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Biological evolution

Charles Darwin
1809-1882

C. Darwin, after collecting abundant evidence, 
developed a theory about how species evolve.

reproduction with variation + nature selection

reproduction reproduction reproduction reproduction

selection selection selection
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With the development of  computing technology

curious researchers started to implement Darwin’s theory of 
evolution in computer, and found connections to optimization

how to put as much stuff as possible into a fixed size container?

Optimization:

Formally: every x is an arrangement of objects
f counts the number of objects in the container

argmax

x2X
f(x)



An Introduction to Evolutionary Optimization
Recent Theoretical and Practical Advances

Evolution v.s. optimization

“We have thus divided our problem into two parts. The child programme and 
the education process. These two remain very closely connected. We cannot 
expect to find a good child machine at the first attempt. One must experiment 
with teaching one such machine and see how well it learns. One can then try 
another and see if it is better or worse. There is an obvious connection between 
this process and evolution, by the identifications

“Structure of the child machine = Hereditary material
“Changes of the child machine = Mutations
“Judgment of the experimenter  = Natural selection”

In 1950, Turing described how evolution might 
be used for his optimization:

Alan Turing
1912-1954

(The last equation swapped the sides)

building intelligent machine

[A. M. Turing. Computing machinery and intelligence. Mind 49: 433-460, 1950.]
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Evolutionary algorithms

[I. Rechenberg. Evolutionstrategie: Optimierung 
Technisher Systeme nach Prinzipien des Biologischen 
Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.]

[J. H. Holland. Adaptation in Natural and Artificial 
Systems. University of Michigan Press, 1975.]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial 
Intelligence through Simulated Evolution, John Wiley, 
1966.]

Genetic Algorithms (GA)

Evolutionary Strategies (ES)

Evolutionary Programming (EP)
structured solutions, e.g., trees, graphs

for optimization in continuous domains

for optimization in discrete domains

general Evolutionary Algorithms (EAs)

Genetic Programming
Differential Evolutionary Algorithm
...

Ant Colony Optimization
Particle Swarm Optimization
...

Other variants: Other heuristics inspired from nature:
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Evolutionary algorithms

EAs share a common routine

First, choose a representation of solutions
binary vectors, real vectors, trees, graphs ...

argmax

x2X
f(x)For an optimization problem

Then, follow a cycle:

initialization

population

evaluation & 
selection

offspring

reproduction
generate random solutions 
and evaluate them

manipulate solutions in 
the current population

generated offspring solutions

calculate the fitness of newly 
generated solutions by f(), 
and competes with the old 
ones

fitness 
function
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A typical EA
Encode a solution as a binary vector, X = {0, 1}n

mutate(s)

crossover(s1, s2)

: flip each bit (0 to 1, or 1 to 0) with probability 1/n

1: Pop n randomly drawn solutions from X
2: for t=1,2,. . . do

3: Pop

m  {mutate(s) | 8s 2 Pop}, the mutated solutions

4: Pop

c  {crossover(s1, s2) | 9s1, s2 2 Pop

m}, the recombined solutions

5: evaluate every solution in Pop

c
by f(s)(8s 2 Pop

c
)

6: Pop

s  selected solutions from Pop and Pop

c

7: Pop Pop

s

8: terminate if meets a stopping criterion

9: end for

: select a position at random, exchange the parts after the position

selection: select n solutions with the best fitness

(1,0,1,1,0,0,0,0,1) (1,1,1,0,0,1,0,0,0)

(1,0,1,1,0,0,0,0,1)

(0,0,1,0,0,1,1,0,1)

(1,0,1,1,0,1,1,0,1)

(0,0,1,0,0,0,0,0,1)

problem independent

problem dependent

(stop whenever you want)
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An illustration of  running

f

x

X = [0, 1]

0 10.50.25 0.75
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An illustration of  running

f

x
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initialization
evaluation
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An illustration of  running

f

x

X = [0, 1]

0 10.50.25 0.75
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reproduction
evaluation
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reproduction
evaluation
selection
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An illustration of  running

f

x

X = [0, 1]

0 10.50.25 0.75

initialization
evaluation
reproduction
evaluation
selection
reproduction
evaluation
selection
reproduction
evaluation
selection
reproduction
evaluation
...EAs only need to evaluate solutions

can be applied without knowledge of the problem
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Applications: High-speed train head design

parameterize

represented as a vector of parameters

Problem: optimize the efficiency of the train head

Representation:
extremely hard to apply traditional optimization methods

xi

test by simulation

f(xi)

Fitness:

but easy to test a given solution
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Applications: High-speed train head design

initialization

population

evaluation & 
selection

offspring

reproduction
Series 700

Series N700

this nose ... has been newly developed ... using the 
latest analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the 
output... This is a result of adopting the ... nose shape
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Applications: Antenna design

Problem: optimize the efficiency of the antenna
extremely hard to apply traditional 
optimization methods

Representation:
a sequence of operators
forward, rotate-x
rotate-y, rotate-z

Fitness by simulation test
easy to test a given solution
use EAs!

initialization

population

evaluation & 
selection

offspring

reproduction
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Applications: Antenna design

evolved antennas
93% efficiency

QHAs(human designed) 
38% efficiency

lenges, because the diameter of the spacecraft is 53 cm, the spacecraft is 13-15
wavelengths across which makes antenna simulation computationally intensive.
Consequently, an infinite ground plane approximation, or smaller finite ground
plane, is typically used in modeling and design.

(a)

(b)

Fig. 2. Conventionally-designed quadrifilar helical antenna: (a) radiator; and (b) radiator
mounted on a ground plane.

In addition to these requirements, an additional “desired” specification was issued
for the field pattern. Because of the spacecraft’s relative orientation to the Earth,
high gain in the field pattern was desired at low elevation angles. Specifically, across
0◦ ≤ φ ≤ 360◦, the desired gain was: 2 dBic for θ = 80◦, and 4 dBic for θ = 90◦.
ST5 mission managers were willing to accept antenna performance that aligned
closer to the “desired” field pattern specifications noted above and the contractor,
using conventional design practices, produced a quadrifilar helical antenna (QHA)

5

human designed
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Applications: More designs
[J. R. Koza, et al. What’s AI Done for Me Lately? Genetic Programming’s 
Human-Competitive Results. IEEE Intelligent Systems, 18(3): 25-31, 2003.]

When an institution allocates time and money
to invent something and subsequently
embarks on the time-consuming and expen-
sive process of obtaining a patent, it deems
the work of some scientific or practical
importance. For this reason, we first describe
a project in which we browsed the patent lit-
erature for patents on analog electrical cir-

cuits issued since 1 January 2000 to com-
mercial enterprises or university research
institutions (see Table 2). We then used
genetic programming to automatically syn-
thesize both the structure (topology) and siz-
ing (numerical component values) for circuits
that duplicate the patented inventions’ func-
tionality. Only one of the six automatically

created circuits infringes on the patent on
which it is based.

Our method for automatically synthesiz-
ing analog circuits starts from a high-level
statement of a circuit’s desired behavior and
characteristics and only minimal knowledge
about analog electrical circuits. The method
employs a circuit simulator for analyzing
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Table 1. Human-competitive results produced by genetic programming.

Claimed instance Basis for claim 
(criteria number)

1. Creating a better-than-classical quantum algorithm for the Deutsch-Jozsa “early promise” problem2 2, 5

2. Creating a better-than-classical quantum algorithm for Grover’s database search problem3 2, 5

3. Creating a quantum algorithm for the depth-two AND/OR query problem that is better than any previously published result4,5 4

4. Creating a quantum algorithm for the depth-one OR query problem that is better than any previously published result5 4 

5. Creating a protocol for communicating information through a quantum gate that was previously thought not to permit such communication6 4

6. Creating a novel variant of quantum dense coding6 4

7. Creating soccer-playing program that ranked in the middle of the field of 34 human-written programs in the Robo Cup 1998 competition7 8

8. Creating four different algorithms for the transmembrane segment identification problem for proteins8,9 2, 5

9. Creating a sorting network for seven items using only 16 steps9 1, 4

10. Rediscovering the Campbell ladder topology for lowpass and highpass filters9 1, 6

11. Rediscovering the Zobel “M-derived half section” and “constant K” filter sections9 1, 6

12. Rediscovering the Cauer (elliptic) topology for filters9 1, 6

13. Automatic decomposition of the problem of synthesizing a crossover filter9 1, 6

14. Rediscovering a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other circuits9 1, 6

15. Synthesizing 60 and 96 decibel amplifiers9 1, 6

16. Synthesizing analog computational circuits for squaring, cubing, square root, cube root, logarithm, and Gaussian functions9 1, 4, 7

17. Synthesizing a real-time analog circuit for time-optimal control of a robot9 7

18. Synthesizing an electronic thermometer9 1, 7

19. Synthesizing a voltage reference circuit9 1, 7

20. Creating a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin (GKL) rule 4, 5
and all other known rules written by humans9

21. Creating motifs that detect the D–E–A–D box family of proteins and the manganese superoxide dismutase family9 3

22. Synthesizing topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller10 1, 6

23. Synthesizing topology for a PID (proportional, integrative, and derivative) controller10 1, 6

24. Synthesizing analog circuit equivalent to Philbrick circuit10 1, 6

25. Synthesizing NAND circuit10 1, 6

26. Simultaneously synthesizing topology, sizing, placement, and routing of analog electrical circuits10 7

27. Rediscovering Yagi-Uda antenna10 2, 6, 7

28. Creating PID tuning rules that outperform a PID controller using the Ziegler-Nichols and Astrom-Hagglund tuning rules10 1, 2, 4, 5, 6, 7

29. Creating three non-PID controllers that outperform PID controllers using the Ziegler-Nichols and Astrom-Hagglund tuning rules10 1, 2, 4, 5, 6, 7

30. Rediscovering negative feedback10 1, 6

31. Synthesizing a low-voltage balun circuit10 1

32. Synthesizing a mixed analog-digital variable capacitor circuit10 1

33. Synthesizing a high-current load circuit10 1

34. Synthesizing a voltage-current conversion circuit10 1

35. Synthesizing a cubic signal generator10 1

36. Synthesizing a tunable integrated active filter10 1

For each problem, a test fixture consisting of
appropriate hard-wired components (such as
a source resistor or load resistor) connected to
the input ports and desired output ports. The
main difference between the genetic pro-
gramming runs for the six problems was that
each had a different fitness measure. 

Low-voltage balun circuit
A balun (balance/unbalance) circuit’s pur-

pose is to produce two outputs from a single
input, each having half of the input’s ampli-
tude. One output should be in phase with the
input while the other should be 180 degrees
out of phase with the input, and both should
have the same DC offset. The patented balun
circuit uses a power supply of only 1 V (typ-
ical of low voltages that contemporary high-
performance circuits demand). 

We based the fitness measure for this prob-
lem on a frequency sweep analysis designed
to measure the magnitude and phase of the
circuit’s two outputs and a Fourier analysis
designed to measure harmonic distortion.
The best-of-run evolved circuit (see Figure
1) is roughly a fourfold improvement over
the patented circuit in terms of our fitness
measure. The evolved circuit is superior both
in terms of its frequency response and har-
monic distortion. 

The inventor states in the patent documents
(US patent 6,265,908) that the essential dif-
ference between the prior art and his 2001
invention is a coupling capacitor C2 located
between the base and the collector of the tran-
sistor Q2. Sang Gug Lee explains,

The structure of the inventive balun circuit … is
identical to that of [the prior art] except that a
capacitor C2 is further provided thereto. The
capacitor C2 is a coupling capacitor disposed
between the base and the collector of the tran-
sistor Q2 and serves to block DC components
which may be fed to the base of the transistor Q2
from the collector of the transistor Q2.

(For this and any other patent mentioned, see
http://patft.uspto.gov/netahtml/srchnum.htm
and search by patent number.) This essential
difference between the prior art and Lee’s
invention is an integral part of claim 1 of
Lee’s patent—a second capacitor C2 coupled
between the base and the collector of tran-
sistor Q2. 

The best-of-run genetically evolved cir-
cuit possesses the very feature (called C302
in Figure 1) that Lee identifies as the essence
of his invention. (We discuss this in greater
detail elsewhere.10) The genetically evolved
circuit also matches three additional elements
of claim 1 from Lee’s patent. However, in
spite of possessing the essence of Lee’s
invention, it does not match some other ele-
ments enumerated in claim 1 and thus does
not infringe on the patent.

Mixed analog-digital register-
controlled variable capacitor 

The mixed analog-digital variable capac-
itor circuit has a capacitance controlled by
the value stored in a digital register. 

We based the fitness measure on the error
accumulated by 16 combinations of time-
domain test signals ranging over all eight
possible values of a 3-bit digital register for
two different analog input signals. The genet-
ically evolved circuit performs as well as the
patented circuit. It matches all but one of the
elements of the patent’s first claim (and
hence does not infringe on the patent).

Tunable, integrated active filter 
The tunable, integrated active filter’s pur-

pose is to perform the function of a lowpass
filter whose passband boundary is dynami-
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Table 2. Six post-2000 patented analog circuits.

Invention Date Inventor Place Patent

Low-voltage balun 2001 Sang Gug Lee Information and Communications 6,265,908
(balance/unbalance) circuit University

Mixed analog-digital circuit for 2000 Turgut Sefket Aytur Lucent Technologies 6,013,958
variable capacitance

Voltage-current conversion circuit 2000 Akira Ikeuchi and Naoshi Tokuda Mitsumi Electric 6,166,529

Low-voltage high-current circuit for 2001 Timothy Daun-Lindberg and International Business Machines 6,211,726
testing a voltage source Michael Miller

Low-voltage cubic function generator 2000 Stefano Cipriani and Anthony A. Takeshian Conexant Systems 6,160,427

Tunable integrated active filter 2001 Robert Irvine and Bernd Kolb Infineon Technologies 6,225,859

VOUT1

R306
11.0k

R307
1G

Q308

Q309

Q304 Q303

C303
21.5u

C301
4.19u

RSRC
75

VINO

R305
10.4k

RLOAD1
150

RLOAD0
150

VCC
1V

VDIFF

RPROBE
1G

VOUT0

Figure 1. Genetically evolved low-voltage balun (balance/unbalance) circuit.

e.g.: design low-voltage balun 
circuit
“The best-of-run evolved circuit (see Figure 1) is 
roughly a fourfold improvement over the 
patented circuit in terms of our fitness measure. 
The evolved circuit is superior both in terms of 
its frequency response and harmonic distortion.”
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And more ...
optimizing operating systems: data mining:

interactive art design:

as long as solutions can be evaluated, EAs can be applied


