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Abstract

In multi-label classification tasks, labels are com-
monly related with each other. It has been well rec-
ognized that utilizing label relationship is essential
to multi-label learning. One way to utilizing label
relationship is to map labels to a lower-dimensional
space of uncorrelated labels, where the relationship
could be encoded in the mapping. Previous lin-
ear mapping methods commonly result in regres-
sion subproblems in the lower-dimensional label
space. In this paper, we disclose that mappings to
a low-dimensional multi-label regression problem
can be worse than mapping to a classification prob-
lem, since regression requires more complex model
than classification. We then propose the binary lin-
ear compression (BILC) method that results in a bi-
nary label space, leading to classification subprob-
lems. Experiments on several multi-label datasets
show that, employing classification in the embed-
ded space results in much simpler models than re-
gression, leading to smaller structure risk. The pro-
posed methods are also shown to be superior to
some state-of-the-art approaches.

1 Introduction
The goal of multi-label classification is to learn a classifier
that can predict a label vector for a given data point. Multi-
label classification has been widely used in real-world ap-
plications, such as image/video annotation [Carneiro et al.,
2007] and query/keyword suggestions [Agrawal et al., 2013].
While early multi-label classification methods, such as Bi-
nary Relevance (BR) [Boutell et al., 2004], do not take label
relationship into account, it has been well recognized that uti-
lizing label relationship is essential in multi-label classifica-
tion. Many studies have been done following this direction.

One way to utilize the relationship, is to map the original
labels to a lower-dimensional embedding space, such that the
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relationship could be encoded in the mapping. There are al-
ready some approaches using mapping to reduce the dimen-
sion and correlation of labels, called embedding-based ap-
proaches, such as Compressed Sensing [Hsu et al., 2009],
PLST [Tai and Lin, 2012], landmarks labels [Balasubrama-
nian and Lebanon, 2012], output codes [Zhang and Schnei-
der, 2011], SLEEC [Bhatia et al., 2015], etc. The common
procedure of these approaches is that, firstly, they map the
label vectors to a low-dimensional label space, then learn
to predict the low-dimensional labels, and finally map the
predicted low-dimensional labels back to the original label
space. These approaches commonly employ a matrix as the
mapping function from the original label space to the lower-
dimensional space, which naturally results in a real-domain
lower-dimensional space and thus the learning task is a re-
gression problem in the new label space.

We notice that transforming a classification problem to
a regression problem could increase the complexity of the
learning task, since regression loss is much more sensitive
than classification loss. Therefore, we hypothesize that it will
be easier to learn if the mapping can lead to classification
problems instead of regression.

In this paper, we validate the hypothesis by developing a
binary linear compression method for multi-label classifica-
tion, named BILC. BILC also employs a matrix as the map-
ping, however, the mapped labels in the lower-dimensional
space are rounded to be binary, such that the learning in the
new label space is classification. In this way, a random matrix
(employed in compressed sensing) does not lead to a good
performance. Therefore, we try to learn a good embedding
matrix, so that it leads to a good reconstruction of the labels.
Due to the nonlinear rounding process, optimizing the matrix
is a non-convex and non-differentiable problem. Instead of
transforming the problem to be a convex but unfaithful objec-
tive, we employ state-of-the-art derivative-free method [Yu et
al., 2016] to handle the optimization difficulty, which helps
to validate our hypothesis directly. Experiments on several
multi-label datasets show that BILC can have superior per-
formance to some state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2
introduces the background. Section 3 presents the proposed
BILC method. Section 4 presents experiments. Section 5
concludes the paper.



2 Background
2.1 Multi-Label Learning
Given a dataset D = {(xi,yi)

n
i=1}, xi ∈ Rd be the in-

put feature vector, and yi ∈ {+1,−1}L be L-dimension
label vector. The feature matrix is denoted as X =
[x1;x2; ...;xn] ∈ Rn×d and the label matrix is denoted as
Y = [y1;y2; ...;yn] ∈ {+1,−1}n×L. Given D, the goal is
to learn a multi-label classifier f : Rd → {+1,−1}L that can
predict the label vector for a given instance.

Traditional single-label classification problems aim at
learning a classifier that can tag an instance with a single label
from a label set. In multi-label classification problem, an in-
stance is associated with multiple labels. Multi-label learning
has been studied for decades, and many algorithms have been
proposed. Most of them can be grouped into two types, prob-
lem transformation methods and algorithm adaptation meth-
ods [Tsoumakas and Katakis, 2007].

Problem transformation methods usually transform multi-
label problems into other well studied problems, such as Bi-
nary Relevance [Boutell et al., 2004], Calibrated Label Rank-
ing [Fürnkranz et al., 2008], Random k-labelsets [Tsoumakas
and Vlahavas, 2007], etc. The key idea of problem transfor-
mation methods is to reduce the multi-label learning problem
to another problem that is easy to deal with. For example,
Binary Relevance method transforms a multi-label learning
task into a group of binary classification tasks, and Random
k-labelsets method transforms a multi-label learning task into
an ensemble of multi-class classification tasks.

Algorithm adaptation methods, on the contrary, modify ex-
isting learning techniques to enable them to fit the multi-label
classification problem, such as ML-kNN [Zhang and Zhou,
2007], ML-DT [Li et al., 2010], BP-MLL [Zhang and Zhou,
2006], etc. For example, ML-kNN method adapts lazy learn-
ing technique k-NN on multi-label classification. ML-DT
adapts decision tree technique to solve multi-label classifi-
cation tasks. BP-MLL adapts the popular back-propagation
algorithm for multi-label learning.

2.2 Embedding-Based Method
Embedding-based methods belong to a group of problem
transformation methods, which focus on using label relation-
ship to reduce the effective number of labels. They com-
monly map the label vectors to a new lower-dimension label
space, and learning (often by Binary Relevance) in the new
label space. The predictions in the new label space are finally
mapped back to the original label space.

Several embedding-based methods that have been pro-
posed. For example, Compressed Sensing [Hsu et al., 2009],
PLST [Tai and Lin, 2012], landmarks labels [Balasubrama-
nian and Lebanon, 2012], output codes [Zhang and Schnei-
der, 2011] and state-of-the-art SLEEC [Bhatia et al., 2015].

These approaches often project the label vectors onto an
L̂-dimensional linear subspace as z = Uy, which L̂ < L

and z ∈ RL̂. For this compression process, U is called as the
compression matrix. After compression, they train a set of re-
gressors to predict z from x. Finally, they find a reconstruc-
tion matrix Û to map embedded label vectors to the origin

label space by y = ÛV (x), which is called reconstruction or
decompression.

Different embedding-based approaches mainly differ in the
methods of compression and reconstruction. For example,
Compressed Sensing (CS) uses a random matrix as compres-
sion matrix U . It uses greedy methods to reconstruct, such as
Orthogonal Matching Pursuit [Pati et al., 1993]. PLST gets
compression matrix U and reconstruction matrix Û by sin-
gular value decomposition. SLEEC aims at learning embed-
dings that preserving local distance, which can promote the
accuracy of tail labels prediction, by optimizing the objective
function:

min
V ∈RL̂∗d

||PΩ(Y TY )− PΩ(XTV TV X)||2F

+λ||V ||2F + µ||V X||1
(1)

where V is a set of regressors and the index set Ω denotes the
set of neighbors that we wish to preserve, i.e., (i, j) ∈ Ω iff
j ∈ Ni. Ni denotes a set of nearest neighbors of i. And PΩ

is defined as:

(PΩ(Y TY ))ij =

{
〈yi,yj〉, if(i, j) ∈ Ω
0, otherwise

SLEEC employs a set of regressors to predict the embedded
labels, and reconstructs the labels in the original label space.
Note that a reconstructed label is not binary, the nearest bi-
nary label is searched and used as the final prediction.

These embedding-based approaches naturally result in re-
gression problems. All of them have to learn regressors in
the embedded label space. In this paper, we argue that re-
gression requires higher model complexity than classifica-
tion, and thus classification models are more appealing.

There are a few previous studies that employed binary ma-
trix decomposition to result in binary embedded space, e.g.
[Wicker et al., 2012]. Since these methods operate on binary
relationship operators directly, the optimal decomposition is
hard to approximate. Greedy algorithm, although commonly
employed, is hard to perform well on large data.

2.3 Derivative-Free Optimization
Previously optimization problems in learning tasks are mostly
solved by gradient-based methods. However, the optimiza-
tion may not always simple enough to fit the gradient-base
methods. Often, a complex optimization has to be relaxed to
a convex problem, sacrificing the faithfulness to the original
problem.

Recently, the derivative-free optimization methods have
made significant progress in both theoretical foundation and
practical usage. A derivative-free optimization method con-
siders the general optimization problem arg maxx∈X f(x),
where X is the domain and f can be quite complex. The
methods, instead of calculating gradients of f , samples solu-
tions x and learns from their feedbacks f(x) for finding bet-
ter solutions. Therefore, derivative-free optimization meth-
ods can be more suitable for problem with bad mathemati-
cal properties, including non-convexity, non-differentiability,
and having many local optima.

Ancient derivative-free optimization methods includes rep-
resentatives such as genetic algorithms [Goldberg, 1989],



which are mostly consist of rule-of-thumbs heuristics. Re-
cently, approaches with strong theoretical supports have
emerged, including Bayesian optimization methods [Brochu
et al., 2010], optimistic optimization methods [Munos, 2014],
and model-based optimization [Yu et al., 2016]. These ap-
proaches have been shown successful in various applica-
tions including hyper parameter tuning, non-convex objective
learning, etc. We thus employ state-of-the-art derivative-free
optimization methods to solve our problem directly.

3 Binary Linear Compression
As mentioned above, most embedding-based methods have
to use regression to train and predict on low-dimensional la-
bel space. Regression model has a larger model size and is
more complex than classification, which is proved by some
experiments in the experiment section later. So if we can use
classification instead of regression, we may have a better gen-
eralized performance and a smaller model size.

We now present our method, BILC, an embedding-based
method which learns a binary embedding and utilizes high-
order relationship between labels. For a given dataset, we
learn a compression matrix M ∈ RL̂×L and a reconstruction
matrix M̂ ∈ RL×L̂. We use compression matrix M to map a
label vector y to L̂-dimension binary vector z,

z = [My], z ∈ {+1,−1}L̂, L̂ < L (2)

where [·] denotes the sign operator that rounds the given
value as +1 or−1 (for zeros its randomly outputs +1 or−1).

After obtaining z, we learn a set of L̂ number of base
classifiers C = {C1, . . . , CL̂} with respect to the new la-
bel z, i.e., to minimize some multi-label loss between z and
(C1(x), . . . , CL̂(x)) over all instances x.

During the test phase, for an unseen instance x̃, we first use
base classifiers C to predict the low-dimensional label vector
z̃ = C(x̃), then use the reconstruction matrix M̂ to map the
predicted label vector to high-dimensional label space,

ỹ = [M̂ z̃]. (3)

During the training and testing process above, the nonlinear
sign operator [·] is applied, which makes the system sophis-
ticated and thus an arbitrary matrix M and M̂ may not per-
form well. Therefore, it is crucial to learn a good embedding
and reconstruction matrices.

3.1 Learning Embeddings
We wish to find a compression matrixM and a reconstruction
matrix M̂ with the criterion that the labels are kept as accurate
as possible after the compression and decompression. This
criterion is implemented in the following objective function,

arg minM,M̂ Loss([M̂ [MY ]], Y ) (4)

where Loss is some multi-label classification loss function in
the original label space. Frequently used multi-label classifi-
cation functions include the Hamming loss function and the
top-k average precision loss functions.

Algorithm 1 BILC

Input:
Training Data D = {(xi,yi)}ni=1
A derivative-free optimization method Opt
Multi-label classification loss Loss
Embedding dimension L̂

Procedure: Learning
1: M ← Opt. argminM

[
Evaluation(M ;Loss, {yi})

]
2: zi = [Myi] ,∀i
3: train base classifiers C over {(xi, zi)}ni=1 by Binary Rel-

evant method
4: return M , M̂ = M>(MM>)−1, C

Procedure: Evaluation(M ;Loss, {yi})
1: zi = [Myi] ,∀i
2: ŷi = [M>(MM>)−1zi] ,∀i
3: ε = Loss(ŷ,y)
4: return ε

Procedure: Prediction(x)
1: for l = 1 to L̂ do
2: z̃(l) = Cl(x)
3: end for
4: ỹ = [M̂ ∗ z]
5: return ỹ

The Hamming loss function evaluates the fraction of mis-
classified instance-label pairs,

LossHamming =
1

n · L

n∑
i=1

L∑
l=1

I(Ỹ l
i 6= Y l

i ), (5)

where Ỹ l
i is the predicted l-th label on instance i, Y l

i is that of
the true label, and I(·) is the indicator function that returns 1
if its inner expression is true and 0 otherwise. Hamming loss
is suitable when there are a few dense labels, but may be not
a good loss function when the labels are very sparse, since
predicting a zero-vector can have very small loss in this case.
For sparse labels, precision at top-k is often more preferred,
described as the objective function,

LossP@k =
1

n · k

n∑
i=1

k∑
r=1

I(TopLabel(r; i) ∈ Yi), (6)

where TopLabel(r; i) returns the predicted top r-th label of
the instance i, Yi is the true positive label set of the instance
i. It can be noted that this loss has a parameter k. In many
cases we want to learn models for general situations rather
than some particular k. In this paper, we adopt the weighted
average top-label precision as the loss function,

LossAvgP =
∑

k∈K
e−k · LossP@k, (7)

where K is the set of selected k values.

3.2 Optimization
Note that Eq.(4) is hard to be optimized straightforwardly as
it is non-differentiable and highly non-convex due to the two



sign operators, particularly when the average top-label pre-
cision loss is incorporated. Fortunately, derivative-free op-
timization methods have made significant progress recently,
which allow us to directly tackle the original objective instead
of shifting the problem to be an unfaithful convex objective.

However, derivative-free optimization commonly con-
verges slow if there are too many variables to optimize.
Therefore, we simplify the optimization by letting the recon-
struction matrix be the pseudo inverse of the compression ma-
trix. The objective function now has only one matrix to be
optimized,

arg minM Loss
(
[M>(MM>)−1[MY ]], Y

)
. (8)

Note that Eq.(8) enforces the reconstruction matrix and elim-
inates its degree of freedom, which may not result in the exact
solution as Eq.(4), but can be more efficient to be solved.

Since derivative-free optimization methods in general can
be applied to optimize arbitrary functions, in Algorithm 1, we
let the optimization algorithm as an input, Opt, which can be
directly invoked to solve the given objective function, repre-
sented as its ‘argmin’ method. The concrete algorithm will
be disclosed in the experiment section.

3.3 Learning Base Classifiers
In the training phase, after generating labels in the low-
dimensional space, we will train a set of base classifiers,
which is still a multi-label classification task. We argue
that as we map the original labels to a more compact lower-
dimensional space, the label correlation has been absorbed in
the embedding matrix, and the new labels are almost indepen-
dent with each other. Therefore, Binary Relevance method is
suitable to solve the task. That is, we train a classifier for each
new label separately.

3.4 Prediction
In prediction phase, for an unseen instance x̃, we use base
classifiers C to get low-dimensional label vector z̃ = C(x̃).
Then we use the reconstruction matrix M̂ = M>(MM>)−1

and binary rounding operator to get original label vector
ỹ = [M>(MM>)−1z̃]. The pseudo-code is described in
the Prediction procedure of Algorithm 1.

3.5 Acceleration
For large datasets, an idea of accelerating embedding meth-
ods is to divide the feature space into multiple regions, and
then train in each region independently, with fewer data and
labels. For example, in [Bhatia et al., 2015], a clustering
method is employed to divide the feature space. Therefore,
it is also possible to accelerate BILC by decomposition of the
feature space through clustering or decision tree.

4 Experiments
4.1 Configuration
We employ 5 datasets in our experiments, including core5k
[Duygulu et al., 2002], bibtex [Katakis et al., 2008], book-
marks [Katakis et al., 2008], NUS-Wide [Chua et al., 2009],
Delicious [Tsoumakas et al., 2008]. All the datasets are pub-
licly available.

Table 1: Datasets properties

dataset #features #labels #training
instances

#test
instances density

core5k 499 374 4,050 450 3.52
bibtex 1,836 159 6,655 740 2.40
bookmarks 2,150 208 79,071 8,785 2.03
NUS-Wide 128 1,000 27,807 27,808 7.32
Delicious 500 983 14,494 1,611 19.02

We compare BILC with embedding-based methods, in-
cluding Compressed Sensing [Hsu et al., 2009], 1-Bit Com-
pressed Sensing [Boufounos and Baraniuk, 2008], which can
be regarded as a degeneration of BILC that does not opti-
mize the compression matrix, PLST [Tai and Lin, 2012],
SLEEC [Bhatia et al., 2015] and BMaD [Wicker et al.,
2012], which is a greedy binary decomposition method. Ad-
aboost [Freund and Schapire, 1997] is employed as the base
classifier in BILC and 1-Bit Compressed Sensing. It is con-
figured with pruned decision tree, 200 iterations. Correspond-
ingly, LSBoost [Jerome et al., 2001] is employed as the base
regressor of Compressed Sensing, PLST and SLEEC. It is
also configured with pruned decision tree, 200 iterations, and
learning rate 0.1.

For BILC optimization, we use RACOS [Yu et al., 2016] as
the derivative-free optimization method through the ZOOpt
package (https://github.com/eyounx/ZOOpt). As
for RACOS, we use 0.4 ∗ L ∗ L̂ evaluation budget.

We use Precision@k to evaluate the multi-label classifica-
tion performance in the experiments, which have been widely
used in multi-label classification for sparse labels.

4.2 Classification vs Regression
We first evaluate our idea that classification results in simpler
models than regression.

We use two embedding methods, Compressed Sensing
(CS) and BILC. In the embedded space, we learn re-
gression tree and classification tree (for rounded labels
of CS) in the Binary Relevance method. The trees are
grown to zero training error for ease of comparison. We
then examine the model complexity by the tree depth
and the number of tree nodes, we compare the recon-
struction errors as well. To directly compare the differ-
ence between reconstruction results with ground truth la-
bels, we employ Hamming loss. The four combinations
of CS and BILC with regression and classification trees
are denoted as CS+RegressionTree, CS+ClassificationTree,
BILC+RegressionTree and BILC+ClassificationTree.

Figure 1 presents the results. It can be observed that the
depth as well as the number of nodes of regression trees are
significantly larger than those of classification trees. This
implies that regression model needs higher complexity than
classification model, which could result in higher structure
risk in predicting labels. Meanwhile, regression models
lead to comparable or slightly better Hamming loss (<0.01),
which may not be able to compensate the structure risk.

4.3 Label Relationship in Embedded Space
To verify the relationship between the labels in the embed-
ded space, we calculate the prediction accuracy of each la-

https://github.com/eyounx/ZOOpt
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Figure 1: Comparison between classification and regression. The x-axis in each figure denotes the embedding dimension.
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Figure 2: Distribution of label prediction accuracy

bel from all the rest of the labels. Specifically, for each la-
bel vector Yi(i ∈ {1, 2, . . . , n}), we use j-th label Yij(j ∈
{1, 2, . . . , L}) as the target label, and use all other labels as
the features, denoted as Y ′i . We then train a classifier in Y ′i to
predict Yi. Higher accuracy implies that the target label have
a stronger relationship with the rest of the labels.

We calculate the prediction accuracies of every label, in
both the origin label space and the low-dimensional label
space. Figure 2 shows the distribution of these accuracies.
It can be observed that, in the origin label dimension, most
of the accuracies are close to 1, indicating high correlations
among the original labels. After compression, classifica-
tion accuracies are majorly distributed around 0.6 (note that
0.5 means random guess), which indicates that the labels
are much less dependent with each other. This experiment

confirms our intention of using Binary Relevance method in
the embedded label space, as that the label relationship has
mostly been captured in the mapping matrix.

4.4 Performance Comparison
We conduct experiments to compare the performance of
BILC with other embedding-based approaches. Note that
BILC does not employ the clustering here. We use the
weighted average precision as the loss function of BILC,
where the set of k includes 1, 3 and 5. We also calculate the
Precision@1, Precision@3 and Precision@5 on each dataset,
when embedding dimension L̂ = 5, 10, 15, 20. For each situ-
ation, we repeat experiments 10 times and calculate mean of
10 times experiments result.

As shown in Figure 3, BILC achieves the best weighted
average precision (AvgP) in bibtex and bookmarks. BMaD
employs a greedy method for decomposition, which fits for
small data sets such as core5k. Breaking down into preci-
sions of top-1, top-3 and top-5, it can be observed that BILC
is better than SLEEC in most cases of the three metrics: when
L̂ = 20, BILC improves SLEEC by 57.5% on bookmarks
and 46% on bibtex in terms of Precision@1. Because the
weighted average precision as our objective function gives the
Precision@1 the largest weight, it is reasonable that the Pre-
cision@1 has the largest improvement over the other meth-
ods. We can also observed that the 1-Bit Compressed Sens-
ing, which can be viewed as the degenerated BILC without
optimizing the matrix, often has the worst performance. This
implies the importance of the optimization. These results
demonstrate that classification model can get a better perfor-
mance than regression and BILC is superior to some state-of-
the-art embedding-based methods.

4.5 Acceleration
We have several experiments on Delicious dataset and NUS-
Wide dataset to show the performance of acceleration method
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Figure 3: Comparison among different embedding-based multi-label classification methods on three datasets and four embedding dimensions.
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Figure 4: Comparsion of two acceleration methods of BILC. Figures (a) and (b) show comparisons among BILC+Cluster and SLEEC with the
same clusters, while figures (c) and (d) show comparisons between BILC+Tree and FastXML with the same decision tree growing method.
To judge the performance of acceleration methods of BILC, we also compared them with BDaM.

of BILC. In BILC+Cluster experiment, we set embedding di-
mension L̂ = 5 set numCluster = 3 for both BILC+Cluster
and SLEEC. In BILC+Tree experiment, we set L̂ = 20. We
use the same split-node method as FastXML [Prabhu and
Varma, 2014]. Then learnM and M̂ in every leaf node which
have effective labels more than embedding dimension. Other-
wise we use predict method of FastXML directly on this leaf
node.

As shown in Figure 4, BILC+Cluster have higher P@k
than SLEEC on both two datasets in many case. BILC+Tree
has comparable performance with respect to FastXML
method. BILC+Cluster and BILC+Tree have higher AvgP
than BDaM on both two data sets.

5 Conclusion
This paper aims at using classification model instead of
regression model in embedding-based method and utiliz-
ing high-order relationship between labels to serve multi-
label classification, since classification can be simpler
than regression. We present BILC, a binary compression

embedding-based multi-label classification method, which
uses derivative-free optimization method to learn a binary
embedded space instead of real-valued. The embedding
learned by BILC reduces label correlations significantly,
which shows that BILC can utilize label relationship ef-
fectively. The experiments against other embedding-based
method show that BILC has better performance than most
embedding-based methods, such as Compressed Sensing,
PLST, SLEEC, BDaM, etc. Furthermore, to accelerate BILC,
we develop algorithms that combine BILC with cluster tech-
nique and tree technique, which are called BILC+Cluster and
BILC+Tree. In future work, we will try to improve the run-
ning speed of BILC and apply BILC to large-scale multi-label
classification task.
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