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Abstract—Evolutionary algorithms (EAs) are general
purpose optimization tools that can be applied in vari-
ous situations, therefore, general analysis approaches are
appealing for facilitating the analysis of EAs in different
problems. Expected running time is a key theoretical issue
of evolutionary algorithms (EAs). Several general analysis
approaches for the running time analysis of EAs have been
proposed and have stimulated the theoretical development.
Recently, switch analysis was proposed, which derives the
running time of an EA process by comparing it with a
simpler EA process. It has been proven that drift analysis
and fitness level method are reducible to switch analysis,
which means that switch analysis can derive at least as tight
results as the two approaches. In this paper, we further
prove that another analysis approach, convergence-based
analysis, is reducible to switch analysis. We also show in
a case study that switch analysis leads to a tighter result
than convergence-based analysis.

I. INTRODUCTION

Expected running time is among the central theo-
retical properties of evolutionary algorithms (EAs), as
it discloses the time complexity of EAs. Many studies
have devoted themselves to the running time analysis
of EAs in the recent decades, resulting in progresses
on the theoretical understanding of EAs [1], [6], [7].
Among the progresses, one interesting kind of work is
the development of analysis approaches. An analysis
approach gives a guideline on how to analyze EAs:
where to look, which quantities to calculate, and what
procedure to follow. This is particularly important for
EAs. EAs are general purpose optimization techniques,
which could come across all kinds of problems. Thus
we cannot presume that EAs will be used to solve only
previously investigated problems. When engaged in a
new problem with no previous knowledge, the analysis
approach can lead to an analysis result much easier.

Several analysis approaches have been developed
with different ideas and principles. Fitness level method
[9], [10] organizes all solutions into level sets, according
to their fitness values. It then requires to estimate
the probabilities that solutions from one level transits
to other levels. The estimation of the probabilities
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leads to the estimation of the expected running time.
Drift analysis [2]–[4], [8] requires to estimate the one-
step progress toward the optimal solution, where the
progress is measured by a given distance function. The
expected running time is then derived by dividing the
total distance by the one-step progress. Convergence-
based analysis [12] requires to estimate the probabilities
that the algorithm could achieve the optimal solution
in every step, or the one-step successful probability for
short. The expected running time is then calculated
from that probabilities.

Recently, a new method, switch analysis [11] was
developed. Unlike the previous analysis approaches
that analyze an evolutionary process1 from scratch,
switch analysis compares two evolutionary processes.
It requires to estimate the one-step differences of the
two evolutionary processes. The one-step differences
cumulate to be the difference of the expected running
time of the two evolutionary processes. Thus when
one evolutionary process is well analyzed, the expected
running time of the other can be derived.

More interestingly, it has been proven that the fit-
ness level method and drift analysis2 are reducible to
switch analysis, which means that switch analysis can
derive at least as tight analysis results as the other two.
Moreover, the proofs are constructive, and thus can
help us view the analysis approaches from a unified
perspective, as the two approaches are equivalent with
particular configurations of switch analysis. However,
it was unknown if convergence-based analysis is re-
ducible to switch analysis.

In this paper, we prove that convergence-based
analysis is reducible to switch analysis. We also provide
a case study where switch analysis leads to a tighter
result than the previously obtained by convergence-
based analysis. Moreover, from a constructive proof
of reducibility, we can observe that an approach is
equivalent with a configuration of switch analysis. Then
through comparing the equivalent configurations, we
discuss the differences among convergence-based anal-
ysis, drift analysis, and the fitness-level method.

1By evolutionary process, we mean the process that an EA solves
a problem, or in other words, the underlying Markov chain process.

2Drift analysis has many versions, and we mean in this paper the
additive version investigated in [11]. However the discussion is also
suitable for any version that can be derived from the additive version.
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The rest of the paper is organized as follows. Section
II introduces background knowledge, including prelimi-
naries, the convergence-based analysis, the switch anal-
ysis, and the reducibility between approaches. Section
III proves that the convergence-based analysis reduces
to the switch analysis. Section IV shows that the switch
analysis derives a better result than the previous one
by the convergence-based analysis. Section V discusses
and Section VI concludes the paper.

II. BACKGROUND

A. Preliminaries

A Markov chain is a random process, {ξt}+∞t=0 , where
the variable ξt is in the state space X and ξt+1 depends
only on the variable ξt, i.e., P (ξt+1 | ξt, ξt−1, . . . , ξ0) =
P (ξt+1 | ξt). To model an EA, let S be the solution space
of a problem, then the EA with population size m is
modeled by a Markov chain with state space X ⊆ Sm
and transition probability P (ξt+1 | ξt) defined by its
reproduction operators and its selection. Let X ∗ ⊂ X
denote the optimal region, in which a population con-
tains at least one optimal solution. It should be clear
that a Markov chain models an EA process, i.e., the
process of the running of an EA on a problem instance.
In the rest of the paper, we will describe a Markov chain
{ξt}+∞t=0 with state space X as “ξ ∈ X ” for simplicity.
Also note that we do not assume homogeneous Markov
chains, i.e., we allow P (ξt+1 | ξt) depends on t, since
both switch analysis and convergence-based analysis
apply to non-homogeneous Markov chains.

We consider the performance measure expected first
hitting time defined below, which is the average num-
ber of iterations of an EA for finding the optimal
solution:

Definition 1 (Conditional first hitting time, CFHT)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , starting from time t0 where ξt0 = x, let τ be a random
variable that denotes the hitting events:

τ =

{
0, if ξt0 ∈ X ∗
i, if ξt0+i ∈ X ∗ ∧ (ξt0 /∈ X ∗ ∧ . . . ∧ ξt0+i−1 /∈ X ∗)

The conditional expectation of τ ,

E[[τ | ξt0 = x]] =
∑+∞

i=0
i · P (τ = i),

is called the conditional first hitting time (CFHT) of the
Markov chain from t = t0 and ξt0 = x.

Definition 2 (Distribution-CFHT, DCFHT)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , starting from time t0 where ξt0 is drawn from a state
distribution π, the expectation of the CFHT,

E[[τ | ξt0 ∼ π]] = Ex∼π[[τ | ξt0 = x]]

=
∑

x∈X
π(x)E[[τ | ξt0 = x]],

is called the distribution-conditional first hitting time
(DCFHT) of the Markov chain from t = t0 and ξt0 ∼ π.

Definition 3 (Expected first hitting time, EFHT)
Given a Markov chain ξ ∈ X and a target subspace
X ∗ ⊂ X , the DCFHT of the chain from t = 0 and uniform
distribution πu,

E[[τ ]] = E[[τ | ξ0 ∼ πu]] = Ex∼πu
[[τ | ξ0 = x]]

=
1

|X |
∑
x∈X

E[[τ | ξ0 = x]],

is called the expected first hitting time (EFHT) of the
Markov chain.

To reflect the computational time complexity of an
EA, we count the number of evaluations to solutions,
i.e., EFHT × the number of offspring solutions in each
iteration, which is called the expected running time of
the EA.

We call a chain absorbing (with a slight abuse of
the term) if all states in X ∗ are absorbing states. The
definition of absorbing is only for the analysis purpose,
and is not a restriction of EAs. This is because that,
given any non-absorbing chain, we can construct a
corresponding absorbing chain that simulates the non-
absorbing chain but stays in the optimal state once
it has been found. The EFHT of the constructed ab-
sorbing chain is the same as that of the non-absorbing
chain. Thus it is sufficient to study only the absorbing
chain. We assume all chains considered in this paper
are absorbing.

Definition 4 (Absorbing Markov Chain)
Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂
X , ξ is said to be an absorbing chain, if

∀x ∈ X ∗,∀t ≥ 0 : P (ξt+1 6= x | ξt = x) = 0.

The following basic property of Markov chains will
be used in this paper.

Lemma 1
Given an absorbing Markov chain ξ ∈ X and a target
subspace X ∗⊂X , we have that E[[τ |ξt ∈ X ∗]] = 0 and

∀x /∈ X ∗ : E[[τ | ξt = x]]

= 1 +
∑
y∈X

P (ξt+1 = y | ξt = x)E[[τ | ξt+1 = y]].

B. Convergence-based Analysis

Yu and Zhou [12] derived convergence-based analy-
sis for running time analysis. It utilizes the relationship
between the convergence rate, i.e., 1− π0(X ∗), and the
hitting time. The convergence rate is bounded using the
normalized success probability as in Lemma 2, where αt
and βt are the lower and upper bounds, respectively.
Converting from the convergence rate, convergence-
based analysis is in Theorem 1. Using this approach,
as long as we can bound the normalized one-step
success probability, we can arrive at the bounds of the
DCEFHT. Note that the theorem is presented with a bit
difference with that in [12] since we take the initial state
distribution into consideration.



Lemma 2 ([5])
Given an absorbing Markov chain ξ ∈ X and a target
subspace X ∗ ⊂ X , if two sequences {αt}+∞t=0 and {βt}+∞t=0
satisfy ∏+∞

t=0
(1− αt) = 0

and

βt ≥
∑

x/∈X∗
P (ξt+1 ∈ X ∗ | ξt = x)

πt(x)

1− πt(X ∗)
≥ αt,

then the chain converges to X ∗, and that3

1− πt(X ∗) ≥ (1− π0(X ∗))
∏t−1

i=0
(1− βi),

1− πt(X ∗) ≤ (1− π0(X ∗))
∏t−1

i=0
(1− αi).

Theorem 1 (Convergence-based Analysis [12])
Given an absorbing Markov chain ξ ∈ X and a target
subspace X ∗ ⊂ X , let τ denote the hitting event of ξ,
and let πt denote the distribution of ξt. If two sequences
{αt}+∞t=0 and {βt}+∞t=0 satisfy∏+∞

t=0
(1− αt) = 0

and

βt ≥
∑

x/∈X∗
P (ξt+1 ∈ X ∗ | ξt = x)

πt(x)

1− πt(X ∗)
≥ αt,

we have

E[[τ | ξ0 ∼ π0]] ≤ (1− π0(X ∗))(
+∞∑
t=1

tαt−1

t−2∏
i=0

(1− αi))

and

E[[τ | ξ0 ∼ π0]] ≥ (1− π0(X ∗))(
+∞∑
t=1

tβt−1

t−2∏
i=0

(1− βi)).

C. Switch Analysis

Yu et al. [11] derived switch analysis for bounding
EFHT of EAs. This approach compares two Markov
chains, and by bounding step-wise difference, it bounds
the difference between the DCEFHTs of the two chains.
As presented in Theorem 2, by using an aligned map-
ping φ defined in Definition 5, the states of one chain
are mapped to the states of the other chain, then ρt
records the switching difference at step t.

Definition 5 (Aligned Mapping [11])
Given two spaces X and Y with target subspaces X ∗ and
Y∗, respectively, a function φ : X → Y is called
(a) a left-aligned mapping if ∀x ∈ X ∗ : φ(x) ∈ Y∗;
(b) a right-aligned mapping if ∀x ∈ X−X ∗ : φ(x) /∈ Y∗;
(c) an optimal-aligned mapping if it is both left-aligned
and right-aligned.

Theorem 2 (Switch Analysis [11])
Given two absorbing Markov chains ξ ∈ X and ξ′ ∈ Y , let
τ and τ ′ denote the hitting events of ξ and ξ′, respectively,
and let πt denote the distribution of ξt. Given a series of

3In this paper, we define
∏b
i=a(·) = 1 if b < a

values {ρt ∈ R}+∞t=0 with ρ =
∑+∞
t=0 ρt and a right (or left)-

aligned mapping φ : X → Y , if E[[τ | ξ0 ∼ π0]] is finite
and

∀t :
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≤ (or ≥)
∑
u,y∈Y

πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] + ρt,

(1)

where πφt (y) = πt(φ
−1(y)) =

∑
x∈φ−1(y) πt(x), we have

E[[τ | ξ0 ∼ π0]] ≤ (or ≥)E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρ.

We can find that switch analysis does not estimate
the DCEFHT of an evolutionary process directly. To do
so, we need to choose a reference chain, and compare
the evolutionary process with the reference chain by
switch analysis. We then obtain the difference of their
DCEFHTs. If we choose a reference chain that can
be easily analyzed, switch analysis can be helpful to
estimate the DCEFHT of the concerning evolutionary
process. In the rest of the paper, we will call the Markov
chain used to help analyze the concerning evolutionary
process as the reference chain.

D. Reducibility

In [11], reducibility was proposed in order to com-
pare analysis approaches. To study reducibility, the
analysis approaches are firstly formally characterized as
three parts, the input, the parameters and the output
as in Definition 6. The input is a variable assignment
derived from the concerning EA process; the parame-
ters are variable assignments which should rely on no
more information of the EA process than the input; and
the output is a lower and upper bound of the running
time. In this way, switch analysis is characterized in
Characterization 1.

Definition 6 (EA Analysis Approach [11])
A procedure A is called an EA analysis approach if for
any EA process ξ ∈ X with initial state ξ0 and transition
probability P , A provided with Θ = g(ξ0, P ) for some
function g and a set of parameters Ω(Θ) outputs a lower
running time bound of ξ notated as Al(Θ; Ω) and/or an
upper bound Au(Θ; Ω).

Characterization 1 (Switch Analysis [11])
For an EA process ξ ∈ X , switch analysis approach ASA
is defined by its parameters, input and output:
Parameters: a reference process ξ′ ∈ Y with bounds of its
transition probabilities P (ξ′1|ξ′0) and CFHT E[[τ ′ | ξ′t = y]]
for all y ∈ Y and t ∈ {0, 1}, and a right-aligned mapping
φu : X → Y or a left-aligned mapping φl : X → Y .
Input: bounds of one-step transition probabilities
P (ξt+1 | ξt).
Output: denoting πφt (y) = πt(φ

−1(y)) for all y ∈ Y ,
AuSA = E[[τ ′ | ξ′0 ∼ π

φ
0 ]] + ρu where ρu =

∑+∞
t=0 ρ

u
t and

ρut ≥
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]] −∑

u,y∈Y
πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] for all t;



AlSA = E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρl where ρl =

∑+∞
t=0 ρ

l
t and

ρlt ≤
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]] −∑

u,y∈Y
πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] for all t.

When analysis approaches are characterized, re-
ducibility defined in Definition 7 compares two ap-
proaches. If approach A takes the same input as (or
transformed input from) approach B, while A outputs
expected running time bounds no worse than B, we
call B is reducible to A. It means that A is at least as
theoretically powerful as B on estimating the expected
running time.

Definition 7 (Reducible [11])
For two EA analysis approaches A1 and A2, if for any
input Θ and any parameter ΩA, there exist a transfor-
mation T and parameter ΩB (which possibly depends on
ΩA) such that
(a) Au1 (Θ; ΩA) ≥ Au2 (T (Θ); ΩB), then A1 is upper-bound
reducible to A2;
(b) Al1(Θ; ΩA) ≤ Al2(T (Θ); ΩB), then A1 is lower-bound
reducible to A2.
Moreover, A1 is reducible to A2 if it is both upper-bound
reducible and lower-bound reducible.

III. CONVERGENCE-BASED ANALYSIS REDUCES TO
SWITCH ANALYSIS

To study reducibility, we also need to characterize
convergence-based analysis as in Characterization 2.
Note that, in the original theorem of [12], P (ξt = x)
and µt =

∑
x∈X∗ P (ξt = x) are used; we equivalently

replace them by πt(x) and πt(X ∗) respectively for the
sake of clearness. We have also multiplied their original
bounds by 1− π0(X ∗) since we do not assume starting
from non-optimal solutions.

Characterization 2 (Convergence-based Analysis)
For an EA process ξ ∈ X , convergence-based analysis
approach ACA is defined by its input and output:
Input:

αt ≤
∑
x/∈X∗ P (ξt+1 ∈ X ∗ | ξt = x) πt(x)

1−πt(X∗) for all t ≥ 0,

with a restriction that
∏+∞
t=0 (1− αt) = 0;

βt ≥
∑
x/∈X∗ P (ξt+1 ∈ X ∗ | ξt = x) πt(x)

1−πt(X∗) for all t ≥ 0.
Output:
AuCA = (1− π0(X ∗))(

∑+∞
t=1 tαt−1

∏t−2
i=0(1− αi));

AlCA = (1− π0(X ∗))(
∑+∞
t=1 tβt−1

∏t−2
i=0(1− βi)).

From the characterization, we can find that
convergence-based analysis approach does not
have parameters. We then prove Theorem 3 that
convergence-based analysis reduces to switch analysis.

Theorem 3
ACA is reducible to ASA.

Before proving the theorem, we introduce a simple
Markov chain called OneJump-fix, which will be used as
the reference chain in switch analysis. In OneJump-fix,
a non-optimal state either jumps to an optimal state or
stays as it is in one-step with a fixed probability.

Definition 8 (OneJump-fix)
OneJump-fix chain with state space X and target sub-
space X ∗ is a homogeneous Markov chain ξ ∈ X with
a parameter pfix. Its initial state is selected from X uni-
formly at random, and its transition probability is de-
fined as, for any x ∈ X and any t,

P (ξt+1 = y | ξt = x) =


pfix, y ∈ X ∗
1− pfix, y = x

0, otherwise
.

Theorem 3 is proved by combining Lemma 3 and
Lemma 4, which respectively prove the upper bound
and lower bound reducibility.

Lemma 3
ACA is upper-bound reducible to ASA.

Proof: The proof is to find the parameters of ASA
and the input of ASA from that of ACA, and show that
AuSA ≤ AuCA.

Denote ξ ∈ X as the EA process we are going to
analyze. We know the variable αt as in Characterization
2, which is the input of ACA.

We choose the reference chain ξ′ as the OneJump-
fix chain in the same space of ξ, i.e., the state space X
and the target subspace X ∗. The parameter of ξ′ is set
as

pfix =
1∑+∞

t=0

∏t−1
i=0(1− αi)

.

Then, we have ∀t ≥ 0, x /∈ X ∗ : E[[τ ′|ξ′t = x]] =∑+∞
t=0

∏t−1
i=0(1−αi). We construct the mapping function

φ : X → Y as that φ(x) = x. It is easy to verify that φ is
an optimal-aligned mapping.

We then calculate the upper bound output of ASA
using the input of ACA and the reference process. For
the left part of Eq.(1), we have∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

=
∑
x∈X

πt(x)(1− P (ξt+1 ∈ X ∗ | ξt = x))

+∞∑
t=0

t−1∏
i=0

(1− αi)

= (1− πt+1(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi).

For the right part of Eq.(1), we have∑
u,y∈Y

πφt (u)P (ξ′1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]]

=
∑

x∈X−X∗
πt(x)(

+∞∑
t=0

t−1∏
i=0

(1− αi)− 1) (by Lemma 1)

= (1− πt(X ∗))(
+∞∑
t=0

t−1∏
i=0

(1− αi)− 1).



Thus, for all t ≥ 0,∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

−
∑
u,y∈Y

πφt (u)P (ξ′1 = y|ξ′0 = u)E[[τ ′|ξ′1 = y]]

= (πt(X ∗)− πt+1(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi) + (1− πt(X ∗))

≤ (πt(X ∗)− πt+1(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi)

+ (1− π0(X ∗))
t−1∏
i=0

(1− αi) (by Lemma 2)

Therefore, we find an assignment of ρt in Theorem 2,
and thus

ρ =

+∞∑
t=0

(πt(X ∗)− πt+1(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi)

+

+∞∑
t=0

(1− π0(X ∗))
t−1∏
i=0

(1− αi)

= (π0(X ∗)− lim
t→+∞

πt(X ∗) + 1− π0(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi)

= 0. (since the chain converges to X ∗ by Lemma 2)
(2)

We then can calculate the upper bound output, notic-
ing πφ0 (y) = π0(y),

AuSA = E[[τ ′|ξ′0 ∼ π
φ
0 ]] + 0

= (1− π0(X ∗))
+∞∑
t=0

t−1∏
i=0

(1− αi)

= (1− π0(X ∗))
(
1 +

+∞∑
t=2

t(

t−2∏
i=0

(1− αi)−
t−1∏
i=0

(1− αi))

− (1− α0)
)

= (1− π0(X ∗))(
+∞∑
t=1

tαt−1

t−2∏
i=0

(1− αi)) = AuCA,

(3)
which proves the lemma.

Lemma 4
ACA is lower-bound reducible to ASA.

The proof for Lemma 4 is similar to that for Lemma
3 except some minor changes: α and ≤ are replaced
with β and ≥ respectively; the last “=” of Eq.(2) and
the third “=” of Eq.(3) are replaced with ”≥” since the
convergence cannot be derived using only the input β.

IV. TRAP PROBLEM REVISIT

As we have proved that convergence-based analysis
reduces to switch analysis, we compare them in a case
study that solving the Trap problem by the (1+1)-EA.

Definition 9 (Trap Problem)
Given a set of n positive values, i.e., W = {wi}ni=1, and a

capacity value c, it is to find x∗ such that

x∗ = arg maxx∈{0,1}n
∑n

i=1
wixi

s.t.
∑n

i=1
wixi ≤ c,

where w1 = w2 = . . . = wn−1 > 1, wn =
∑n−1
i=1 wi + 1 and

c = wn.

The fitness function for solving the Trap problem is
defined as

∀x ∈ {0, 1}n : f(x) = θ
∑n

i=1
wixi − c,

where θ = 1 if x is a feasible solution, i.e.,
∑n
i=1 wixi ≤ c,

and θ = 0 otherwise. It is easy to see that the optimal
solution is 0n−11, and other solutions with 1 on the last
bit are infeasible.

This fitness function is deceptive, as it will lead the
evolution towards a sub-optimum, which is far from
the global optimum.

The (1+1)-EA is a simplified evolutionary algorithms
that has been frequently used in theoretical studies. It
resembles most EAs in the structure: starting from a
randomly generated solution, and iteratively improving
the solution by reproduction and selection. It uses a
bit-wise mutation operator in line 2 to generate a new
solution from the current one. The bit-wise mutation
randomly flips each bit of the current solution with
a probability. After that, the new solution replaces the
current one if the new one is not worse. We know an
upper bound of EFHT of (1+1)-EA on the Trap problem,
1

1−p ( 1
p )n−1, which is the worst case that needs to flip all

the leading n−1 number of 0-bits of the local minimum
0n−11, and O(nn−1) when p = 1

n .

Algorithm 1 ((1+1)-EA)
Given solution length n and pseudo-Boolean objective
function f , the (1+1)-EA maximizing f consists of the
following steps:

1. x :=choose a solution from X = {0, 1}n uniformly
at random.

2. x′ := mutation x by randomly flippling each bit
(0 to 1 and vice versa) with a probability p ∈ (0, 0.5].

3. If f(x′) ≥ f(x), x := x′.
4. Terminate if x is optimal.
5. Goto step 2.

where mutation(·) : X → X is a mutation operator.

Before proving the EFHT of (1+1)-EA with different
mutation operators on the Trap problem, we intro-
duce a simple Markov chain, TrapJump, that will be
used as the reference chain for switch analysis. The
TrapJump chain is a very simple Markov chain with
only n+ 1 states, named 0 to n. For non-optimal state
i ∈ {1, 2, . . . , n}, there can be only three possible one-
step transitions: jump to the optimal state 0, move one
step farther from the optimal state (i.e., state i+ 1), or
stay where it was (i.e., state i). And the farther from the
optimal state, the lower the probability that it transits
to the optimal state in one step. This chain reflects our
intuition on the deceptiveness of the Trap problem.



Definition 10 (TrapJump)
TrapJump chain with size n and parameter p ∈ (0, 0.5] is
a homogeneous Markov chain ξ ∈ X with the state space
X = {0, 1, . . . , n} and the optimal state 0. Its transition
probability satisfies that, for all t ≥ 0,

∀i > 1, P (ξt+1 = y | ξt = i) =
pi(1− p)n−i, y = 0

(n− i)p(1− p)n−1, y = i+ 1

1− pi(1− p)n−i − (n− i)p(1− p)n−1, y = i

0, otherwise

;

(4)

P (ξt+1 = y | ξt = 1) =


p(1− p)n−1, y = 0

p(1− p)n−1, y = 2

1− 2p(1− p)n−1, y = 1

0, otherwise

.

(5)

Let Etj(i) denote the CFHT of TrapJump when start-
ing from state i. It is easy to see that Etj(0) = 0, which
implies the optimal state. Moreover, we have Lemma 5.

Lemma 5
∀i ≥ 1 : Etj(i) ≥ 1

pi(1−p)n−i , and Etj(i− 1) ≤ Etj(i).

Proof: We first prove ∀i ≥ 1 : Etj(i) ≥ 1
pi(1−p)n−i

inductively on i.

(a) Initialization is to prove Etj(n) ≥ 1
pn . Since

Etj(n) = 1 + pnEtj(0) + (1− pn)Etj(n), we have Etj(n) =
1
pn .

(b) Inductive Hypothesis assumes that

∀ i > K(K ≤ n− 1) : Etj(i) ≥
1

pi(1− p)n−i
.

Then, we consider i = K. For K ≥ 2, by combining
Eq.(4) with Lemma 1, we have

Etj(K) = 1 + pK(1− p)n−KEtj(0)

+ (n−K)p(1− p)n−1Etj(K + 1)

+ (1− pK(1− p)n−K − (n−K)p(1− p)n−1)Etj(K)

=
1 + (n−K)p(1− p)n−1Etj(K + 1)

pK(1− p)n−K + (n−K)p(1− p)n−1

≥
pK(1− p)n−K + (n−K)p(1− p)n−1 1−p

p

pK(1− p)n−K + (n−K)p(1− p)n−1

· 1

pK(1− p)n−K

≥ 1

pK(1− p)n−K
,

where the first inequality is since Etj(K + 1) ≥
1

pK+1(1−p)n−K−1 by inductive hypothesis, and the last
inequality is by p ≤ 0.5.

For K = 1, by combining Eq.(5) with Lemma 1, we have

Etj(1) =1 + p(1− p)n−1Etj(0) + p(1− p)n−1Etj(2)

+ (1− 2p(1− p)n−1)Etj(1)

=
1 + p(1− p)n−1Etj(2)

2p(1− p)n−1

≥p(1− p)
n−1 + (1− p)n

2p(1− p)n−1
· 1

p(1− p)n−1

≥ 1

p(1− p)n−1
.

According to (a) and (b), we can conclude that

∀i ≥ 1 : Etj(i) ≥
1

pi(1− p)n−i
.

Then, we are to show that ∀i ≥ 1 : Etj(i−1) ≤ Etj(i).
First, it trivially holds that Etj(0) = 0 < Etj(1). Then,
from the above proof,

Etj(1) =
1 + p(1− p)n−1Etj(2)

2p(1− p)n−1

≤ p2(1− p)n−2 + p(1− p)n−1

2p(1− p)n−1
· Etj(2)

≤ Etj(2),

and for i ≥ 2,

Etj(i) =
1 + (n− i)p(1− p)n−1Etj(i+ 1)

pi(1− p)n−i + (n− i)p(1− p)n−1

≤ pi+1(1− p)n−i−1 + (n− i)p(1− p)n−1

pi(1− p)n−i + (n− i)p(1− p)n−1
· Etj(i+ 1)

≤ Etj(i+ 1).

Proposition 1
For the process that the (1+1)-EA on the Trap problem
with size n under uniform initial distribution, AlSA =
Ω(( 1

2p(1−p) )
n).

Proof: Let the chain ξ ∈ X model the analyzed
process. Then, X = {0, 1}n and X ∗ = {0n−11}. Let ξ′ ∈ Y
model the reference process that is the TrapJump chain
with size n and parameter p. Then, Y = {0, 1, . . . , n} and
Y∗ = {0}.

We divide X into {X ∗,XF0 , . . . ,XFn−1,X I}, where XFi
contains feasible solutions which have Hamming dis-
tance n − i with the optimal solution 0n−11, and X I
contains all the infeasible solutions. That is, XFi = {s0 |
s ∈ {0, 1}n−1, |s| = n − 1 − i} and X I = {s1 | s ∈
{0, 1}n−1, |s| > 0}, where |s| is the number of 1 bits of
s. We construct the mapping function φ : X → Y that

φ(x) =


0, x ∈ X ∗
n− i, x ∈ XFi
1, x ∈ X I

.

It is easy to see that φ is an optimal-aligned mapping
because φ(x) ∈ Y∗ = {0} iff x ∈ X ∗.



Then, we investigate the condition Eq.(1) of switch
analysis. We first calculate the left part of Eq.(1). For
ξ, any solution x ∈ XFi can only jump to X ∗ ∪ XF0 ∪
· · · ∪XFi−1, because the EA only accepts better offspring
solutions and

f(x∈X ∗) > f(x∈XF0 ) > · · · > f(x∈XFn−1) = f(x∈X I).

For any x ∈ XFi , P (ξt+1 ∈ X ∗ | ξt = x) = pn−i(1 − p)i
since it has Hamming distance n−i with the optimal so-
lution; and P (ξt+1 ∈ XFi−1 | ξt = x) ≥ (1−p) · ip(1−p)n−2
since it is sufficient to keep the last 0 bit unchanged
(i.e., keep the solution feasible), flip one of the other
i 0 bits and keep the remaining bits unchanged. Thus,
for any x ∈ XFi , we have∑

y∈Y
P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≥ pn−i(1− p)iEtj(0) + ip(1− p)n−1Etj(n− i+ 1)

+ (1− pn−i(1− p)i − ip(1− p)n−1)Etj(n− i),

where the inequality is since Etj(i) increases with i by
Lemma 5.
For any x ∈ X I , P (ξt+1 ∈ X ∗ | ξt = x) ≤ p(1 − p)n−1
since the Hamming distance with the optimal solution
is at least 1; and P (ξt+1 ∈ XF0 ∪ · · · ∪ FFn−2 | ξt = x) ≥
p(1− p)n−1 since it is sufficient to flip the last 1 bit and
keep the other bits unchanged. Thus, for any x ∈ X I ,∑

y∈Y
P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≥ p(1− p)n−1Etj(0) + p(1− p)n−1Etj(2)

+ (1− 2p(1− p)n−1)Etj(1).

We then calculate the right part of Eq.(1). For any x ∈
XFi (i < n− 1), by φ(x) = n− i > 1 and Eq.(4),∑

y∈Y
P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]]

= pn−i(1− p)iEtj(0) + ip(1− p)n−1Etj(n− i+ 1)

+ (1− pn−i(1− p)i − ip(1− p)n−1)Etj(n− i).

For any x ∈ XFn−1 ∪ X I , by φ(x) = 1 and Eq.(5),∑
y∈Y

P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]]

= p(1− p)n−1Etj(0) + p(1− p)n−1Etj(2)

+ (1− 2p(1− p)n−1)Etj(1).

According to the above calculations, we now know∑
x∈X ,y∈Y

πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

≥
∑

x∈X ,y∈Y
πt(x)P (ξ′1 = y|ξ′0 = φ(x))E[[τ ′|ξ′1 = y]],

thus we have found a proper ρt = 0 in Eq.(1), and
therefore,

E[[τ |ξ0 ∼ π0]] ≥ E[[τ ′|ξ′0 ∼ π
φ
0 ]].

Then, we investigate E[[τ ′|ξ′0 ∼ π
φ
0 ]]. By the uniform

initial distribution over X = {0, 1}n, π0(X ∗) = 1
2n ,

π0(XFi ) =
( n−1
n−1−i)
2n and π0(X I) = 1

2 −
1
2n . Thus,

E[[τ ′|ξ′0 ∼ π
φ
0 ]] =

∑n

i=0
πφ0 (i)Etj(i)

= π0(XFn−1 ∪ X I)Etj(1) +
∑n

i=2
π0(XFn−i)Etj(i)

≥ 1

2p(1− p)n−1
+

n∑
i=2

(
n−1
i−1
)

2n
1

pi(1− p)n−i
(by Lemma 5)

=
1

2npn(1− p)n−1
+

1

2p(1− p)n−1
− 1

2np(1− p)n−1

∈ Ω((
1

2p(1− p)
)n).

In [12], convergence-based analysis is used to derive
the EFHT of the (1+1)-EA: when the mutation proba-
bility p is a constant in (0, 0.5], AlCA = Ω(( 1

1−p )n), and
when the mutation probability p = 1

n , A
l
CA = Ω(2n).

By Proposition 1, we know that when p is a constant
in (0, 0.5], AlSA = Ω(( 1

2p(1−p) )
n), and when p = 1

n ,
AlSA = Ω((n2 )n). In both cases of p, switch analysis
achieves tighter lower bounds.

V. DISCUSSION

Since the proofs of reducibility for the fitness level
method, drift analysis, and convergence-based analysis
are constructive, we can find configurations of switch
analysis that are equivalent with these approaches.
By comparing these configurations, we have an op-
portunity of comparing these approaches in a unified
framework.

In [11], the proofs of reducibility of both the fitness
level method and drift analysis employed the OneJump
chain in Definition 11 as the reference process.

Definition 11 (OneJump [11])
OneJump chain with state space dimension n is a homo-
geneous Markov chain ξ ∈ {0, 1}n with n+ 1 parameters
{p0, . . . , pn} each is in [0, 1] and target state 1n. Its initial
state is selected from {0, 1}n uniformly at random, and
its transition probability is defined as, for any x ∈ {0, 1}n
and any t,

P (ξt+1 = y | ξt = x) =


p|x|1 , y = 1n

1− p|x|1 , y = x

0, otherwise
,

where |x|1 is the number of 1 bits in x.

The OneJump chain is similar with the OneJump-fix
chain, as both of them are simply jumping to optimal
or staying where they were. In the OneJump chain the
transition probability depends on the solution, but the
transition probability in the OneJump-fix is a constant.
Besides the transition probability, they are different in
the state space. The OneJump chain is in a binary
state space, while the OneJump-fix chain is in the same
state space of the concerning evolutionary process. In
[11], for the fitness level method, the solution was
partitioned into m subsets, and the state space of the



TABLE I. COMPARISON OF THE ANALYSIS APPROACHES FROM THE UPPERBOUND REDUCTION TO SWITCH ANALYSIS. THE v IS THE INPUT OF THE
FITNESS LEVEL METHOD, THE V IS THE DISTANCE FUNCTION OF THE DRIFT ANLAYSIS AND V IS THE ORDERED SET OF V VALUES (DETAILS IN [12]).

Approach Reference chain Transition probability Aligned mapping

fitness level OneJump in {0, 1}m−1 with m being the
number of levels

pi =
1

1
vi+1

+χu
∑m−1

j=i+2
1
vj

φ(x) = 1i−10m−i

drift analysis OneJump in {0, 1}m with m+1 being the
number of distinct distance values

pi =
1

Vm−i
φ(x) = 1m−Vx0Vx

convergence-based OneJump-fix in X i.e. the original state
space pfix = 1∑+∞

t=0

∏t−1
i=0 (1−αi)

φ(x) = x

reference chain was set to {0, 1}m−1. For drift analysis,
V denoted the set of all distinct values of the distance
function V , of which the size was m + 1, and the
state space of the reference chain was set to {0, 1}m.
Moreover, Vx was used to denote the ordered index of
the distance value for the solution x, which is used in
the aligned mapping.

Table I lists the major components of the reductions
of the analysis approaches to switch analysis. This allow
us to make comparisons of these approaches. We can
observe a limitation of the fitness level method: the
aligned mapping must make some different solutions
collapse into one binary string. This causes the method
cannot distinguish some solutions that need to be han-
dled differently. The limitation of convergence-based
analysis is in the other end: the transition probability is
the same for all solutions, and thus can not be config-
ured to handle different solutions differently. This may
make the approach less flexible. For drift analysis, when
extremely the distance function has a different value on
every solution, it can distinguish every solution by the
aligned mapping, while it can assign different transition
probabilities to every solution. But it also reminds
us that the choosing of a good distance function is
important for drift analysis yet not straightforward.

Nevertheless, the above discussion on the reducibil-
ity and the relationship among different approaches is
only about the theoretical ability of these approaches,
but not about their “goodness” or other aspects. For ex-
ample, the hardness of using an analysis approach may
also depends on the background knowledge, problem
understanding, and personal preference of the analyst.

VI. CONCLUSION

In this paper, we prove that convergence-based
analysis [12] is reducible to switch analysis [11]. This is
the third approach, following the fitness level method
and drift analysis, that have been proven to be reducible
to switch analysis. We also apply switch analysis on the
Trap problem to achieve a tighter lower EFHT bound
than the previous result by convergence-based analysis.
Moreover, the fitness level method, drift analysis, and
convergence-based analysis are compared, from the
perspective of how they are reduced to switch analysis.
The comparison reveals some different focuses and
limitations of different approaches.
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