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Theoretical studies

Focus on abstract and mathematical aspects of EAs

Develop solid, rigorous, and reliable knowledge
- empirical studies are limited to the experimented cases
- overcome experiment difficulties
- derive provable conclusions

Particularly for EAs
- when to use them
- what are their merits and drawbacks?
- how different configurations affect their performance?
- design better EAs
...

from rules of thumb to well understood heuristics
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Conventional algorithm analysis

Problem
Algorithm

Measurement

Sorting

Shortest Path

Linear Programming

Quick Sort average time complexity

Dijkstra’s algorithm 

O(n log n)

O(|V |2)
average time complexity

Simplex

worst case time complexity: 
exponential
smoothed complexity: 
polynomial
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Time complexity

What about an algorithm sorts (5,4,2,8,9) in 3 steps?

measured in a class of problem instances

measure the growing rate as the problem size increases

e.g. all possible arrays of 5 numbers

e.g. 

average complexity
worst case complexity

2n2

asymptotical notation O(n2)
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Time complexity

asymptotical notation

f(n) 2 ⇥(g(n)) : f(n) 2 O(g(n)) and f(n) 2 ⌦(g(n))

f(n) 2 ⌦(g(n)) : 9c, n0 > 0 such that 8n � n0 : f(n) � cg(n)

f(n) 2 O(g(n)) : 9c, n0 > 0 such that 8n � n0 : f(n)  cg(n)

e.g.,

f1(n) = 1000n2 2 ⇥(n2)

f1f2

f1(n) 2 O(f2) and f2 2 ⌦(f1)

f2(n) = 0.01 · 2n 2 ⇥(2n)
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But for EAs...

Problem
Algorithm

Measurement

nature phenomena

problem unknown
not designed with knowledge of problems

theoretical understanding is even more important
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Local dynamics

Schemata Theory
consider a binary solution space             = 

-- how the population changes in steps

[Holland, 75]

{0, 1}5
00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10100
10101
10110
10111

11000
11001
11010
11011
11100
11101
11110
11111

a schema is a template with “#”= “any”
a schema defines a subspace

01#1# order 3
#1#1# order 2
###1# order 1

e.g.

how the population size changes in a schema/subspace?
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Local dynamics
-- how the population changes in steps

[Holland, 1975]

m(Hk, t): population size in the subspace       with order k Hk

basic idea:
E[m(Hk, t+ 1)] =(1� P (leaving from Hk))m(Hk, t)

+ P (coming to Hk)(m�m(Hk, t))

E[m(Hk, t+ 1)] >
f(Hk)

f̄
(1� kPm � PcPd(Hk))m(Hk, t)

example: probability of passing the selection
probability of using the 
mutation

probability of using the 
crossover

probability that the crossover disrupts a solution

• higher order schema are easier broken
• implicitly parallelism
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Local dynamics

Useful in:
• analyzing local/immediate schema changes
• assisting deriving intuitive guidances

Unanswered questions:

local properties do not automatically tell the global results

• does an EA converge?
• how fast an EA converges?
• ...
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Markov chain modeling

A general procedure: initialization

population

evaluation & 
selection

offspring

reproduction

population 
0

expand along time:

population 
1

population 
2

population 
3

...

Markov chain:

state 
0

state 
1

state 
2

state 
3

...
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Markov chain modeling
Markov chain:

state 
0

state 
1

state 
2

state 
3

...

P (⇠3 | ⇠2, ⇠1, ⇠0) = P (⇠3 | ⇠2)

⇠0 ⇠1 ⇠2 ⇠3

Markov property

solution space

optimal 
solutions

S⇤S

population space

optimal 
populations

X ⇤X = Sm

involves at least one 
optimal solution
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Let ⇠ be a Markov chain. Define

↵

t

=

X

x/2X

⇤

P (⇠

t+1 2 X ⇤ | ⇠
t

= x)P (⇠

t

= x)�
X

x2X

⇤

P (⇠

t+1 /2 X ⇤ | ⇠
t

= x)P (⇠

t

= x).

Then ⇠ converges to X ⇤
if and only if ↵ satisfies:

Convergence

Does an EA converge to the global optimal solutions?
lim

t!+1
P (⇠t 2 X ⇤) = 1

Considered as closed:

Theorem: (discrete version derived from [He & Yu, 01])

gain of optimality in one step
loss of optimality in one step

P (⇠0 2 X ⇤) +
+1X

t=0

↵t = 1
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Convergence

Does an EA converge to the global optimal solutions?
lim

t!+1
P (⇠t 2 X ⇤) = 1

An EA that
1. uses global operators
2. preserves the best solution
always converges to the optimal solutions

But life is limited! How fast does it converge?

Considered as closed:

gain of optimality > 0
loss of optimality = 0
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Problem dependency

all possible problems
Algorithm

nature phenomena

Over all objectives 

�(ym | f,m,A)

an EA A, objective f, m solutions
arbitrary measure of the objective values of the m solutions:

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))] =
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))] =
X

ym

I[k = �(ym)]Y |X |�m

f : Xm ! {1, 2, . . . , Y }m

all algorithms have the same average performance
[Wolpert & Macready, 97]
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Problem dependency

all possible problems
Algorithm

nature phenomena

[Yu & Zhou, 08]

If:
‣ problem size n: the number of solutions is exp(n)
‣ an EA with population size poly(n)
then

average time complexity 

easy

hard

easy

hard

⌦(

exp(n)

poly(n)
)
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Examples in simple cases

Problem
Algorithm

Measurement

OneMax

(1+1)-EALeadingOnes Expected Running Time
(ERT)

Linear Pseudo-Boolean Functions

LongPath

...
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(1+1)-EA

1: s a randomly drawn solution from X
2: for t=1,2,. . . do

3: s0  mutate(s)
4: if f(s0) � f(s) then
5: s s0

6: end if

7: terminate if meets a stopping criterion

8: end for

A simple EA: (1+1)-EA

An extremely simplified EA
missing some features of real EAs

one-bit mutation

bitwise mutation

randomly choose one bit 
and change its value

change every bit with 
some probability (e.g.    )

for maximization, 
allow neutral 
changes

find an optimal 
solution

no population

no crossover

1

n
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Running time analysis

Running time of an EA:
the number of solutions evaluated until reaching an 
optimal solution of the given problem for the first time

the most time consuming step
may meet many times

Running time analysis:
running time with respect to the problem size (e.g. n)
the expected running time/ERT

ERT with high probability
e.g.              expected running timeO(n2)

e.g.                   expected running time with probability at leastO(n lnn) 1� 1

2n

computational 
complexity
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Probing problem

OneMax Problem: count the number 
of 1 bits

f(x) =
nX

i=1

xi

EAs do not have the knowledge of the problems 
only able to call  f (x)
no difference with any other functions f : {0, 1}n ! R

not only optimizing the problem, 
but also guessing the problem

argmax

x2{0,1}n

nX

i=1

x

i

fitness:
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

(1+1)-EA with one-bit mutation (Randomized Local Search):

starts in X0

probability:
1

probability:
0

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

......S0 = S⇤S1 S2 Sm
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p =
n� 1

n

p =
1

n

p = 0 p = 0

......S0 = S⇤S1 S2 Sm

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p = 0 p = 0

p =
n� i

n

p =
i

n

......S0 = S⇤S1 S2 Sm

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p =
n� 1

n
p =

n� i

n

n

n� 1

p =
1

n

n

i

n

1

probability of transition

expected #steps the 
transition happens

p = 1

1

......S0 = S⇤S1 S2 Sm

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

n

n� 1

n

i

n

1

expected #steps the 
transition happens 1

nX

i=1

n

i
= nHn ⇠ n lnnsummed up

expected running time upper bound O(n lnn)

...

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

(1+1)-EA with bitwise mutation (flip each bit with probability    ):

the probability of flipping i particular bits: (
1

n
)i(1� 1

n
)n�i

1

n

0 1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

i

pr
ob

ab
ili

ty

monotonically decreasing

but always positive
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

many transitions

......S0 = S⇤S1 S2 Sm

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

an upper bound: a path visits all subspaces

......S0 = S⇤S1 S2 Sm

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p = n(
1

n
)(
n� 1

n
)n�1

......S0 = S⇤S1 S2 Sm

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n



intro. to theory Markov chain problem dependency RTA analysis tools

An Introduction to Evolutionary Optimization
Recent Theoretical and Practical Advances

on parameters on comparison with classics on real-world situations summary

ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p = n(
1

n
)(
n� 1

n
)n�1

p �
✓
n� 1

1

◆
(
1

n
)(
n� 1

n
)n�1

......S0 = S⇤S1 S2 Sm

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

the solutions with the same number of 1-bits share the same f value
solutions with 

0 1-bits
solutions with 

1 1-bits
solutions with 

2 1-bits
solutions with 

n 1-bits

p = n(
1

n
)(
n� 1

n
)n�1

p �
✓
n� 1

1

◆
(
1

n
)(
n� 1

n
)n�1

p �
✓
n� i

1

◆
(
1

n
)(
n� 1

n
)n�1

......S0 = S⇤S1 S2 Sm

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n
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ERT of  (1+1)-EA in OneMax

OneMax: f(x) =
nX

i=1

xi

probability of transition

expected #steps the 
transition happens  1

n� i
· n · (1 + 1

n� 1
)n�1 ⇠ 1

n� i
· n · e

p �
✓
n� i

1

◆
(
1

n
)(
n� 1

n
)n�1

summed up

ERT upper bound O(n lnn)

n�1X

i=0

en

i
= enHn ⇠ en lnn

(1+1)-EA with bitwise mutation (flip each bit with probability    ):1

n
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ERT of  (1+1)-EA in Linear Pseudo-Boolean Functions

Linear Pseudo-Boolean Functions: argmax

x2{0,1}n

nX

i=1

w

i

x

i

where                are the weightswi( 6= 0)

of which OneMax is a special case

ERT of (1+1)-EA:
[Droste, et al. 98]⇥(n lnn)

specially designed algorithm takes        steps:
when not allowed to access the weight directly, 

test every bit independently: 2n steps

recall that the EA does not have the knowledge about the problem
only a factor of        is paid for guessing the problem lnn

⇥(n)
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OneMax

LeadingOnes
Linear Pseudo-Boolean Functions

LongPath

...

Examples in simple cases

Problem
Algorithm

Measurement

but EAs will not be used to solve these problems in practice
probing problems help disclose properties of EAs

(1+1)-EA Expected Running Time 
(ERT)
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General analysis tools

running time analysis is commonly problem specific

going to derive the ERT of an EA in a problem

“where to look” “what to calculate”

need a guide to tell what to look and what to follow to 
accomplish the analysis

- Fitness Level Method
- Drift Analysis
- Convergence-rate Based Method
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Fitness Level Method

solution 
space

partition the solution space 
into subspaces ...

with increasing fitness

= S⇤

S1

S2

Sm

[Wegener, 02] a population is treated as the 
best solution in the population

1. initialization probability of being in each subspace ⇡0(Si)

Then calculate: 

Note that elitist (i.e. never lose the best solution) EAs select solutions with better fitness. The level

sets, intuitively, form stairs, for which an upper bound can be derived by summing up the time

taken for getting off every stair, and a lower bound is the minimum time of getting off a stair. This is

formally described in Lemma 2.

Lemma 2 (Fitness Level Method [39])

For an elitist EA process ⇠ on a problem f , letS
1

, ...,Sm be a<f -partition, let vi  P (⇠t+1

2 [m
j=i+1

Sj |

⇠t = x) for all x 2 Si, and ui � P (⇠t+1

2 [m
j=i+1

Sj | ⇠t = x) for all x 2 Si. Then, the DCFHT of the EA

process is at most

X

1im�1

⇡
0

(Si) ·
m�1X

j=i

1

vj
,

and is at least

X

1im�1

⇡
0

(Si) ·
1

ui
.

Later on, more elaborated fitness level method was discovered by Sudholt [36], which we call as

the refined fitness level method in this paper as in Lemma 3. In the lemma, when the EA uses a

population of solutions, the notation ⇠ will denote that the best solution of the population is in the

solution space S.

Lemma 3 (Refined Fitness Level Method [35, 36])

For an elitist EA process ⇠ with a fitness function f , letS
1

, ...,Sm be a<f -partition, let vi  minj
1

�
i,j

P (⇠t+1

2

Sj | ⇠t = x) and ui � maxj
1

�
i,j

P (⇠t+1

2 Sj | ⇠t = x) for all x 2 Si where
Pm

j=i+1

�i,j = 1, and let

�u,�l 2 [0, 1] be constants such that �u � �i,j/
Pm

k=j �i,k � �l for all j > i, �u � 1 � vj+1

/vj and

�l � 1� uj+1

/uj for all 1  j  m� 2. Then the DCFHT of the process is at most

m�1X

i=1

⇡
0

(Si) ·
�
1

vi
+ �u

m�1X

j=i+1

1

vj

�
,

and the DCFHT of the process is at least

m�1X

i=1

⇡
0

(Si) · (
1

ui
+ �l

m�1X

j=i+1

1

uj
).

The refined fitness level method follows the general idea of the fitness level method, while intro-

duces a variable � that reflects the distribution of the probability that the EA jumps to better levels.

When � is small, the EA has a high probability to jump across many levels and thus make a large

progress; when � is large, the EA can only take a small progress in every step. Obviously, � can take

1 for upper bounds and 0 for lower bounds, which degrades the refined method to be the original

fitness level method. Therefore, the original fitness level method is a special case of the refined one.

20

Note that elitist (i.e. never lose the best solution) EAs select solutions with better fitness. The level
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the ERT is then upper bounded by:                     and lower bounded by:

x 2 Si
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Example in OneMax

solutions with 
0 1-bit

solutions with 
1 1-bit

solutions with 
2 1-bits

solutions with 
n 1-bits

...... = S⇤S1 S2 Sm

partition

progress probability for           :x 2 Si

a lower bound: flipping one 0-bit but no 1-bits:
✓
n� i

1

◆
(
1

n
)(
n� 1

n
)n�1

⇡0(Si) =

�n
i

�

2n
initialization distribution:

ERT:
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Variants of  Fitness Level Method

[Sudholt, 10] [Sudholt, 13]

The fitness level method has been extended to derive tighter 
ERT bounds, by incorporating distribution of the transitions.

Incorporating tail bounds for sharp results. [Witt, 13]

...

with increasing fitness

= S⇤

S1

S2

Sm
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Drift Analysis [Hajek, 82][Sasaki & Hajek, 88][He & Yao, 01][He & Yao, 04]

distance function V measuring 
“distance” of a solution to 
optimal solutions. V(x*)=0

optimal 
solutions

S⇤

x
V(x)

Then calculate: 

2. bounds of progress distance
    for every step:

the ERT is then upper bounded by:                     and lower bounded by:

1. initialization probability of solutions ⇡0(x)

progress toward the optimum of every step of an EA, which directly derives the number of steps

the EA takes to arrive at the optimum. Note that in Lemma 8, the distance function can be arbi-

trary (possibly depends on the objective function), thus it covers the variants including the original

definition of drift analysis [17] and the multiplicative drift analysis [10].

Definition 12 (Distance Function)

For a space X with the optimal subspace X ⇤, a function V satisfying V (x) = 0 for all x 2 X ⇤ and

V (x) > 0 for all x 2 X � X ⇤ is called a distance function.

Lemma 8 (Drift Analysis)

For an EA process ⇠ 2 X , let V be a distance function, if there exists a positive value cl such that

8t : cl  E[[V (⇠t)� V (⇠t+1

) | ⇠t]],

we have E[[⌧ | ⇠
0

⇠ ⇡
0

]] 
P

x2X ⇡
0

(x)V (x)/cl;

and if there exists a non-negative value cu such that

8t : cu � E[[V (⇠t)� V (⇠t+1

) | ⇠t]],

we have E[[⌧ | ⇠
0

⇠ ⇡
0

]] �
P

x2X ⇡
0

(x)V (x)/cu.

It should be noted that, when cl or cu is negative, the obtained running time bound is also negative

and thus meaningless. In this case, we will say that the drift is invalid and the analysis fails.

Characterization 3 (Drift Analysis)

For an EA process ⇠ 2 X , the drift analysis ADA is defined by its parameters, input and output:

Paramters: a distance function V .

Input:

cl > 0 for upper bound analysis such that cl  E[[V (⇠t)� V (⇠t+1

) | ⇠t]] for all t � 0;

cu > 0 for lower bound analysis such that cu � E[[V (⇠t)� V (⇠t+1

) | ⇠t]] for all t � 0.

Output:

Au
DA =

P
x2X ⇡

0

(x)V (x)/cl;

Al
DA =

P
x2X ⇡

0

(x)V (x)/cu.

7.2. The Power of Switch Analysis from Drift Analysis

Theorem 4

ADA is reducible to ASA.

Lemma 9

ADA is upper-bound reducible to ASA.
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most simplified version

cl  E[V (⇠t)� V (⇠t+1) | ⇠t]
cu � E[V (⇠t)� V (⇠t+1) | ⇠t]
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Example in LeadingOnes

LeadingOnes Problem: count the number 
of leading 1-bits
f(11011111) = 2f(x) =

nX

i=1

iY

j=1

xi

argmax

x2{0,1}n

nX

i=1

iY

j=1

x

i

fitness:

Distance function: V (x) = n� f(x)
distance of optimal 
solutions is zero

zero
zero

E[V (⇠t)� V (⇠t+1) | ⇠t] =
I(V (⇠t) > V (⇠t+1))E[V (⇠t)� V (⇠t+1) | ⇠t]+
I(V (⇠t) < V (⇠t+1))E[V (⇠t)� V (⇠t+1) | ⇠t]+
I(V (⇠t) = V (⇠t+1))E[V (⇠t)� V (⇠t+1) | ⇠t]

The drift:

Only need to care the expected progress:
11...10......
keep flip

probability of making progress >=
probability of increasing at least one leading 1-bit

E[V (⇠t)� V (⇠t+1) | ⇠t] � 1 · 1
n
(1� 1

n
)i � 1

n
(1� 1

n
)n�1 � 1

en
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Example in LeadingOnes

LeadingOnes Problem:

fitness:

Distance function: V (x) = n� f(x)
distance of optimal 
solutions is zero

E[V (⇠t)� V (⇠t+1) | ⇠t] � 1 · 1
n
(1� 1

n
)i � 1

n
(1� 1

n
)n�1 � 1

en

ERT is then upper bounded as
X

x2X

⇡0(x)V (x)
1
en

 V ((00 . . . 0))
1
en

=
n
1
en

2 O(n2)

the exact running time is approximate 0.86n2 [Böttcher, et al., 10]

f(x) =
nX

i=1

iY

j=1

xi

argmax

x2{0,1}n

nX

i=1

iY

j=1

x

i

count the number 
of leading 1-bits
f(11011111) = 2
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Variants of  Drift Analysis

[Doerr & Goldberg, 13][Doerr, et al., 12][Happ, et al., 08]

[Oliveto & Witt, 08] [Lehre & Witt, 13]

Incorporate tail bounds for sharp results

Other forms of drift analysis for better usability
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Convergence-rate Based Method [Yu & Zhou, 08]

S⇤ S⇤

only care about 
the reach at the 
optima

Then calculate:
bounds of getting optima
for every step:

the ERT is then upper bounded by:                     and lower bounded by:

↵0 +
+1X

t=2

t↵t�1

t�2Y

i=0

(i� ↵i) �0 +
+1X

t=2

t�t�1

t�2Y

i=0

(i� �i)

↵

t


X

x/2X⇤

P (⇠
t+1 2 X ⇤ | ⇠

t

= x)P (⇠
t

= x | ⇠
t

/2 X ⇤)

�

t

�
X

x/2X⇤

P (⇠
t+1 2 X ⇤ | ⇠

t

= x)P (⇠
t

= x | ⇠
t

/2 X ⇤)
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Example in Trap

Trap Problem: constraint counting 
of 1-bits

fitness:

argmax

x2{0,1}n

X
n

i=1
w

i

x

i

X
n

i=1
w

i

x

i

 C

where w1 = w2 = . . . = wn�1 > 1, wn = C = 1 +
n�1X

i=1

f(x) = I[
Xn

i=1
wixi  C]

Xn

i=1
wixi � C

0

3.75

7.5

11.25

15

2007 ��� 1 ��� 5

fit
ne

ss

optimal solution
number of 1-bits

0   1  2   3  4  5   6  7   8

for any solution with i bits different to 
the optimal solution

P (⇠t+1 2 X ⇤ | ⇠t = x) = (
1

n

)i(1� 1

n

)n�i
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Example in Trap

Trap Problem:
fitness: f(x) = I[

Xn

i=1
wixi  C]

Xn

i=1
wixi � C

0

3.75

7.5

11.25

15

2007 ��� 1 ��� 5

fit
ne

ss

At the first step:X

x/2X⇤

P (⇠
t+1 2 X ⇤ | ⇠

t

= x)P (⇠
t

= x | ⇠
t

/2 X ⇤)

=
n�1X

i=0

X

x2Xi

P (⇠1 2 X ⇤ | ⇠0 = x)P (⇠0 = x)

=
n�1X

i=0

✓
n

i

◆✓
1

n

◆n�i

(1� 1

n
)i

1

2n

= (1� (
n� 1

n
)n)

1

2n
⇠ e� 1

e

1

2n

In the later steps:X

x/2X⇤

P (⇠
t+1 2 X ⇤ | ⇠

t

= x)P (⇠
t

= x | ⇠
t

/2 X ⇤)  e� 1

e

1

2n

the distribution moves 
toward the wrong direction



intro. to theory Markov chain problem dependency RTA analysis tools

An Introduction to Evolutionary Optimization
Recent Theoretical and Practical Advances

on parameters on comparison with classics on real-world situations summary

Example in Trap

Trap Problem:
fitness: f(x) = I[

Xn

i=1
wixi  C]

Xn

i=1
wixi � C

X

x/2X⇤

P (⇠
t+1 2 X ⇤ | ⇠

t

= x)P (⇠
t

= x | ⇠
t

/2 X ⇤)  e� 1

e

1

2n
= �t

ERT is lower bounded by

0

3.75

7.5

11.25

15

2007 ��� 1 ��� 5

fit
ne

ss

�0 +
+1X

t=2

t�t�1

t�2Y

i=0

(i� �i) =
e

e� 1
2n 2 ⌦(2n)
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Road map

intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations
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On configurations of  EAs

initialization

population

evaluation & 
selection

offspring

reproductionA lot of parameters configurable

Is it good to maintain a population instead of a single solution?

Is it good to employ crossover for reproduction?

two characterizing features of EAs
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On the effect of  population

EAs maintaining a population of solutions:
(µ+1)-EA

1: Pop = {s1, s2, . . . , sµ} µ randomly drawn

solutions

2: for t=1,2,. . . do

3: s  select from Pop with probability

proportional to the fitness

4: s

0  mutate(s)

5: Pop select µ solutions from Pop[ s0
with probability proportional to the fitness

while keeping the best solution

6: terminate if meets a stopping criterion

7: end for

and also (N+N)-EA

(1+�)-EA

1: s a randomly drawn solution from X
2: for t=1,2,. . . do

3: Pop call mutate(s) � times

4: s

0  the best solution in Pop

5: if f(s

0
) � f(s) then

6: s s

0

7: end if

8: terminate if meets a stopping criterion

9: end for

μ solutions

1 offspring
selection probability 

proportional to the fitness.
fitness scale matters!

1 solution
λ offspring
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On the effect of  population
Can maintaining a population be beneficial?
[Jansen & Wegener, 01]:

fit
ne

ss

number of 1-bits

SJumpk,s problem

k

skxk1

For (1+1)-EA

For (μ+1)-EA with 

trapped at the local optimum

probabilistic selection
spreads in the flat area
ERT: O(n3/2)

Considering k = log n/ log log n, s = n2

ERT: O(nlogn/ log log n)

µ = n

[Witt, 08]: from exponential to polynomial in an artificial problem

from super-polynomial to polynomial

“parent population” with probabilistic 
selection helps spreading solutions
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On the effect of  population
Can maintaining a population be beneficial?
[Jansen, et al., 05]: SufSamp Problem

from super-polynomial to polynomial

“offspring population” enforces local search

For (1+1)-EA

For (1+λ)-EA with 

trapped at the local optimum

looking around before taking a step
follow the global path
ERT:

ERT:             with probability nO(1) 2�⌦(

p
n logn)

� = c · n

O(c2n3)

SufSamp [Jansen, et al., 05]
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On the effect of  population
Is population always beneficial?

⌦(µn log n+ n2
)

In LeadingOnes problem:
known (1+1)-EA ERT upper bound
(μ+1)-EA ERT lower bound

In OneMax problem:
known (1+1)-EA ERT upper bound
(μ+1)-EA ERT lower bound

O(n2)

O(n lnn)

[Witt, 06]

⌦(
p
µn lnn+ µn) [Storch, 08]

in simple problems, population is not necessary

Similar results also found for 
(1+λ)-EA [Jansen, et al., 05] 
and (N+N)-EA [Chen, et al., 09]
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On the effect of  population
Can population be harmful?

56 T. Chen et al. / Theoretical Computer Science 436 (2012) 54–70

Fig. 1. Illustration of the TrapZeros problem.

TrapZeros(x) ,

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

2n +
nX

i=1

iY

j=1

(1 � xj), if (x1 = 0) ^ (x2 = 0);

3n +
nX

i=1

iY

j=1

xj, if (x1 = 1) ^ (x2 = 1) ^
0

@
ln2 n+2Y

i=3

xi = 1

1

A ;

n +
nX

i=1

iY

j=1

xj, if (x1 = 1) ^ (x2 = 1) ^
0

@
ln2 n+2Y

i=3

xi = 0

1

A ;
0, if (x1 = 0) ^ (x2 = 1);
1, if (x1 = 1) ^ (x2 = 0);
0, Other.

(1)

The TrapZeros problem is a multimodal problem, and its global optimum is x⇤ = (1, . . . , 1). For TrapZeros, increasing the
leading 0-bits in its solution may eventually lead to the local optimum (0, . . . , 0) instead of leading to the global optimum
(1, . . . , 1). To reach the attraction basin of the global optimum, an optimization algorithm should first find some solutions
with the leading substring consisting of ln2 n+ 2 consecutive 1-bits. Otherwise, the selection pressure of an EA will tend to
preserve the solutions with leading 0-bits. To facilitate the later investigations, we define three schemata as follows:

S1 = {(1, 1, ⇤, . . . , ⇤)},
S0 = {(0, 0, ⇤, . . . , ⇤)},

S⇤ =

8
><

>:
(1, 1, 1, . . . , 1| {z }

ln2 n

, ⇤, . . . , ⇤)

9
>=

>;
,

S⇤ 2 S1,

where ‘‘⇤’’ can represent either 0 or 1, S⇤ and S1 are the schemata containing the global optimum. Fig. 1 illustrates the
fitness landscape of TrapZeros with respect to the schemata defined above, and it shows that the individuals belonging to
S⇤ are strictly better than any individual belonging to S0, while the individuals belonging to S0 are strictly better than any
individual belonging to S1 \ S⇤. Utilizing this property, we will carry out rigorous analysis of an EA on TrapZeros later.

2.2. Algorithm

The (N + N) EA studied in this paper is with equal parent and offspring sizes. The detailed algorithm is described as
follows:
1. Initialization: The N initial individuals are generated uniformly at random, and the initial population ⇠1 is obtained.
2. Mutation: At the tth generation (t 2 N+), the N individuals in the parent population ⇠t are mutated, and the offspring

population ⇠
(m)
t is obtained. The mutation of each individual in ⇠t utilizes the bitwise mutation, i.e., each bit of the

individual is flipped independently with a uniform probability 1/n, where n is the problem size.
3. Selection: After the mutation step at the tth generation (t 2 N+), the best N individuals in the parent and offspring

populations (⇠t [⇠
(m)
t ) are selected to form the population ⇠t+1, which is the parent population of the (t+1)th generation.

Afterward, set t = t + 1 and then go to the mutation step.
The execution of the EA will stop if the stopping criterion is met. The above algorithm adopts the truncation selection, and
does not employ any recombination operator. The investigation of EAs with recombination operator and other selection
operators will be left as our future work.

With respect to the (N + N) EA, the population size N must be a polynomial function of the problem size n, otherwise
each generation of the EA would require super-polynomial number of fitness evaluations. When N = 1, the above (N + N)
EA degenerates to the well-known (1 + 1) EA [4].

too much selection pressure leads to 
over greedy

[Chen et al., 12]: TrapZeros Problem

TrapZeros [Chen et al., 12]

For (1+1)-EA

For (N+N)-EA 
with N>1 and                      
ERT:
with probability

ERT:             
with probability 

O(n2)
1

4
�O(

ln2 n

n
)

N 2 O(lnn)

O(n2)

For (N+N)-EA 
with                      
ERT is super-polynomial with an overwhelming probability

N 2 ⌦(n/ lnn)

1

poly(n)
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On the effect of  crossover

(µ+1)-EA

1: Pop = {s1, s2, . . . , sµ} µ randomly drawn

solutions

2: for t=1,2,. . . do

3: s  select from Pop with probability

proportional to the fitness

4: s

0  mutate(s)

5: Pop select µ solutions from Pop[ s0
with probability proportional to the fitness

while keeping the best solution

6: terminate if meets a stopping criterion

7: end for

(µ+1)-EA with crossover

1: Pop = {s1, s2, . . . , sµ} µ randomly drawn

solutions

2: for t=1,2,. . . do

3: if within probability pc then

4: s1, s2  select from Pop with prob-

ability proportional to the fitness

5: s a random outcome of crossover(s1, s2)

6: else

7: s select from Pop with probabil-

ity proportional to the fitness

8: end if

9: s

0  mutate(s)

10: Pop select µ solutions from Pop[ s0
with probability proportional to the fitness

while keeping the best solution

11: terminate if meets a stopping criterion

12: end for

apply the crossover with a 
probability

to apply crossover, the EA has to maintain a population
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On the effect of  crossover
crossover: operating on pairs of solutions

[Rabani, et al., 98]

two solutions one-point crossover
exchange a part

uniform crossover
exchange each bit with a prob.

irregularity of crossover
mutation: directly related to Hamming distance
crossover: ? distance

(11110000) + (11000011): generate 8 different outcomes
(11110000) + (11100001): generate 2 different outcomes

quadratic dynamic system
P (x) =

X

w,v,y

P (y)P (v)
⇣1
2
P ((x,w) | (y, v)) + 1

2
P ((w, x) | (y, v))

⌘
compare with that of Markov chain:

P (x) =
X

y

P (y)P (x | y)

studies without mutation or with pseudo-population
[Watson, 01] [Dietzfelbinger, et al., 03] [Kötzing, et al., 11]
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On the effect of  crossover
Can crossover be beneficial?

[Jansen & Wegener, 02]: Jumpn,m Problem

fit
ne

ss

number of 1-bits
m

from super-polynomial to polynomial

[Kötzing, et al., 11]: the results hold when without mutation after crossover
[Jansen & Wegener, 05]: Similar results in Real Royal Road Problem

For (1+1)-EA

For (μ+1)-EA with                    , small enough pc, and avoid replicates

trapped at the local optimum

ERT:

Considering 

ERT:

m = dlog ne

⇥(ndlogne
+ n log n)

O(n3
log n)

µ = dlog3 ne
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On the effect of  crossover
Can crossover be harmful?

[Richter, 08]: Ignoble Trails Problem
96 J.N. Richter, A. Wright, and J. Paxton

Fig. 1. Illustration of Ignoble Trail 1

point on P . They travel up P until such time as a∗ is found [there is a proba-
bility Θ(1/n) a∗ is skipped]. If a∗ is found, the behavior degenerates to mimic
the (1 + 1) EA as a∗ is fixed in the population and the other string is available
for continued optimization of P until a∗∗ is found.

Once the population becomes {a∗, a∗∗} the behavior of the two algorithms
diverges. The EA is very unlikely to discover T via mutation, and is likely to
find b∗∗ in O(nk) steps. Conversely the GA is very likely to discover T via
crossover before it discovers b∗∗. Once the GA has found T , it will accumulate
both individuals in T in short order. The expected waiting time to discover b∗∗

from T is exponential. Thus we refer to T as the ’trap’ rather than the ’target’
of Ru

n(x). Note that crossover is of little assistance in discovering b∗∗ from either
a∗∗ or T .

Figure 2 contains a visual representation of the results to follow and the high
likelihood optimization phases of both algorithms.

4.3 Time Complexity Results

Note that the next set of proofs take some arguments from [11] or [4]. The
addition of b∗∗ requires many additional steps to prove rigorous results, there
are many more good and bad events to account for above those from [11].

Lemma 1. The probability that (2 + 1) EA without crossover and the (2 + 1)
GA with uniform crossover find a point in P2 ∪ T ∪ {b∗∗} without discovering
path P1 within O(n2) steps is at least 1 − e−Ω(n).

Proof. Recall that k is a constant, and assume that n = 6m is chosen so that
3 < k < m/4. Let Q := P2 ∪ T ∪ {b∗∗} and note that all elements of Q have at
least 5m − k ones. Let R be the set of points not in P with at most 4m ones.
The probability of initializing a member of the population with more than 4m

For (2+1)-EA without crossover, ERT is 

For (2+1)-EA with uniform crossover, ERT is exponential

O(nk)

||a**,b**||=k
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Multi-objective optimization

-price

pe
rfo

rm
an

ce

optimal Pareto front

A

C B

be
tte

r p
ric

e: 
C

be
tte

r p
erf

orm
an

ce:
 A

better price: A
better performance: A

optimizes multiple objectives 
simultaneously
argmax

x

f(x)

= argmax

x

(f1(x), . . . , fk(x))

fperf (A) > fperf (B)

f�price(A) > f�price(B)

fperf (A) < fperf (C)

f�price(C) > f�price(A)

A dominates B

A and B are 
non-dominated

A Simple Multi-objective EA (SEMO)

1: Pop = {s} a randomly drawn solution
2: for t=1,2,. . . do

3: s randomly select from Pop

4: s

0  mutate(s)
5: if @s00 2 Pop such that s00 dominates s0

then

6: remove solutions in Pop that are dom-
inated by s

0

7: add s

0 into Pop

8: end if

9: terminate if meets a stopping criterion
10: end for

naturally maintain a population

[Laumanns, et al., 02]
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On the effect of  crossover
Can crossover be beneficial for multi-objective optimization?

[Qian, et al., 11] 

[Neumann & Theile, 10]

currently no evidence

crossover helps jump gaps in multi-criteria all-pairs-shortest-path problem

crossover helps fill the optimal Pareto front by recombining diverse 
solutions on the front, in COCZ and LOTZ problems

Can crossover be harmful for multi-objective optimization?
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On the effect of  crossover

[Neumann, et al., 11]: studied crossover for parallel EAs

[Sudholt, 05]: studied crossover in Ising tree problems

[Fischer & Wegener, 05]: studied crossover in Ising ring problems

Other studies:

[Yu, et al., 10]: studied crossover in LeadingOnes problem
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Road map

intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations
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On comparison with classical algorithms

Sorting Given: a sequence of numbers
Find:   the sequence ordered ascendantly

5 2 4 9 8 7 1 3 6

1 2 3 4 5 6 7 8 9complexity: ⇥(n lnn)

[Scharnow, et al., 04]:
Representation: an array of the numbers
Mutation: common mutation is not suitable; 
                 exchange and jump operators

352 JENS SCHARNOW ET AL.

In order to specify an EA we have to discuss the considered search operators.
We only want to use search operators which have been applied often when ma-
nipulating permutations. This again is motivated by the aim to investigate EAs
which are not specific for sorting. Most crossover operators for permutations are
rather complicated (for an overview see [1]). We are not able to analyze GAs with
crossover for sorting problems (although we conjecture that the generic crossover
operators for permutations are not useful for our problems). Hence, we investigate
only mutation-based EAs.

The most simple local operation is swap(i) which exchanges the elements at the
positions i and i + 1. Swaps are quite local. The minimal number of swaps to sort
a random permutation is known (folklore) to be !(n2). There are three less local
operations which generalize swaps:

– exchange(i, j) exchanges the elements at the positions i and j ,
– jump(i, j) causes the element at position i to jump to position j while the

elements at positions i + 1, . . . , j (if j > i) or j, . . . , i − 1 (if j < i) are
shifted in the appropriate direction,

– reverse(i, j), where i < j , reverses the ordering of the elements at the posi-
tions i, . . . , j .

These are the three local operators which have been applied in many different
situations (evolutionary algorithms or the optimization of the variable order for
OBDDs (ordered binary decision diagrams), the most often used data structure for
Boolean functions). Up to now, we have analyzed only EAs based on exchanges
and jumps.

We illustrate these local operations in Figure 1. Later, we will only count the
number of fitness evaluations as it is usual in the analysis of EAs. This makes
sense only if there are efficient algorithms to compute the fitness efficiently, i.e. in

Figure 1. The local operations for the sorting problem.

Fitness: 
counting the number of sorted pairs
O(n)

⇥(n2 lnn)ERT of (1+1)-EA: 

Examples of mutations [Scharnow, et al., 04]

n2 factor exploration, many redundant actions
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On comparison with classical algorithms

Sorting Given: a sequence of numbers
Find:   the sequence ordered ascendantly

5 2 4 9 8 7 1 3 6

1 2 3 4 5 6 7 8 9complexity: ⇥(n lnn)

63178945 2

6

31789

4

5 2

6

3

1789

4

5 2

ERT of (1+1)-EA:                                        
empirical estimated ERT is in the order of 

[Doerr & Happ, 08]: Directed tree representation

Mutation: making two sibling nodes as parent-child
Fitness: count of corrected ordered pairs and strongly punish incorrectness
             O(1) 

O(n2) ⌦(n lnn)
n lnn

initial solution
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On comparison with classical algorithms

Shortest Path
(single source)

Given: a graph sequence of numbers
Find:   the sequence ordered ascendantly
complexity: Dijkstra's algorithm O(|V |2)

63

1
4

52[Scharnow, et al., 04]:
Representation: an array indicating the predecessors 
of the index vertex

index: 1 2 3 4 5 6
x = ( 1 5 1 2 4 )

Mutation: randomly change the predecessor of some 
nodes
Fitness: multi-objectives, each objective measuring 
the path length from the source to a vertex

ERT of (1+1)-EA:                                         (   is the radius w.r.t. the source)`
[Doerr, et al., 11b]

O(|V |2 max{ln |V |, `})

(1+1)-EA accepts solutions superior in all objectives
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On comparison with classical algorithms

Shortest Path
(single source)

Given: a graph sequence of numbers
Find:   the sequence ordered ascendantly
complexity: Dijkstra's algorithm with Fibonacci heap

63

1
4

52

[Doerr & Johannsen, 10]: Edge-based representation
Representation: an array indicating the selected edges x = (e1 e2 e3 e6 e7)
Mutation: replace a randomly chosen edge with another 
edge sharing the same end-vertex
Fitness: multi-objective, an objective measure the 
path length from the source to a node

ERT of (1+1)-EA:                                         (   is the radius w.r.t. the source)

e1

e2

e3
e5

e8
e6

e4 e7

O(|E|+ |V | ln |V |)

`O(|E|max{ln |V |, `})
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On comparison with classical algorithms

Maximum Matching

Minimum Spanning Tree

...

All Pairs Shortest Path

By EAs By classical algorithms

O(|E|2(ln |V |+ lnw
max

))

O(|E|2d1/✏e)
(1+✏)-approximate

[Doerr, et al., 13]
O(|V |3 ln |V |) ⇥(|V |3)

Floyd–Warshall algorithm

O(
p
|V ||E|)

Hopcroft–Karp algorithm

O(|E| · a(|E|, |V |))

[Giel & Wegener, 03]

[Neumann & Wegener, 07] Chazelle’s algorithm
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On comparison with classical algorithms

[Doerr, et al., 11]: EAs can do dynamic programming
optimal substructures
overlapping subproblems

state space:       state transition func.:                       consistency functions:S F1, . . . ,Fn H1, . . . , Hn

DP problem:

S0 SiSi�1

contains initial states

... ... Sn

F 2 F1 F 2 Fi F 2 Fn

H1 Hi Hn

contains states transited from the predecessor           by a function in     , and the 
feasibility is checked by 

Si�1 Fi

Hi

DP algorithm:
Ti�1 2 Si�1Ti 2 SiT0 2 S0 Tn 2 Sn... ...

single source shortest path:
state space: a sequence of vertices with length at most n, and starts with s (source)
initial states: {s}
state transition functions: each function adds a vertex to the given sequence
consistency: return feasible if the sequence is a path
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On comparison with classical algorithms

[Doerr, et al., 11]: EAs can do dynamic programming
optimal substructures
overlapping subproblems

S F1, . . . ,Fn H1, . . . , Hn

DP problem:

S0 SiSi�1

contains initial states

... ... Sn

F 2 F1 F 2 Fi F 2 Fn

H1 Hi Hn

contains states transited from the predecessor           by a function in     , and the 
feasibility is checked by 

Si�1 Fi

Hi

EAs can be configured to solve a DP problem with ERT:

DP algorithm:
Ti�1 2 Si�1Ti 2 SiT0 2 S0 Tn 2 Sn... ...

state space:       state transition func.:                       consistency functions:

single source shortest path:
all pairs shortest path:

O(n4 lnn)
O(n5 lnn)

O(|S0|+ n · log(
Xn

i=0
|Ti|) ·

Xn

i=1
|Ti�1| · |Fi|)
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Road map

intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations
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On real-world performance

EAs are expected to be applied in hard problems

- problems with unknown formulae

- problems hard to solve (NP-hard)

properties about problem classes

analysis in NP-hard problems
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On properties about problem classes

[Fournier & Teytaud, 11]:

[Qian, et al., 12]:

with the variable of problem class complexity
for evolutionary strategies
give lower bounds of the particular convergence rate

...

in pseudo-boolean function class
for (1+1)-EA
identify the easiest and the hardest problem cases
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In NP-hard problems

Approximation ratio

for minimization, in every problem instance let s be the solved solution 
and s* be an optimal solution 

f(s)

f(s⇤)
approximation ratio is the largest value of               over all problem instances

no smaller than 1,  the smaller the better

usually consider the achieved ratio within polynomial ERT
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In NP-hard problems

Minimum Vertex Cover (MVC) problem

Minimum Set Cover (MSC) problem

to minimize the number of vertices covering 
all edges

2－approximation by maximum matching

to minimize the number of sets covering all 
elements (uniweighted)

ln n－approximation by the greedy algorithm,  
and is asymptotically tight

to minimize the total weight of a collection 
of sets covering all elements (general)

can not be approximated within a factor ≈1.36
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(1+1)-EA in MVC problem

✏ · n (1� ✏) · n

(1� ✏)

✏

The ERT of (1+1)-EA achieving an approximate ratio better than 
is exponential             [Friedrich, et al., 10]

approximation ratio:

(1� ✏)

✏8✏ > 0

Further investigations:
[Oliveto, et al., 09] studied (1+1)-EA in several instances of MVC problem
[Friedrich, et al., 09] studied hybrid (1+1)-EA with the greedy algorithm and the 
maximum matching algorithm
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Multi-objective reformulation

1.  Convert a single objective optimization problem to a multi-objective 
optimization problem by extracting/adding auxiliary functions

2.  Solve the multi-objective optimization problem
3.  Convert the obtained Pareto set back for the single objective problem

f

g

argmin
x

⇣
f(x), g(x)

⌘
argmin

x

f(x) + g(x)

f + g

For MVC problem

single objective:

multi-objective:
argmin[number of selected vertices] + � · [number of uncovered edges]

argmin([number of selected vertices], [number of uncovered edges])
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Multi-objective reformulation

[Scharnow, et al., 04] first disclosed that multi-objective reformulation may be 
helpful in solving Shortest Path problem. 
It is then confirmed by studies (e.g. [Neumann & Wegener, 07b] in shortest path and spanning tree problems)

[Friedrich, et al., 10]: by the multi-objective reformulation with SEMO,

A Simple Multi-objective EA (SEMO)

1: Pop = {s} a randomly drawn solution
2: for t=1,2,. . . do

3: s randomly select from Pop

4: s

0  mutate(s)
5: if @s00 2 Pop such that s00 dominates s0

then

6: remove solutions in Pop that are dom-
inated by s

0

7: add s

0 into Pop

8: end if

9: terminate if meets a stopping criterion
10: end for

[Laumanns, et al., 02]
1. solve the Minimum Vertex Cover bipartite 

instance in polynomial time

2. obtain        －approximate solutions for the  
(general) Minimum Set Cover problem in 
polynomial time

lnn
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A unified framework

[Yu, et al., 12] proposed a unified framework for both single- and multi-
objective EAs

isolation function: isolates the competition among solutions

by isolations

q isolations, c gap, ri increase of objective value

EAs can finds                  -approximate solutions in               time(
Xq�1

i=0
ri) O(q2nc)

should not too many isolations (q is polynomial in n)
should not too large variation is needed (c is constant)

x

xnew

x1

x2

x3

x4

x5

xnew

dominate

non-­‐dominate
x1

x2

x3

x4

x5

xnew

(1+1)-EA multi-objective EA

can be configured as 
(1+1)-EA or a multi-
objective EA
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A unified framework

[Yu, et al., 12] proposed a unified framework for both single- and multi-
objective EAs

isolation function: isolates the competition among solutions

EAs can finds                  -approximate solutions in               time(
Xq�1

i=0
ri) O(q2nc)

Applications:

(Hk � k � 1

8k9
)

- exceed the greedy algorithm

  finds                       -approximate solutions in                      time for k-set 

  cover problem

O(mk+1n2)

- simulate the greedy algorithm
  finds       -approximate solutions in                 time in general MSC problemO(mn2)Hn

1/k-approximate solutions for b-matching, maximum profit scheduling and 
maximum asymmetric TSP problems (k-extensible systems) [Mestre, 06] 
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In NP-Hard problems

Minimum Vertex Cover fixed-parameter complexity [Kratsch & Neumann, 13] 

Spanning Forest [Neumann & Laumanns, 06] 

Minimum Multicuts [Neumann & Reichel, 08]

Traveling Salesman [Kötzing, et al., 12][Sutton & Neumann, 12]

...
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intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations

Summary
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intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations

basic concept

Summary
convergence conditions

easy to converge

No Free Lunch
necessary to consider problems

examples of RTA

three general 
approaches

effect of population 
and crossover

EAs can do dynamic 
programming

EAs can do and exceed 
greedy algorithm
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intro. to theory

problem dependency
running time analysis/RTA

analysis tools

convergence

on configurations of EAs

on comparison with classical algorithms

on performance in real-world situations

Summary
a lot of open problems

a fast growing research area
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Available books on EA theory

F. Neumann, C. Witt. 
Bioinspired Computation in Combinatorial Optimization 
– Algorithms and Their Computational Complexity.
Springer-Verlag, Berlin, Germany, 2010.

A. Auger and B. Doerr. Theory of Randomized Search 
Heuristics - Foundations and Recent Developments. 
World Scientific, Singapore, 2011. 

...
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Major venues of  theoretical work on EAs

Major journals:
- Artificial Intelligence (Elsevier)
- Algorithmica (Springer)
- Evolutionary Computation (MIT Press)
- Theoretical Computer Science (Elsevier) 
- IEEE Trans. on Evolutionary Computation (IEEE)
- ...

Major conferences:
- PPSN (International Conference on Parallel Problem Solving From Nature, bi-annual, even year)
- GECCO (International Conference on Genetic and Evolutionary Computation, annual)
- FOGA (International Workshop on Foundations of Genetic Algorithms, bi-annual, odd year)
- CEC (IEEE Conference on Evolutionary Computation, annual)
- ...
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