
On Constrained Boolean Pareto Optimization∗

Chao Qian and Yang Yu and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{qianc,yuy,zhouzh}@lamda.nju.edu.cn

Abstract
Pareto optimization solves a constrained optimiza-
tion task by reformulating the task as a bi-objective
problem. Pareto optimization has been shown quite
effective in applications; however, it has little the-
oretical support. This work theoretically compares
Pareto optimization with a penalty approach, which
is a common method transforming a constrained
optimization into an unconstrained optimization.
We prove that on two large classes of constrained
Boolean optimization problems, minimum matroid
optimization (P-solvable) and minimum cost cov-
erage (NP-hard), Pareto optimization is more effi-
cient than the penalty function method for obtain-
ing the optimal and approximate solutions, respec-
tively. Furthermore, on a minimum cost coverage
instance, we also show the advantage of Pareto op-
timization over a greedy algorithm.

1 Introduction
Optimization tasks usually come with constraints [Bertsekas,
1999], which must be satisfied by the final solutions. For
general constrained optimization, i.e., we don’t make as-
sumptions on its objective function and constraints, the most
widely used method is the penalty function method [Ben
Hadj-Alouane and Bean, 1997; Coello Coello, 2002]. This
method forms an unconstrained optimization problem by
adding a penalty term to the objective function of the orig-
inal problem, where the penalty term usually measures the
degree of the constraints violation. When the penalty term is
well balanced with the objective function, the unconstrained
optimization problem will yield the same optimal solutions as
the original constrained optimization problem.

Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006] solves a constrained optimization problem in a new
way: it treats the constraints violation degree as an additional
objective, and reformulates the original constrained optimiza-
tion problem as a bi-objective optimization problem, which
is to optimize the original objective function and to min-
imize the violation degree simultaneously; the bi-objective

∗This research was supported by NSFC (61375061, 61333014)
and JiangsuSF (BK2012303).

optimization problem is then solved by a multi-objective evo-
lutionary algorithm; and finally the produced solutions are
transformed back to the original problem. Previously, the
performance of this approach was only tested in experiments
on some benchmark problems [Venkatraman and Yen, 2005;
Cai and Wang, 2006]. Recently it has been applied to the en-
semble pruning problem [Qian et al., 2015], where Pareto op-
timization is shown to be superior to state-of-the-art methods
both theoretically and empirically [Qian et al., 2015]. How-
ever, the theoretical understanding of Pareto optimization is
still quite insufficient. It is also important to theoretically un-
derstand how widely Pareto optimization is applicable.

This paper tries to shed some light on the power of Pareto
optimization. We theoretically compare the efficiency of
Pareto optimization with a penalty function method on two
large Boolean optimization problem classes. The efficiency
is measured by the expected running time for achieving an
optimal or approximate solution. Given a problem class F ,
we compare the worst case running time [Cormen et al.,
2001]: denoting POM(f) and PFM(f) as the expected
running time of the Pareto optimization and the penalty func-
tion method for solving f ∈ F , respectively, we compare
POM(F) = max{POM(f)|f ∈ F} with PFM(F) =
max{PFM(f)|f ∈ F}. Our main results are:

• On the P-solvable minimum matroid optimization prob-
lem (denoted as M) for finding an optimal solution,
POM(M) ∈ O(rn(log n + logwmax + r)) (Theorem 1)
and PFM(M) ∈ Ω(r2n(log n+logwmax)) (Theorem 2),
where n, wmax and r are parameters of problem size, max-
imum weight and matroid ranking, respectively. Thus,
Pareto optimization is faster than the penalty function
method by at least a factor of min{log n+ logwmax, r}.

• On the NP-hard minimum cost coverage problem (denoted
as C) for finding an approximate solution, POM(C) ∈
O(Nn(log n+logwmax+N)) (Theorem 3) and PFM(C)
is at least exponential w.r.t. n, N and logwmax (The-
orem 4), where N is a submodular function parameter.
Thus, Pareto optimization is exponentially faster than the
penalty function method.

• On a specific minimum cost coverage instance C ∈ C, the
greedy algorithm finds a local optimal solution (Proposi-
tion 1), while POM(C) ∈ O(n2 log n) (Proposition 2)
and PFM(C) ∈ O(n3 log n) (Proposition 3) for finding

the global optimal solution. Thus, Pareto optimization can
be better than the greedy algorithm.
The rest of the paper starts with a section of preliminar-

ies. Section 3 and 4 present the studies on minimum matroid
optimization and minimum cost coverage, respectively. We
further compare Pareto optimization with a greedy algorithm
in section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 Constrained Optimization
Constrained optimization [Bertsekas, 1999] is to optimize an
objective function with constraints that must be satisfied. It
can be formally stated as follows.

Definition 1 (Constrained Optimization)

arg minx∈{0,1}n f(x) (1)

subject to gi(x) = 0 for 1 ≤ i ≤ q,
hi(x) ≤ 0 for q + 1 ≤ i ≤ m,

where f(x) is the objective function, gi(x) and hi(x) are the
equality and inequality constraints, respectively.

Note that we consider binary spaces {0, 1}n in this paper.
We also only consider minimization since maximizing f is
equivalent to minimizing −f . A solution is (in)feasible if it
does (not) satisfy the constraints. Thus, constrained optimiza-
tion is to find a feasible solution minimizing the objective f .

2.2 The Penalty Function Method
The penalty function method [Ben Hadj-Alouane and Bean,
1997; Coello Coello, 2002] is the most widely employed
method to solve constrained optimization. For the optimiza-
tion problem in Eq. (1), the penalty function method turns to
solve an unconstrained optimization problem:

arg minx∈{0,1}n f(x) + λ
∑m

i=1
fi(x),

where f is the objective in Eq. (1), λ is the penalty coefficient,
and fi is the penalty term expressing a violation degree of the
i-th constraint. A straightforward way to set fi is

fi(x) =

{
|gi(x)| 1 ≤ i ≤ q,
max{0, hi(x)} q + 1 ≤ i ≤ m. (2)

For the penalty coefficient λ, a static value has been shown to
be simple and robust [Homaifar et al., 1994; Michalewicz and
Schoenauer, 1996]. Furthermore, Zhou and He [2007] proved
that a large enough static λ value makes the penalty function
method equivalent to the “superiority of feasible points” strat-
egy [Deb, 2000] that first prefers a smaller constraints viola-
tion degree, and then compares the objective value if having
the same violation degree. Such a strategy ensures that a fea-
sible solution is always better than an infeasible one, and thus
the optimal solutions must be feasible and are the same as that
of the constrained optimization problem.

Then, an unconstrained optimization algorithm will be em-
ployed to solve this unconstrained problem. For tackling
various constrained optimization problems, we consider the

context of general purpose optimization algorithms, such as
randomized local search and evolutionary algorithms [Bäck,
1996]. The penalty function method with a general purpose
optimization algorithm [He and Yao, 2001; Yu and Zhou,
2008] is presented in Algorithm 1.

Algorithm 1 (The Penalty Function Method) Given a
constrained optimization problem as in Eq. (1), it contains:

1. Let h(x)=f(x)+λ
∑m
i=1fi(x) according to Eq. (2).

2. x = selected from {0, 1}n uniformly at random.
3. repeat until the termination condition is met
4. x′=flip each bit of x independently with prob. 1

n .
5. if h(x′) ≤ h(x)
6. x = x′.
7. return x

Sharing a common structure with other general purpose opti-
mization algorithms, it starts from a random solution, gener-
ates a new solution from the current solution by some heuris-
tic, decides if the new solution is good enough to be kept, and
repeats the generation and decision until a good solution is
found. It employs a typical heuristic for generating new so-
lutions in evolutionary algorithms, that flips each bit (0 to 1
or inverse) of a solution with probability 1

n . This algorithm
does not make any assumption on the optimization problem,
but only require that two solutions can be compared for the
goodness (i.e., step 5). Thus it can be widely applied.

2.3 The Pareto Optimization Method
By Pareto optimization [Coello Coello, 2002; Cai and Wang,
2006], the constrained optimization problem is reformulated
into a multi-objective (bi-objective) problem:

arg minx∈{0,1}n
(
f(x),

∑m

i=1
fi(x)

)
where fi is the constraint violation degree and can be set as
Eq. (2). In this bi-objective formulation, a solution has an
objective vector instead of a scalar objective value. Unlike
single-objective optimization, the objective vector makes the
comparison between two solutions not straightforward, be-
cause it is possible that one solution is better on the first di-
mension while the other is better on the second dimension.
For this situation, the domination relationship between solu-
tions is usually used, which is introduced in Definition 2 for
the bi-objective (i.e., two objectives) minimization case.

Definition 2 (Domination) Let g = (g1, g2) : X → R2 be
the objective vector. For two solutions x,x′ ∈ X :
(1) x weakly dominates x′ if g1(x) ≤ g1(x′) and g2(x) ≤
g2(x′), denoted as �g;
(2) x dominates x′ if x �g x′ and either g1(x) < g1(x′) or
g2(x) < g2(x′), denoted as �g .

Thus, a bi-objective optimization problem may not have a sin-
gle optimal solution, but instead have a set of Pareto optimal
solutions. A solution x is Pareto optimal if there is no other
solution in X that dominates x. The set of objective vectors
of all the Pareto optimal solutions is called the Pareto front.

For the fairness of comparison, a general purpose bi-
objective optimization algorithm [Laumanns et al., 2004;

Qian et al., 2013] with the same initialization and random
perturbation as Algorithm 1 is then employed to solve this
bi-objective problem, presented in Algorithm 2.

Algorithm 2 (The Pareto Optimization Method) Given a
constrained optimization problem as in Eq. (1), it contains:

1. Let g(x) = (f(x),
∑m
i=1 fi(x)).

2. x = selected from {0, 1}n uniformly at random.
3. P = {x}.
4. repeat until the termination condition is met
5. x = selected from P uniformly at random.
6. x′=flip each bit of x independently with prob. 1

n .
7. if @z ∈ P such that z �g x′

8. P = (P − {z ∈ P |x′ �g z}) ∪ {x′}.
9. return x ∈ P with

∑m
i=1 fi(x) = 0

It firstly generates a random solution, and puts it into the can-
didate solution set P ; and then follows a cycle to improve the
solutions in P iteratively. In each iteration, a solution x is
randomly selected from P ; and is then perturbed to generate
a new solution x′; if x′ is not dominated by any solution in
P , x′ is added into P and at the same time solutions in P
that are weakly dominated by x′ get removed. Finally, the
solution in P that violates no constraints is selected.

Note that Pareto optimization here is different from tradi-
tional multi-objective optimization [Deb et al., 2002]. The
latter aims at finding a uniform approximation of the Pareto
front, while Pareto optimization aims at finding the optimal
solutions for the original constrained optimization problem.

2.4 Running Time Analysis Comparison
To measure the performance of an algorithm solving a prob-
lem, we employ the expected running time complexity, which
counts the number of objective function evaluations (the most
time-consuming step) until finding a desired solution, since it
has been a leading theoretical aspect for randomized search
heuristics [Neumann and Witt, 2010; Auger and Doerr, 2011].
Because both the two analyzed methods perform only one
objective evaluation (i.e., h(x′) and g(x′)) in each iteration,
the expected running time equals the average number of itera-
tions. For P-solvable problems, we use exact analysis [He and
Yao, 2001], i.e., the running time until an optimal solution is
found. For NP-hard problems, we use approximate analy-
sis [Yu et al., 2012], i.e., the running time until finding an α-
approximate solution having the objective value ≤ α ·OPT ,
where α > 1 and OPT is the optimal function value.

3 On Minimum Matroid Optimization
We first analyze the P-solvable minimum matroid optimiza-
tion problem [Edmonds, 1971], which covers several combi-
natorial optimization problems, e.g., minimum spanning tree.

Let | · | denote the size (i.e., cardinality) of a set. A matroid
is a pair (U, S), where U is a finite set and S ⊆ 2U , satisfying

(1) ∅ ∈ S; (2) ∀A ⊆ B ∈ S,A ∈ S;

(3) ∀A,B ∈ S, |A| > |B| : ∃e ∈ A−B,B ∪ {e} ∈ S.

The elements of S are called independent. For any A ⊆ U ,
a maximal independent subset of A is called a basis of A;

the rank of A is the maximal cardinality of a basis of A, i.e.,
r(A) = max{|B| | B ⊆ A,B ∈ S}. Note that for a matroid,
all bases of A have the same cardinality.

Given a matroid (U, S) and a weight function w : U → N
where N denotes the positive integer set, the minimum ma-
troid optimization problem is to find a basis of U with the
minimum weight. Let U = {e1, e2, . . . , en} and wi = w(ei).
Let x ∈ {0, 1}n represent a subset of U , where xi = 1 means
that ei is selected. For notational convenience, we will not
distinguish x and its corresponding subset {ei ∈ U |xi = 1}.
The problem then can be formally stated as follows.

Definition 3 (Minimum Matroid Optimization) Given a
matroid (U, S) and a weight function w : U → N, it is to find
a solution such that

arg min
x∈{0,1}n

w(x) =
∑n

i=1
wixi s.t. r(x) = r(U). (3)

Note that, a rank oracle that computes the rank of a subset is
polynomially equivalent to an independence oracle that tells
whether a subset is independent [Korte and Vygen, 2012].

For Pareto optimization, noting r(U) ≥ r(x), the objective
vector g is implemented as

g(x) =
(
w(x), r(U)− r(x)

)
.

Theorem 1 proves the running time bound, where wmax =
max{wi | 1 ≤ i ≤ n} is the maximum element weight in U .

Theorem 1 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding an
optimal solution is O(r(U)n(log n+ logwmax + r(U))).

The proof idea is to divide the optimization process into
two phases: (1) starts after initialization and finishes un-
til finding the special solution {0}n; (2) starts from {0}n
and follows the greedy behavior [Edmonds, 1971] to find an
optimal solution. The running time of phase (1) shown in
Lemma 2 is derived by applying multiplicative drift analysis
(i.e., Lemma 1), a recently proposed approach for analyzing
the hitting time of a random process.

Lemma 1 (Multiplicative Drift Analysis) [Doerr et al.,
2012] Let S ⊆ R+ be a finite set of positive numbers with
minimum smin. Let {Xt}t∈N be a sequence of random vari-
ables over S∪{0}. Let T be the random variable that denotes
the first point in time t ∈ N for which Xt = 0. Suppose that
there exists a real number δ > 0 such that

E[[Xt −Xt+1|Xt = s]] ≥ δs

holds for all s ∈ S. Then for all s0 ∈ S, we have

E[[T |X0 = s0]] ≤ (1 + log(s0/smin))/δ.

Lemma 2 For minimum matroid optimization, the expected
running time of the Pareto optimization method for finding
{0}n is O(r(U)n(log n+ logwmax)).

Proof. We prove it by using Lemma 1. Let Xt =
min{w(x) | x ∈ P} (i.e., the minimum weight of solu-
tions in the candidate solution set P) after t iterations of Al-
gorithm 2. Xt = 0 implies that the solution {0}n has been
found, and thus T is the running time for finding {0}n.

Then, we are to analyze E[[Xt −Xt+1|Xt]]. Let x be the
corresponding solution with w(x) = Xt. It is easy to see that
Xt cannot increase (i.e., Xt+1 ≤ Xt) because a newly gener-
ated solution x′ with a larger weight cannot weakly dominate
x. Let Pmax denote the largest size of P during the opti-
mization. In the (t + 1)-th iteration, we consider that x is
selected in step 5 of Algorithm 2, which happens with prob-
ability at least 1

Pmax
. Then, in step 6, we denote xi as the

solution generated by flipping the i-th bit (i.e., xi) of x and
keeping other bits unchanged, which happens with probabil-
ity 1

n (1− 1
n)n−1 ≥ 1

en . If xi = 1, the generated solution xi

will be included into P since it has the smallest weight now
and Xt+1 will decrease to Xt − wi. Thus, we have

E[[Xt+1]] ≤
∑
i:xi=1

Xt − wi
enPmax

+ (1−
∑
i:xi=1

1

enPmax
)Xt

= Xt − w(x)/(enPmax) = (1− 1/(enPmax))Xt.

This implies that E[[Xt −Xt+1|Xt]] ≥ Xt/(enPmax).
The procedure of Algorithm 2 ensures that the solutions

maintained in P must be incomparable, which implies that
there exists at most one solution inP for each value of one ob-
jective. Since the objective r(U)− r(x) ∈ {0, 1, . . . , r(U)},
Pmax ≤ r(U) + 1. Note that X0 ≤ nwmax and smin ≥ 1 by
wi ∈ N. Thus, by Lemma 1, for any X0,

E[[T |X0]] ≤ en(r(U) + 1)(1 + log(nwmax))

∈ O(r(U)n(log n+ logwmax)).

�

Proof of Theorem 1. We analyze phase (2) after finding
{0}n. Let wk = min{w(x) | r(x) = k} denote the small-
est weight in all the solutions with rank k. It is easy to
see that wk increases with k. Then the Pareto front of g is
{(wk, r(U)− k) | 0 ≤ k ≤ r(U)}. We are to show that star-
ing from {0}n with (w0 = 0, r(U)), the algorithm can find
the solutions corresponding to the Pareto front from k = 0 to
r(U) sequentially, where the last solution with (wr(U), 0) is
just the the optimal solution of Eq. (3) we are to find.

We first prove that for any x corresponding to (wk, r(U)−
k), adding the lightest element that makes r(x) increase by
1 will produce a solution x′ corresponding to (wk+1, r(U)−
k − 1). Assume that x = {ei1 , . . . , eik}, x′ = x ∪ {eik+1

},
and there exists another solution x̂ = {ej1 , . . . , ejk , ejk+1

}
with rank k+1 andw(x̂) < w(x′). Assume thatwj1 ≤ . . . ≤
wjk+1

. If wjk+1
≥ wik+1

, w(x̂)−wjk+1
< w(x′)−wik+1

=
w(x), which contradicts with that x has the smallest weight
in all the solutions with rank k. If wjk+1

< wik+1
, then ∃e ∈

x̂ − x, x ∪ {e} has rank k + 1 and w(e) ≤ wjk+1
< wik+1

,
which contradicts with that eik+1

is the lightest element that
increases r(x) by 1. Thus, our claim holds.

Assume that {(wk, r(U) − k) | 0 ≤ k ≤ i} has been
found. This is well defined because i ≥ 0 after finding {0}n.

Based on the above analysis, for finding (wi+1, r(U)− i−1)
in one iteration, it is sufficient to select the solution corre-
sponding to (wi, r(U) − i) in step 5 of Algorithm 2 and flip
only the lightest element that increases its rank by 1 in step 6,
which happens with probability at least 1

Pmax
· 1n (1− 1

n)n−1 ≥
1

en(r(U)+1) . Then, the expected running time isO(r(U)n) for
finding (wi+1, r(U)− i− 1). Since r(U) such processes are
sufficient to find the optimal solution with (wr(U), 0), the ex-
pected running time of phase (2) is O(r2(U)n).

By combining the two phases, the total expected running
time is O(r(U)n(log n+ logwmax + r(U))). �

For the penalty function method, we first show that mini-
mum spanning tree (MST) is an instance of minimum matroid
optimization and then give a concrete MST example where
the penalty function method needs more running time than
Pareto optimization.

Given an undirected connected graph G = (V,E) on m
vertices and n edges with weights w : E → N, the MST
problem is to find a connected subgraph with the minimum
weight. Let E = {e1, e2, . . . , en}. Let x ∈ {0, 1}n represent
a subgraph, where xi = 1 means that the edge ei is selected;
let c(x) denote its connected components. The MST problem
can be formally stated as follows.

Definition 4 (Minimum Spanning Tree) Given an undi-
rected connected graph G = (V,E) with a weight function
w : E → N, it is to find a solution such that

arg min
x∈{0,1}n

w(x) =
∑n

i=1
wixi s.t. c(x) = 1.

Let U = E and S = {subgraphs without cycles}. Then,
(U, S) is a matroid, c(x)+r(x) = m and r(U) = m−1. It is
easy to verify that MST is a minimum matroid optimization
instance (i.e., Definition 3) with such a configuration.

Neumann and Wegener [2007] have analyzed the running
time of the penalty function method on a specific MST ex-
ample, as shown in Lemma 3 (i.e., Theorem 6 in their paper).
Note that the parametersm and n in [Neumann and Wegener,
2007] are opposite to ours, and we have exchanged them here
for consistency. Thus, we have Theorem 2 by r(U) = m− 1.

Lemma 3 [Neumann and Wegener, 2007] The expected run-
ning time until the penalty function method finds a mini-
mum spanning tree for an example graph (n ∈ Θ(m2),
wmax = 3m2) equals Θ(n2 logm).

Theorem 2 There exists a minimum matroid optimiza-
tion instance, where the expected running time of the
penalty function method for finding an optimal solution is
Θ(r2(U)n(log n+ logwmax)).

4 On Minimum Cost Coverage
We then analyze the minimum cost coverage problem, which
is NP-hard. A representative instance is the submodular set
cover problem [Wolsey, 1982], which arises in many applica-
tions, e.g., social networks [Kempe et al., 2003] and sensor
placement [Krause et al., 2008].

Let U = {e1, e2, . . . , en} be a finite set. A set function
f : 2U → R is monotone and submodular iff ∀A,B ⊆ U ,
f(A) ≤ f(B) +

∑
e∈A−B(f(B ∪{e})− f(B)) [Nemhauser

et al., 1978]. Let x ∈ {0, 1}n represent a subset of U . Mini-
mum cost coverage can be formally stated as follows.

Definition 5 (Minimum Cost Coverage) Given a monotone
submodular function f : 2U → R, some value q ≤ f(U) and
a weight function w : U → N, it is to find a solution such that

arg min
x∈{0,1}n

w(x) =
∑n

i=1
wixi s.t. f(x) ≥ q. (4)

We consider f to be non-negative. Since the rank of a matroid
is a monotone submodular function, minimum matroid opti-
mization is actually a minimum cost coverage instance with
q = r(U). We analyze them separately because minimum
matroid optimization is P-solvable and minimum cost cov-
erage is NP-hard in general. We use exact and approximate
analysis, respectively.

For minimum cost coverage by Pareto optimization, the ob-
jective vector g is implemented as

g(x) =
(
w(x),max{0, q − f(x)}

)
.

The running time bound is proved in Theorem 3. Let Hi =∑i
j=1 1/j be the i-th harmonic number, and let c denote the

minimum real number making c · f(x) for all x and c · q to
be integer. Let N denote the number of distinct f values in
[0, q). The proof idea is similar to that for Theorem 1 except
that it follows the greedy behavior [Wolsey, 1982] to find an
approximate solution.

Theorem 3 For minimum cost coverage, the expected run-
ning time of the Pareto optimization method for finding aHcq-
approximate solution is O(Nn(log n+ logwmax +N)).

Proof. Because the objective max{0, q − f(x)} has N + 1
number of distinct values and the solutions in P are incompa-
rable, the largest size of P is not larger than N + 1. By using
the same proof as Lemma 2 except Pmax ≤ N + 1 here, we
can derive that the expected running time for finding {0}n is
O(Nn(log n+ logwmax)).

Let Rk = Hcq − Hc(q−k). Let x∗ and OPT denote an
optimal solution and the optimal function value of Eq. (4),
respectively. Then, w(x∗) = OPT . Let Kmax denote the
maximum value of k such that there exists one solution x in
P with min{q, f(x)} = k and w(x) ≤ Rk · OPT . That is,
Kmax = max{k | ∃x ∈ P,min{q, f(x)} = k ∧ w(x) ≤
Rk · OPT}. Then, we are to analyze the expected running
time until Kmax = q, which implies that it finds a Rq (i.e.,
Hcq)-approximate solution.

After finding {0}n, Kmax ≥ 0. Assume that currently
Kmax = k < q. Let x denote the corresponding solution with
the value k, i.e., min{q, f(x)} = k and w(x) ≤ Rk · OPT .
We are first to show that Kmax cannot decrease. If x is kept
in P , Kmax obviously will not decrease. If x is deleted,
by step 7 and 8 of Algorithm 2, a newly generated solu-
tion x′ weakly dominating x (i.e., x′ is not worse on both
the two objectives) must be included. Note that max{0, q −

f(x)} = q − min{q, f(x)}. Thus, min{q, f(x′)} = k′ ≥
min{q, f(x)} = k and w(x′) ≤ w(x). Because Rk in-
creases with k, w(x′) ≤ Rk · OPT ≤ Rk′ · OPT . Thus,
Kmax ≥ k′, i.e., Kmax will not decrease.

Then, we are to show that Kmax can increase by flipping
a specific 0 bit of x. Let f ′(x) = min{q, f(x)}. Let xi de-
note the solution generated by flipping the i-th bit of x. Let
I = {i ∈ [1, n] | f ′(xi) − f ′(x) > 0} denote the 0 bit po-
sitions of x where the flipping can generate a solution with a
positive increment on f ′. Let δ = min{ wi

f ′(xi)−f ′(x) | i ∈ I}.
Then, δ ≤ OPT/(q − k). Otherwise, for any ei ∈ x∗ − x,
wi > (f ′(xi)−f ′(x))·OPT/(q−k). Thus,

∑
ei∈x∗−x wi >(∑

ei∈x∗−x(f ′(xi) − f ′(x))
)
· OPT/(q − k). Since f is

monotone and submodular, f ′ is also monotone and submod-
ular, then f ′(x∗) − f ′(x) ≤

∑
ei∈x∗−x(f ′(xi) − f ′(x)).

Thus,
∑
ei∈x∗−x wi > (f ′(x∗) − f ′(x)) · OPT/(q − k) =

OPT , which contradicts with
∑
ei∈x∗−x wi ≤ w(x∗) =

OPT . Thus, by selecting x in step 5 of Algorithm 2 and
flipping only the 0 bit corresponding to δ in step 6, it can gen-
erate a new solution x′ with min{q, f(x′)} = k′ > k and

w(x′) ≤ w(x) + (k′ − k) ·OPT/(q − k) ≤ Rk′ ·OPT.

Once generated, x′ will be included into P . Otherwise, there
must exist a solution in P dominating x′ which has a larger
f ′ and a smaller w; this implies that Kmax has already been
larger than k, which contradicts with the assumptionKmax =
k. After including x′, Kmax increases from k to k′.

The probability of flipping a specific 0 bit of x is at least
1

N+1 ·
1
n (1− 1

n)n−1 ≥ 1
en(N+1) . Thus, the expected running

time for such a step of increasingKmax is at most en(N+1).
Since N such steps are sufficient to make Kmax = q, the
expected running time of this phase is O(N2n).

By combining the two phases, the expected running time
of the whole process is O(Nn(log n+ logwmax +N)). �

For the penalty function method, we first show that mini-
mum set cover (MSC) is an instance of minimum cost cover-
age and then give a concrete MSC example where the penalty
function method is less efficient than Pareto optimization.

Definition 6 (Minimum Set Cover) Given a set S =
{e1, . . . , em}, a collectionC = {C1, . . . , Cn} of subsets of S
with corresponding costs w : C → N, it is to find a subset of
C (represented by x ∈ {0, 1}n) with the minimum cost such
that all the elements of S are covered, that is

arg min
x∈{0,1}n

w(x) =
∑n

i=1
wixi s.t.

⋃
i:xi=1

Ci = S.

Let U = C and f(x) = |
⋃
i:xi=1 Ci|. Then f is monotone

and submodular. Since f(x) ≤ m and |S| = m, it is easy
to verify that the MSC problem is an instance of minimum
cost coverage (i.e., Definition 5) with q = m. Obviously, the
parameters c ≤ 1 and N ≤ m for MSC.

Friedrich et al. [2010] have analyzed the running time of
the penalty function method on a specific MSC example, as
shown in Lemma 4 (i.e., Theorem 8 in their paper). Thus, we
have Theorem 4 by letting ε being a constant and wmax = 2n.

Lemma 4 [Friedrich et al., 2010] Let δ > 0 be a constant
and nδ−1 ≤ ε < 1/2. The expected running time of the
penalty function method on a MSC example (m = ε(1−ε)n2)
for finding an approximation better than ((1 − ε)wmax)/ε is
exponential w.r.t. n.

Theorem 4 There exists a minimum cost coverage instance,
where the expected running time of the penalty function
method for finding a Hcq-approximate solution is exponen-
tial w.r.t. n, N and logwmax.

5 Pareto Optimization vs. Greedy Algorithm
For the above two problems, there exist greedy algorithms
which efficiently find an optimal solution [Edmonds, 1971]
and aHcq-approximate solution [Wolsey, 1982], respectively.
Thus, a natural question is whether Pareto optimization can
be better than greedy algorithms. We give a positive answer
by analyzing a concrete instance of minimum set cover (also
minimum cost coverage).

Example 1 [Yu et al., 2012] As shown in Figure 1, the
ground set S contains m = k(k − 1) elements, and
the collection C contains n = (k + 1)(k − 1) sub-
sets {S∗1 , . . . , S∗k−1, S1,1, . . . , S1,k, . . . , Sk−1,1, . . . , Sk−1,k}
with costs ∀i : w(S∗i) = 1 + 1/k2 and ∀i, j : w(Si,j) = 1/j.

For Example 1, the global optimal solution is Cglobal =
{S∗1 , . . . , S∗k−1} with cost (k − 1)(1 + 1/k2), and Clocal =
{S1,1, . . . , S1,k, . . . , Sk−1,1, . . . , Sk−1,k} is a local optimal
solution with cost (k − 1)Hk. We show the performance of
the greedy algorithm [Chvatal, 1979], the Pareto optimization
method and the penalty function method on this example in
Propositions 1-3, respectively. The greedy algorithm itera-
tively selects a subset from C with the smallest ratio of its
cost and the number of newly covered elements, and its per-
formance is directly from Proposition 1 in [Yu et al., 2012].

Proposition 1 [Yu et al., 2012] For Example 1, the greedy
algorithm [Chvatal, 1979] finds Clocal.

Proposition 2 For Example 1, the Pareto optimization
method finds Cglobal in O(n2 log n) expected running time.

Proof. The objective vector g is implemented as
(
w(x),m−

|
⋃
i:xi=1 Ci|

)
. By using the same proof as Lemma 2 except

that wmax = 1 + 1/k2 and Pmax ≤ m + 1 in this example,

𝑆1
∗

𝑆1,1

𝑆1,2

𝑆1,𝑘

𝑆2
∗

𝑆2,1

𝑆2,2

𝑆2,𝑘

𝑆𝑘−1
∗

𝑆𝑘−1,1

𝑆𝑘−1,2

𝑆𝑘−1,𝑘

Figure 1: An example of the minimum set cover problem.

we can derive an upper bound O(mn log n) = O(n2 log n)
on the expected running time for finding {0}n.

Then, we are to show that starting from {0}n, it can find
the subset of Cglobal = {S∗1 , . . . , S∗k−1} with size from 0
to k − 1 sequentially. Note that any subset of Cglobal is
Pareto optimal, since the cost of covering k elements using
subsets only from {Si,j} is larger than 1 + 1

k2 . After finding
x ⊆ Cglobal with |x| = i, it can generate x′ ⊆ Cglobal
with |x′| = i + 1 in one iteration with probability at least
k−1−i
(m+1)n (1− 1

n)n−1 ≥ k−1−i
e(m+1)n , since it is sufficient to select

x and flip one 0 bit corresponding to any unselected S∗i .
Thus, the expected running time to find the optimal solution
Cglobal is at most

∑k−2
i=0

e(m+1)n
k−1−i ∈ O(n2 log n). �

Proposition 3 For Example 1, the penalty function method
finds Cglobal in O(n3 log n) expected running time.

Proof. Let u denote the number of uncovered elements of
the current solution. Obviously, u will not increase. Since
each uncovered element has a corresponding Si,j , flipping
the corresponding bit of Si,j can decrease u by 1. Thus,
u can decrease by 1 in one iteration with probability at
least u

n (1 − 1
n)n−1 ≥ u

en . Hence, for finding a set cover
(i.e., u decreases to 0), the expected running time is at most∑1
u=m

en
u ∈ O(n log n). Note that after finding a set cover,

the solution will always keep being a set cover.
Then, we apply Lemma 1 to derive the running time for

finding Cglobal. Let Xt = w(xt)− wopt, where xt is the so-
lution after t iterations of Algorithm 2 and wopt is the optimal
weight, i.e., w(Cglobal). Then, Xt = 0 implies that Cglobal is
found, and T is just the running time for finding Cglobal.

We are to analyze E[[Xt −Xt+1|Xt]]. It is easy to see that
w(xt+1) ≤ w(xt). For xt, there are three covering cases for
each column of Figure 1. For case (1) which contains S∗i and
several Si,j , by deleting one Si,j , w(xt+1) = w(xt) − 1/j
with probability 1

n (1 − 1
n)n−1. For case (2) which contains

all Si,j but not S∗i , by including S∗i and deleting Si,1 and an-
other Si,j , w(xt+1) = w(xt)− (1/j− 1/k2) with probabil-
ity 1

n3 (1− 1
n)n−3; by including S∗i and deleting Si,1 and any

two from {Si,2, . . . , Si,k}, w(xt+1) < w(xt)− (k − 2)/k2

with probability (k−1
2)
n4 (1 − 1

n)n−4. For case (3) which con-
tains only S∗i , it reaches the optimal case. By unifying these
probabilities to a lower bound k−2

2e(k+1)n3 , the sum of the im-
provements is just w(xt)− wopt. Thus,

E[[w(xt+1)]] ≤ w(xt)− k − 2

2e(k + 1)n3
(w(xt)− wopt).

Then, we have E[[Xt −Xt+1|Xt]]

= w(xt)− E[[w(xt+1)]] ≥ k − 2

2e(k + 1)n3
·Xt.

By Lemma 1, s0 < k2 and smin ≥ 1/k, we have

E[[T |X0]] ≤ 2e(k + 1)n3

k − 2
· (1 + 3 log k) ∈ O(n3 log n).

�

6 Conclusion
Pareto optimization employs a bi-objective optimization as an
intermediate step for solving constrained optimization prob-
lems. Recent application [Qian et al., 2015] has shown its
theoretical and empirical advantages. This work further the-
oretically investigates its optimization ability. Pareto opti-
mization is compared with the widely used penalty function
method on two large problem classes, the P-solvable mini-
mum matroid optimization and the NP-hard minimum cost
coverage problem. On both problems, Pareto optimization is
proved to be more efficient. Moreover, Pareto optimization is
shown to be better than the greedy algorithm. With these the-
oretical results, we expect that Pareto optimization will attract
more attentions for constrained optimization tasks.

References
[Auger and Doerr, 2011] A. Auger and B. Doerr. Theory of Ran-

domized Search Heuristics - Foundations and Recent Develop-
ments. World Scientific, Singapore, 2011.

[Bäck, 1996] T. Bäck. Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Programming, Ge-
netic Algorithms. Oxford University Press, Oxford, UK, 1996.

[Ben Hadj-Alouane and Bean, 1997] A. Ben Hadj-Alouane and
J. C. Bean. A genetic algorithm for the multiple-choice integer
program. Operations Research, 45(1):92–101, 1997.

[Bertsekas, 1999] D. P. Bertsekas. Nonlinear Programming.
Athena Scientific, Cambridge, MA, 1999.

[Cai and Wang, 2006] Z. Cai and Y. Wang. A multiobjective
optimization-based evolutionary algorithm for constrained op-
timization. IEEE Transactions on Evolutionary Computation,
10(6):658–675, 2006.

[Chvatal, 1979] V. Chvatal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research, 4(3):233–235,
1979.

[Coello Coello, 2002] C. A. Coello Coello. Theoretical and numer-
ical constraint-handling techniques used with evolutionary algo-
rithms: A survey of the state of the art. Computer Methods in
Applied Mechanics and Engineering, 191(11):1245–1287, 2002.

[Cormen et al., 2001] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein. Introduction to Algorithms. MIT Press, Cambridge,
MA, 2001.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Meyari-
van. A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation, 6(2):182–
197, 2002.

[Deb, 2000] K. Deb. An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied Mechanics
and Engineering, 186(2):311–338, 2000.

[Doerr et al., 2012] B. Doerr, D. Johannsen, and C. Winzen. Mul-
tiplicative drift analysis. Algorithmica, 64(4):673–697, 2012.

[Edmonds, 1971] J. Edmonds. Matroids and the greedy algorithm.
Mathematical Programming, 1(1):127–136, 1971.

[Friedrich et al., 2010] T. Friedrich, J. He, N. Hebbinghaus, F. Neu-
mann, and C. Witt. Approximating covering problems by ran-
domized search heuristics using multi-objective models. Evolu-
tionary Computation, 18(4):617–633, 2010.

[He and Yao, 2001] J. He and X. Yao. Drift analysis and average
time complexity of evolutionary algorithms. Artificial Intelli-
gence, 127(1):57–85, 2001.

[Homaifar et al., 1994] A. Homaifar, C. X. Qi, and S. H. Lai.
Constrained optimization via genetic algorithms. Simulation,
62(4):242–253, 1994.

[Kempe et al., 2003] D. Kempe, J. Kleinberg, and É. Tardos. Max-
imizing the spread of influence through a social network. In Pro-
ceedings of the 9th SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 137–146, Washington, DC, 2003.

[Korte and Vygen, 2012] B. Korte and J. Vygen. Combinatorial
Optimization: Theory and Algorithms. Springer-Verlag, Berlin,
Germany, 2012.

[Krause et al., 2008] A. Krause, B. McMahan, C. Guestrin, and
A. Gupta. Robust submodular observation selection. Journal
of Machine Learning Research, 9(12):2761–2801, 2008.

[Laumanns et al., 2004] M. Laumanns, L. Thiele, and E. Zitzler.
Running time analysis of multiobjective evolutionary algorithms
on pseudo-Boolean functions. IEEE Transactions on Evolution-
ary Computation, 8(2):170–182, 2004.

[Michalewicz and Schoenauer, 1996] Z. Michalewicz and
M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation,
4(1):1–32, 1996.

[Nemhauser et al., 1978] G. L. Nemhauser, L. A. Wolsey, and M. L.
Fisher. An analysis of approximations for maximizing submod-
ular set functions – I. Mathematical Programming, 14(1):265–
294, 1978.

[Neumann and Wegener, 2007] F. Neumann and I. Wegener. Ran-
domized local search, evolutionary algorithms, and the mini-
mum spanning tree problem. Theoretical Computer Science,
378(1):32–40, 2007.

[Neumann and Witt, 2010] F. Neumann and C. Witt. Bioinspired
Computation in Combinatorial Optimization - Algorithms and
Their Computational Complexity. Springer-Verlag, Berlin, Ger-
many, 2010.

[Qian et al., 2013] C. Qian, Y. Yu, and Z.-H. Zhou. An analysis
on recombination in multi-objective evolutionary optimization.
Artificial Intelligence, 204:99–119, 2013.

[Qian et al., 2015] C. Qian, Y. Yu, and Z.-H. Zhou. Pareto ensem-
ble pruning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pages 2935–2941, Austin, TX, 2015.

[Venkatraman and Yen, 2005] S. Venkatraman and G. G. Yen. A
generic framework for constrained optimization using genetic
algorithms. IEEE Transactions on Evolutionary Computation,
9(4):424–435, 2005.

[Wolsey, 1982] L. A. Wolsey. An analysis of the greedy algo-
rithm for the submodular set covering problem. Combinatorica,
2(4):385–393, 1982.

[Yu and Zhou, 2008] Y. Yu and Z.-H. Zhou. A new approach to esti-
mating the expected first hitting time of evolutionary algorithms.
Artificial Intelligence, 172(15):1809–1832, 2008.

[Yu et al., 2012] Y. Yu, X. Yao, and Z.-H. Zhou. On the approx-
imation ability of evolutionary optimization with application to
minimum set cover. Artificial Intelligence, 180:20–33, 2012.

[Zhou and He, 2007] Y. Zhou and J. He. A runtime analysis of
evolutionary algorithms for constrained optimization problems.
IEEE Transactions on Evolutionary Computation, 11(5):608–
619, 2007.

