the individual
classifiers are combined by voting.

3 Diversity and Generalization Performance of Voting

In ensemble pruning, voting is one of the most widely used methods to combine
individual classifiers. In this section, we give a theoretical study on the effect of
diversity on the generalization performance of voting.

3.1 Basics and Diversity Measure

Consider binary classification, given a set of n trained classifiers H = {hi(x)}ni=1,
where each classifier hi : X 7→ {−1,+1} is a mapping from the feature space
X to the class label set {−1,+1}, the voting rule defines a decision function by
taking an average of classifiers in H as

f(x;H) =
1

n

∑n

i=1
hi(x) , (1)

and it predicts the class label of x as sign[f(x;H)]. Obviously, it makes wrong
prediction on example (x, y) only if yf(x;H) ≤ 0, and yf(x;H) is called the
margin of f at (x, y).

Let D is the underlying distribution over X×{−1,+1}, and S = {(xi, yi)}mi=1

is a set of examples randomly sampled from D, the generalization error (denoted
as errg(f)) and the empirical error with margin θ on S (denoted as errθS(f))
are respectively defined as

errg(f) = P(x,y)∼D[yf(x) ≤ 0] and errθS(f) =
1

m

∑m

i=1
I[yif(xi) ≤ θ] , (2)

where I[z] is the indicator function which takes 1 if z is true, and 0 otherwise.

Although there is no generally accepted formal definition of diversity in the
literature [5, 34], popular diversity measures are usually formalized based on
pairwise difference between every pair of individual classifiers [15], such as Q-
statistics, correlation coefficient, disagreement measure and κ-statistics. In this
work, we also measure diversity based on pairwise difference, and the definition
is given as follows.
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Definition 1 Given a set of m examples S = {(xi, yi)}mi=1, the diversity of
classifier set H = {hi(x)}ni=1 on S is defined as

div(H) = 1− 1∑
1≤i6=j≤n 1

∑
1≤i6=j≤n

diff(hi, hj) , (3)

where diff(·, ·) measures the pairwise difference between two classifiers as

diff(hi, hj) =
1

m

∑m

k=1
hi(xk)hj(xk) . (4)

It is obvious that the difference diff(hi, hj) falls into the interval [−1, 1], and
diff(hi, hj) equals to 1 (or −1) only if two classifiers hi and hj always make the
same (or opposite) predictions on the data sample S, and the smaller diff(hi, hj),
the larger difference between hi and hj . Consequently, since the diversity is based
on the average of pairwise differences, we can see that the larger div(H) the
larger the diversity of the classifier set H.

It is easy to find that this diversity measure is closely-related with the dis-
agreement measure [15]. Moreover, different from [30] which defines the diversity
in the parameter space of classifiers, here this diversity measure is defined in the
output space, thus can cover various kinds of individual classifiers.

3.2 Theoretical Results

Our analysis is based on the PAC-learning framework [29], which is one of the
most widely used framework for analyzing learning algorithms. Before giving the
main results, we first introduce some necessary background.

In learning theory, it is known that the generalization error of a learning
algorithm can be bounded by its empirical error and the complexity of feasi-
ble hypothesis space [29, 2]. Since the hypothesis space is uncountable for many
learning methods, the hypothesis space complexity is often described by a quan-
tity called covering number, which is defined as below.

Definition 2 Let B be a metric space with metric ρ. Given a set of m examples
S = {xi}mi=1 and a function space F , characterize every f ∈ F with a vector
vS(f) = [f(x1), . . . , f(xm)]> ∈ Bm. The covering number in p-norm Np(F , ε, S)
is the minimum number l of vectors u1, . . . ,ul ∈ Bm such that, for all f ∈ F
there exists j ∈ {1, . . . , l},

‖ρ(vS(f),uj)‖p =
(∑m

i=1
ρ(f(xi), uj,i)

p
)1/p

≤ m1/pε ,

and Np(F , ε,m) = supS:|S|=mNp(F , ε, S).

Currently, we show how the ensemble diversity affects the generalization per-
formance of voting. In particular, our study mainly focuses on the effect of di-
versity on the hypothesis space complexity of voting. Before presenting the main
result, we give the following lemma.
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Lemma 1 Given a set of classifiers H = {hi(x)}ni=1 and a set of examples
S = {(xi, yi)}mi=1, denote f = [f(x1;H), . . . , f(xm;H)]> be the output of the
decision function f ’s outputs on S. On data set S, if div(H) ≥ q, then it follows

‖f‖1 ≤ m
√

1/n+ (1− 1/n)(1− q) .

Proof. By basic algebra, we have

‖f‖22 =
∑m

i=1

(
1

n

∑n

t=1
ht(xi)

)2

=
∑m

i=1

(
1

n
+

1

n2

∑
1≤j 6=k≤n

hj(xi)hk(xi)

)
= m (1/n+ (1− div(H))(1− 1/n)) ≥ 0 .

We can find the quantity 1/n + (1 − q)(1 − 1/n) is always non-negative. Then,
based on the inequality ‖f‖1 ≤

√
m‖f‖2, we can obtain the result directly. ut

Theorem 1. Let F denote the function space such that for every f ∈ F , there
exist a set of n classifiers H = {hi(x)}ni=1 satisfying f(x) = 1

n

∑n
i=1 hi(x) and

div(H) ≥ q for any i.i.d. sample S of size m, then for any ε, it holds

log2N∞(F , ε,m) ≤ 36(1 + lnn)

ε2
log2

(
2md4

√
1/n+ (1− 1/n)(1− q)/ε+2e+1

)
.

Proof. This proof follows similar strategy with Theorem 4 and 5 in [31], here
we give the main sketch and focus on the difference. If ε ≥ 1, the result follows
trivially, so it is assumed ε ≤ 1 subsequently. First, the interval [−1−ε/2, 1+ε/2]
is divided into n = d4/ε + 2e sub-intervals, each of size no larger than ε/2, and
θj be the boundaries of the sub-intervals so that θj − θj−1 ≤ ε/2 for all j. Let
jl(i) denote the maximum index of θj such that f(xi) − θjl(i) ≥ ε/2 and jr(i)
the maximum index of θj such that f(xi)− θjr(i) ≤ −ε/2. Let

hi = [h1(xi), . . . , hT (xi)]
>, h′i = [hi,−θjl(i)]

> and h′′i = [−hi, θjr(i)]
>.

Then, based on similar steps in [31], the covering number N∞(F , ε, S) is no more
than the number of possible values of the vector β, which is defined as

β = gp

(∑m

i=1
aih
′
i +
∑m

i=1
bih
′′
i

)
, (5)

where gp(u) is a component-wise function mapping each component ui of u to
p · sign(ui)|ui|p−1 with p ≥ 2, and ai’s and bi’s are non-negative integers under
the constraint ∑m

i=1
(ai + bi) ≤ 36(1 + lnn)/ε2 . (6)

It is easy to find that there is an one-to-one mapping between h′i and h′′i , so
the number of possible values of h′i and h′′i equals to that of h′i. Let f =
[f(x1), . . . , f(xm)]> be f ’s outputs on S, based on Lemma 1, we can obtain
that ‖f‖1 ≤ m

√
1/n+ (1− 1/n)(1− q). Then, based on the definition of θjl(i),

we can find that the number of possible values of h′i is no more than

m
⌈
4
√

1/n+ (1− 1/n)(1− q)/ε+ 2
⌉
.
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Consequently, from (5) and (6) we can find that the number of possible values
of (β, z) is upper-bounded by(

2md4
√

1/n+ (1− 1/n)(1− q)/ε+ 2e+ 1
)36(1+lnn)/ε2

,

which completes the proof. ut
Furthermore, based on Theorem 1 we can obtain the relationship between di-
versity and generalization performance of voting, which is given as follows.

Corollary 1 Under the assumptions of Theorem 1, with probability at least 1−δ,
for any θ > 0, every function f ∈ F satisfies the following bound

errg(f) ≤ errθS(f) +
C√
m

(
lnn ln

(
m
√

1/n+ (1− 1/n)(1− q)
)

θ2
+ ln

1

δ

)1/2

,

where C is a constant.

Proof. Based on Bartlett’s Lemma 4 in [2], we can obtain

errg(f) ≤ errθS(f) +

√
2

m

(
lnN∞(F , ε/2, 2m) + ln

2

δ

)
. (7)

By applying Theorem 1 on (7), we can obtain the result. ut
Above results show that, when other factors are fixed, encouraging high diver-

sity among individual classifiers (i.e., large value of q in Theorem 1 and Corollary
1) will make the hypothesis space complexity of voting small, and thus better
generalization performance can be expected.

3.3 Remarks and Discussions

It can be observed from above theoretical analysis that the diversity is directly
related to the hypothesis space complexity of voting, and then affects its general-
ization performance. From the view of statistical learning, controlling ensemble
diversity has a direct impact on the size of hypothesis space of voting, indicating
that it plays a role similar with regularization as in popular statistical learning
methods. In other words, it implies that encouraging diversity can be regarded to
apply regularization on ensemble methods. Also, this result show that encour-
aging diversity is beneficial but not straightforwardly related to the ensemble
accuracy, which coincides with previous study in [16].

To our best knowledge, this work provides the first PAC-style analysis on the
role of diversity in voting. The margin explanation of voting presented in [25] is
also in the PAC-learning framework, but it is obvious that our work is signifi-
cantly different because diversity is considered explicitly. The hypothesis space
complexity of voting becomes small when the diversity increases, but it is sim-
ply characterized by the VC-dimension of individual classifier in [25]. Intuitively,
due to the diversity, some parts of the hypothesis space of voting are infeasible,
excluding these parts leads to tighter bounds, while assuming the hypothesis
space compact makes the bounds looser.
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4 Diversity Regularized Ensemble Pruning

In this section, we apply above theoretical analysis to ensemble pruning, and
propose the Diversity Regularized Ensemble Pruning (DREP) method, which is
a greedy forward ensemble pruning method.

The main difference between DREP and existing greedy pruning methods
lies in the criterion for evaluating available actions at each step. In the previous
section, it is shown in Corollary 1 that the generalization performance of an
ensemble depends on its empirical error and diversity, so it is natural to design
the evaluation criterion accordingly. However, it is easy to see that in the bound
the diversity has complicated operations with factors including the sample size
m, number of classifier n, η and θ, etc. Then for a given problem, it will be
difficult to specify the tradeoff between empirical error and diversity. Hence, a
tradeoff parameter is involved in the proposed method.

Moreover, it is easy to see from (3) that when we want to evaluate the di-
versity of a new ensemble which is obtained by adding one individual classifier,
it is needed to compute the pairwise difference between the new added classi-
fier and all the existing classifiers. As a consequence, at each step, if there are
many candidate individual classifiers, directly evaluating diversity based on the
definition will be of high computational complexity. To avoid this issue, we use
a more efficient way based on the following proposition.

Propsition 1 Given a classifier h′(x) and a classifier set H = {hi(x)}ni=1, let
H ′ = H ∪ {h′(x)}, the diversity of H ′ on S = {(xi, yi)}mi=1 is

div(H ′) =
2

n+ 1
+
n− 1

n+ 1
div(H)− 2

n+ 1
diff(h′, H) (8)

where div(H) is the diversity of H on S and diff(h′, H) measures the difference
between new classifier h′(x) and H as

diff(h′, H) =
1

m

∑m

i=1
h′(xi)f(xi;H) . (9)

and f(x;H) is the decision function of H defined in (1).

Proof. Based on the definitions in (3) and (4), it is not hard to obtain

div(H ′) = 1− 1

n(n+ 1)

(∑
1≤i6=j≤n

diff(hi, hj) + 2
∑n

i=1
diff(h′, hi)

)
= 1− 1

n(n+ 1)

(
n(n− 1)(1− div(H)) +

2

m

∑m

i=1

(
h′(xi)

∑n

k=1
hk(xi)

))
=

2

n+ 1
+
n− 1

n+ 1
div(H)− 2

m(n+ 1)

∑m

i=1
h′(xi)f(x;H) ,

which leads to the result directly. ut
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Algorithm 1 The DREP method

Input: ensemble to be pruned H = {hi(x)}ni=1, validation data set S =
{(xi, yi)}mi=1 and tradeoff parameter ρ ∈ (0, 1)

Output: pruned ensemble H∗

1: initialize H∗ ← ∅
2: h(x)← the classifier in H with the lowest error on S
3: H∗ ← {h(x)} and H ← H \ {h(x)}
4: repeat
5: for each h′(x) in H do
6: compute dh′ ← diff(h′, H∗) based on (9)
7: end for
8: sort classifiers h′(x)′s in H in the ascending order of dh′ ’s
9: Γ ← the first dρ · |H|e classifiers in the sorted list

10: h(x)← the classifier in Γ which most reduces the error of H∗ on S
11: H∗ ← {h(x)} and H ← H \ {h(x)}
12: until the error of H∗ on S cannot be reduced

It can be found that at each step of greedy forward pruning, div(H) is a constant
and div(H ′) is a monotonically decreasing function of diff(h′, H). Thus, at each
step, the task of estimating diversity div(H ′) can be substituted by computing
the difference diff(h′, H). The candidate classifier h′ that can achieve smaller
diff(h′, H) will lead to larger diversity div(H ′). Obviously, in such a manner,
we only need to compute the difference between the candidate classifier and
the decision function of existing sub-ensemble rather than each of its members,
which reduces the computational cost heavily comparing with the computation
of diversity from scratch.

The pseudocode of the DREP method is presented in Algorithm 1. Specif-
ically, it has three inputs: the ensemble H to be pruned, the validate data set
S which is used to estimate empirical error and diversity and the tradeoff pa-
rameter ρ. Starting with the classifier with lowest error on validation set (lines
2-3), the DREP method iteratively selects classifier based on both empirical er-
ror and diversity. Concretely, at each step it first sorts the candidate classifiers
in the ascending order of their differences with current sub-ensemble (lines 5-8),
and then from the front part of sorted list it selects the classifier which can
most reduce the empirical error on the validate data set. It can be found from
Proposition 1 that the front classifiers will lead to large ensemble diversity. Also,
among the front classifiers the one which reduces the empirical error most will
be selected, thus it can be expected that the obtained ensemble will have both
large diversity and small empirical error. These two criteria are balanced by the
parameter ρ, i.e., the fraction of classifiers that are considered when minimizing
empirical error. Obviously, a large value of ρ means that more emphasis on the
empirical error, while a small ρ pays more attention on the diversity.
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5 Empirical Studies

In this section, we perform experiments to evaluate the proposed DREP method,
also to validate the theoretical results.

5.1 Settings

In experiments, we use twenty binary classification data sets from the UCI repos-
itory [10], amongst which four data sets are generated from multi-class data sets,
that is, letter* classifies ‘u’ against ‘v’ on letter; optdigits classifies ‘01234’ against
‘56789’ on optdigits; satimage* classifies labels ‘1’ and ‘2’ against those with ‘5’
and ‘7’ on satimage; and vehicle* classifies ‘bus’ and ‘opel’ against ‘van’ and
‘saab’ on vehicle. Since these data sets are widely used benchmarks, we omit
their summary information for clarity here.

The DREP method and several comparative methods are evaluated in a series
of experiments. Specifically, each experiment is performed on one data set, and
mainly involves the following steps:

1. Randomly split the data set into three parts: 1/3 as training set, 1/3 as
validation set and the rest as test set;

2. Using Bagging [3] to build an ensemble of 100 CART decision trees [4] on
the training set;

3. Prune the obtained ensemble by using ensemble pruning methods, whose
parameters are determined on the validation set;

4. Evaluate the performance of pruned ensemble on the test set, also record
the size of the pruned ensemble.

On each data set, each experiment is run for thirty times. At each time, the sizes
of pruned ensemble and its error rates on test set are recorded, and finally the
averaged results with standard deviation over multiple runs are reported.

In experiments, the comparative methods include two benchmark methods:

– Bagging [3]: it is the full ensemble of all the 100 CART trees;
– Best Individual (BI): it selects the individual classifier which has the best

performance on the validation set.

Moreover, the following greedy forward ensemble pruning methods are imple-
mented and compared:

– Reduce-Error (RE) [19, 6]: it starts with the classifier with lowest error, and
then greedily selects the classifier that reduces error most;

– Kappa [19, 1]: it starts with the pair of classifiers with lowest κ-statistics,
and then iteratively adds the classifier with lowest κ-statistics with respect
to current sub-ensemble;

– Complementarity (CP) [21, 20]: this method starts with the classifier with
lowest error, it incorporates at each iteration the one which is most comple-
mentary to the sub-ensemble;
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Table 1. Error rates (mean±std.) achieved by comparative methods. On each data
set an entry is marked with bullet ‘•’ (or circle ‘◦’) if it is significantly better (or
worse) than unpruned Bagging based on paired t-test at the significance level 0.1; the
win/tie/loss counts are summarized in the last row.

Data set Bagging BI RE Kappa CP MD DREP

australian .134±.019 .148±.023◦ .133±.015 .138±.017 .130±.014 .133±.016 .129±.016
breast-cancer .278±.043 .293±.051 .275±.035 .280±.033 .288±.031 .311±.052◦ .265±.024•
breast-w .040±.010 .050±.012◦ .034±.009• .041±.011 .036±.009• .035±.008 .034±.008•
diabetes .239±.023 .256±.023◦ .236±.022 .249±.020◦ .240±.020 .243±.020 .234±.017
germen .247±.016 .292±.021◦ .248±.021 .254±.022 .250±.017 .247±.019 .248±.015
haberman .261±.026 .270±.030◦ .257±.025 .258±.034 .267±.029 .283±.037◦ .252±.021
heart-statlog .204±.039 .226±.041 .194±.034 .203±.035 .188±.034• .195±.033 .183±.027•
hepatitis .165±.030 .206±.049◦ .164±.037 .183±.029◦ .162±.031 .170±.036 .159±.027
ionosphere .088±.024 .106±.034◦ .069±.018• .089±.030 .070±.019• .079±.024 .066±.017•
kr-vs-kp .014±.005 .013±.005 .009±.002• .017±.005 .012±.004• .015±.004 .008±.002•
letter* .047±.009 .075±.013◦ .039±.008• .047±.008 .039±.008• .044±.008 .035±.007•
liver-dis .313±.030 .362±.041◦ .312±.032 .327±.039 .313±.035 .323±.038 .311±.029
optdigits* .046±.005 .109±.008◦ .041±.004• .045±.005 .040±.004• .044±.005 .040±.003•
satimage* .032±.004 .051±.007◦ .031±.004 .033±.005 .030±.004• .032±.004 .029±.004•
sick .016±.003 .017±.004 .015±.003 .017±.003 .015±.003 .016±.003 .014±.002•
sonar .245±.050 .285±.036◦ .235±.044 .245±.051 .216±.038• .233±.044 .230±.030•
spambase .071±.005 .094±.007◦ .066±.005• .070±.004 .066±.004• .069±.005• .066±.004•
tic-tac-toe .060±.018 .101±.021◦ .039±.008• .082±.026◦ .043±.010• .078±.022◦ .038±.007•
vehicle* .207±.020 .235±.029◦ .207±.021 .214±.023 .204±.019 .215±.025 .203±.019
vote .038±.011 .043±.014 .035±.011 .041±.016 .035±.013 .037±.011 .033±.007•
win/tie/loss – 0/5/15 7/13/0 0/17/3 10/10/0 1/16/3 13/7/0

– Margin Distance (MD) [21, 20]: at each iteration, this method incorporates
into the ensemble tho classifier that reduces the distance from the margin
vector to the objective point in the first quadrant the most.

It is easy to find that RE and Kappa consider only empirical error and diversity
respectively, while CP, MD and DREP take both of them into account. For each
ensemble pruning method, we will stop and return the sub-ensemble if its error
rate on validation set cannot be reduced. In the experiments, the κ-statistics,
complementarity measure, margin distance are estimated on the validation set,
and the parameter ρ of DREP is selected in {0.2, 0.25, . . . , 0.5} on validation set.

All the experiments are run on a PC with 2GB memory.

5.2 Results

The error rates achieved by comparative methods are shown in Table 1. On each
data set, paired t-test at significance level 0.1 is performed to compare perfor-
mance of BI and ensemble pruning methods with that of Bagging. In Table 1, an
entry is marked with bullet ‘•’ (or circle ‘◦’) if it is significantly better (or worse)
than Bagging, and the win/tie/loss counts are summarized in the last row. From
the results, it is shown that BI which selects the best performed individual loses
at 15 out of 20 data sets against Bagging, this coincides with the fact that en-
semble usually achieves better performance than a single classifier. Meanwhile,
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Fig. 1. The result of the Freidman test for comparing the performance of five ensem-
ble pruning methods on 20 data sets. The dots indicate the average ranks, the bars
indicate the critical difference with the Bonferroni-Dunn test at significance level 0.1,
and compared methods having non-overlapped bars are significantly different.

the performance of ensemble pruning methods is much better. Specifically, RE,
CP and DREP respectively achieve 7, 10 and 13 wins but no losses compared
with Bagging, while Kappa and MD respectively make 17 and 16 ties and only
3 losses. At the same time, from Table 2 it can be seen that the ensemble sizes
are reduced from 100 to about 20. Hence, the purpose of ensemble pruning (that
is, reduce ensemble size whilst keeping or improving performance) is reached;
also amongst comparative ensemble pruning methods, it appears that DREP
method performs quite well (it achieves the best win/tie/loss counts and the
smallest average ensemble size).

To better compare the performance of greedy ensemble pruning methods,
we perform Freidman test [8], which is a non-parametric statistical significance
test for comparing multiple classifiers on multiple data sets. Roughly speak-
ing, the Freidman test is based on the ranks of compared methods on multiple
data sets, and it is performed in conjunction with the Bonferroni-Dunn test
at certain significance level. Here, we employ it to compare the five greedy en-
semble pruning methods used in our experiments, and the result is shown in
Fig. 1. Amongst the five pruning methods, the DREP method gets the highest
average rank (1.30), followed by RE (2.50) and CP (2.55), while the average
ranks of MD and CP are 3.90 and 4.75 respectively. Since the critical differ-
ence with the two-tailed Bonferroni-Dunn test for 5 classifiers on 20 data sets
is 2.241

√
(5 · 6)/(6 · 20) ≈ 1.121, we can find that the performance of DREP is

significantly better than other methods (in Fig. 1 the bar of DREP is not over-
lapping with either of other methods). It is easy to understand that the perfor-
mance of DREP is better than that of RE and Kappa, because RE and Kappa
only consider the empirical risk and the diversity respectively while DREP take
both of them into account. Also, RE performs significantly better than Kappa,
which may imply that empirical error play a more important role in the trade-
off. This coincides with our theoretical results, because diversity plays a role
of regularization which is used to prevent overfitting, and only considering reg-
ularization usually does not help to improve the generalization performance.
Furthermore, it can be seen that DREP performs better than CP and MD, this
can be explained that DREP explicitly tradeoffs empirical error and diversity
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Table 2. Ensemble sizes (mean±std.) of the pruned ensemble. On each data set, the
entry achieving the smallest ensemble size is bolded, and the averaged sizes over all
data sets are given in the last row.

Data set RE Kappa CP MD DREP

australian 15.4±3.5 18.7±5.5 18.0±4.1 19.9±6.4 18.3±4.2
breast-cancer 18.4±3.8 22.0±9.2 18.1±5.1 24.1±10.0 18.1±4.5
breast-w 17.5±4.3 15.5±3.9 20.1±6.3 23.1±8.5 17.1±4.3
diabetes 23.5±5.8 26.7±11.4 21.9±6.4 29.0±10.1 17.6±4.7
germen 21.5±5.9 25.9±8.6 20.5±5.9 28.5±10.3 17.1±3.9
haberman 16.7±4.8 15.7±5.0 21.3±6.7 22.8±8.5 18.0±4.4
heart-statlog 18.9±4.1 22.9±8.1 21.9±5.8 23.5±7.8 17.2±4.4
hepatitis 14.4±2.6 12.7±3.3 17.7±5.3 18.9±5.9 17.7±4.6
ionosphere 15.6±2.6 21.8±9.0 19.5±5.8 23.8±7.7 17.5±4.6
kr-vs-kp 16.1±3.7 22.2±10.0 23.1±5.8 21.5±6.6 17.7±4.1
letter* 22.9±4.6 25.0±7.6 22.0±5.2 27.8±9.2 24.7±4.5
liver-dis 22.7±5.7 23.6±10.9 21.5±5.6 25.5±9.3 18.5±4.6
optdigits* 31.9±6.6 37.4±10.8 28.1±5.0 37.7±10.7 25.1±4.8
satimage* 25.1±5.5 32.5±9.6 23.3±5.8 30.9±9.0 24.8±4.7
sick 15.8±3.2 22.7±10.9 20.9±4.7 22.8±9.0 17.7±4.4
sonar 20.1±5.0 22.1±9.8 21.1±5.9 24.9±9.5 18.7±4.9
spambase 25.3±6.8 27.5±8.6 24.3±7.0 28.4±8.3 18.1±4.7
tic-tac-toe 24.2±4.4 36.4±17.1 24.1±5.9 38.3±16.4 18.9±4.3
vehicle* 22.0±5.3 25.7±8.5 22.3±7.1 25.2±9.4 24.9±4.9
vote 12.8±1.6 15.9±5.7 16.6±5.3 18.8±6.0 18.3±4.3
average 20.0 23.6 21.3 25.8 19.3

regularization, while CP and MD implicitly consider the tradeoff at a fixed level
and can be easily affected by noises.

Table 2 presents the sizes of pruned ensembles, which shows that all the
greedy pruning methods heavily reduce the ensemble sizes. Moreover, it can be
seen that DREP achieves the smallest sizes on 10 data sets, also the smallest
average ensemble size.

Furthermore, Fig. 2 plots the test error curves of Bagging and compared en-
semble pruning methods on heart-statlog and letter*. In detail, for Bagging the
individual classifiers are aggregated in random order, and for ensemble pruning
methods the greedy selection process will not be stopped until all the individ-
uals are included, that is, the individual classifiers are aggregated in an order
specified by the pruning methods. At each ensemble size the error is estimated
on the test data, and the final results are obtained by averaging results of thirty
runs, and they are plotted against ensemble sizes in Fig. 2. It can be seen that
as ensemble size increases, the test error of Bagging decreases and converges,
but the test errors of greedy ensemble pruning methods decrease much faster
and are lower than Bagging, which indicates that better performance can be
achieved at smaller ensemble sizes by using greedy ensemble pruning methods.
By comparing the curves of DREP and other pruning methods, we can find that
the test error of DREP decrease faster than other methods, even faster than
RE which selects individual classifiers based on empirical error on the validation
data set. This is not hard to understand because RE may overfit the validation
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Fig. 2. Averaged test errors curves of Bagging and compared ensemble pruning meth-
ods on (a) heart-statlog and (b) letter*, where horizontal axis and vertical axis corre-
spond to ensemble size and test error respectively. For ensemble pruning methods, we
do not stop the greedy selection process until all the individual classifiers are included.

data, while the diversity regularization used by DREP tends to help it achieve
better performance.

In summary, we can see that with the help of diversity regularization, DREP
is able to achieve significantly better generalization performance with smaller
ensemble size than the compared methods.

6 Conclusion and Future Work

In ensemble learning, understanding diversity is one of the most important fun-
damental issues. This work focuses on the most popular setting of ensemble
pruning, where the individual classifiers are combined by voting and the di-
versity is measured in the pairwise manner. In the PAC-learning framework, it
presents a theoretical analysis on the role of diversity in voting, which is, to our
best knowledge, the first PAC-style analysis on the effect of diversity in voting.
It discloses that by enforcing large diversity, the hypothesis space complexity of
voting can be reduced, and then better generalization performance can be ex-
pected. In the view of statistical learning, this implies that encouraging diversity
can be regarded to apply regularization on ensemble methods. This may intro-
duce a novel perspective of diversity in ensemble learning. Guided by this result,
a greedy ensemble pruning method called DREP is proposed to explicitly exploit
diversity regularization. Experimental results show that with the help of diver-
sity regularization, DREP is able to achieve significantly better generalization
performance with smaller ensemble size than the compared methods.

The current work applies diversity regularization on greedy ensemble prun-
ing, it will be an interesting future work to develop ensemble learning methods
which explicitly exploits diversity regularization. Recently it has been found that
the ensemble diversity exists at multiple orders of correlation [5, 34], thus it is
also of great interest to study whether the theoretical results on diversity still
hold in that case.
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