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Theoretical studies

Focus on abstract and mathematical aspects of EAs

Develop solid, rigorous, and reliable knowledge

- empirical studies are limited to the experimented cases
- overcome experiment difficulties
- der1ve provable conclusions

Particularly for EAs
- when to use them
- what are their merits and drawbacks?
- how different configurations affect their performance?
- design better EAs

from rules of thumb to well understood heuristics
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Conventional algorithm analysis

[ Problem J ,
Algorithm ]
Measurement

Sorting Quick Sort average time complexity
O(nlogn)

Shortest Path Dijkstra’s algorithm average time complexity
O(IV*)

worst case time complexity:

. . , exponential
Linear Programming Simplex .
smoothed complexity:

polynomial
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Time complexity

What about an algorithm sorts (5.4,2,8,9) in 3 steps?

measured 1n a class of problem instances

e.g. all possible arrays of 5 numbers

average complexity
worst case complexity

measure the growing rate as the problem size increases

e.g. 2n”
asymptotical notation O(n?)
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Time complexity

asymptotical notation
f(n) € O(g(n)): dec,ng > 0 such that Vn > ng : f(
f(n) € Qg(n)): de,ng > 0 such that Vn > ng : f(
fn) € ©(g(n)):  f(n) € O(g(n)) and f(n) € Q(g(n))

n) < cg(n)
> cg

(n)

n)

e.g., Jo f1
f1(n) = 1000n* € ©(n*) :

fo(n) = 0.01- 2" € ©(2")
fi(n) € O(f2) and f2 € Q(f1)
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But for EAs...

nature phenomena ] f e PR

-------------------------

----------------------------

S [ Algorithm ]

----------------------------

problem unknown

not designed with knowledge of problems

theoretical understanding 1s even more important
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Local dynamics

-- how the population changes in steps

Schemata Theory (Holand,75)

00000 01000 10000 11000

. . . 5 00001 01001 10001 11001
consider a binary solution space {0, 1}°=wow oo w0 1
00011 01011 10011 11011

00100 01100 10100 11100

00101 01101 10101 11101

00110 01110 10110 11110

00111 01111 10111 11111

a schema 1s a template with “#’= “any” 01#1# order 3
a schema defines a subspace e.g. #1#1# order 2
### 14 order 1

how the population size changes in a schema/subspace’?
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Local dynamics
-- how the population changes in steps

m(Hp,t): population size in the subspace H;, with order k

basic 1dea:
Em(Hy,t+ 1)] =(1 — P(leaving from Hy))m(Hyg,t)
+ P(coming to Hy)(m — m(Hg, 1))

example: [Holland, 1975]

f (H)
f

E[m(Hk,t -+ 1)] > (1 — kP, — PCPd(Hk))m(Hk,t)

* higher order schema are easier broken
o implicitly parallelism
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Local dynamics

Useful 1n:
e analyzing local/immediate schema changes
 assisting deriving intuitive guidances

local properties do not automatically tell the global results

Unanswered questions:

e does an EA converge?
 how fast an EA converges??
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Markov chain modeling

----------------------

A general procedure: [initialization] . <valuation &
: . selection }
/ opulatibn | [offs rinj
| populatipn| 2 pring

A A aamamamamamamamamp s eSS

. ‘veproduction

AL ELELE s SRR RN g

0 1 2 3

Markov chain;:

state state ...
0 1
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Markov chain modeling
Markov chain:

OO
0 1
o &1 &2 &3

P(£3 ‘ S27€17£0) — P(£3 ‘ 62)
Markov property

optimal
solutions

S*

optimal
populations

X*
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Convergence

Does an EA converge to the global optimal solutions?
lim P(& e X*) =1

t—>—+00

Considered as closed:

Theorem: (discrete version derived Azrom [He & Yu, 01])

Let & be a Markov chain. Define

= Y Pl € X" [&=a)P(&=2)— Y Pl ¢ X7 | & =2)P(& = 2).

rE X * reX*

Then £ converges to X'* if and only if « satisfies:

+0o0
P(€O EX*)—FZOQ =1
t=0

LAVIDA NI ECa
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Convergence

Does an EA converge to the global optimal solutions?

t—+00

Considered as closed:

An EA that

1. uses global operators

2. preserves the best solution

always converges to the optimal solutions

But life 1s Iimited! How fast does 1t converge?

LAVIDA NI ECa
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Problem dependency

) nature phenomena J
[all possible problems ,
Algorithm

an EA A, objective f, m solutions
arbitrary measure of the objective values of the m solutions:

®(Yym | f,m, A)
Over all objectives f: X™ — {1,2,...,Y}"™
ZI O(yml|f,m, A)] = Y Ik =D(f(A(m)))] = sz[k = ©(ym)[ym = f(A(m))]
f

= 11k = ()] 3y = = Stk = By

all algorithms have the same average performance
[ Wolpert & Macready, 97]
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Problem dependency

) nature phenomena J

Algorithm ]

[all possible problems

If:
» problem size n: the number of solutions 1s exp(n)
» an EA with population size poly(n)

then
average time complexity eXp( ) [Yu & Zhou, 08]
pO y(n

CD®
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Examples in simple cases

Algorithm J\
Problem Measurement

OneMax
Linear Pseudo-Boolean Functions
LeadingOnes (1+1)-EA  Expected Running Time
LongPath (ERT)

LAVIDA NI ECa
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A simple EA: (1+1)-EA

. . randomly choose one bit
An extremely simplified EA and change its value

missing some features of real EAs

change every bit with

. 1

(1—|—1)—EA some probability (e.g. ﬁ)

1: s < a randomly drawn solution from /&

2: for t=1,2,... do

3: s’ < mutate(s)

4: if f(s’) > f(s) then

5: s < s

6: end if

7: terminate if meets a stopping criterion

8: end for

LAVIDA NI ECa
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Running time analysis

Running time of an EA:

the number of solutions evaluated until reaching an
optimal solution of the given problem for the first time

Running time analysis:
running time with respect to the problem size (¢.g. n)

the expected running time/ERT

e.g. O(n?) expected running time

ERT with high probability

e.g. O(nlnn) expected running time with probability at least 1 — o

LAVIDA NI ECa
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Probing problem

OneMax Problem: arg max Z X; count %I”‘Q number
7€{0,1}" j—1 of 1 bits
fitness: f(x) = Z Xy
1=1

EAs do not have the knowledge of the problems

only able to call f(x)
no difference with any other functions f : {0,1}" — R

nok ontv op%ﬁmiaimS the probi.@.m,
but also guessing the problem

LAVIDA nrem EECa
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ERT of (1+1)-EA in OneMax

i=1
the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

OO @ ...... 7@8*

starts in X g

probability: probability:
1 0

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of (1+1)-EA in OneMax

i=1
the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

@ © - (5)-5

(1+1)-EA with one-bit mutation (Randomized Local Search):

LAVIDA NI ECa
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ERT of (1+1)-EA in OneMax

1=1

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits
@ @ ...... @ : 8*
AN A" 7
Y “ S
“ R R4
L S " ~~ '¢'
—0 i —0
p p=" p
n
n—1
p p—
n

(1+1)-EA with one-bit mutation (Randomized Local Search):

LAVIDA NI ECa
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ERT of (1+1)-EA in OneMax

OneMax: f(x Z T

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

oo (5)-5
\/

bability of transiti =1 _n-l _noh =l
probability of transition P = P = o D= o n
expected #steps the | n n n
transition happens n— 1 i 1

(1+1)-EA with one-bit mutation (Randomized Local Search):
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ERT of (1+1)-EA in OneMax
OneMax: f(z) =

(1+1)-EA with one-bit mutation (Randomized Local Search):

expected #steps the n
transition happens

SHEPs

n—1 1
\ /
Y

n
n
summed up E i nt, ~nlnn
i—1

expected running time upper bound O(nlnn)

LAVIDA NI EECa
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ERT of (1+1)-EA in OneMax
OneMax: f(z) =

(1+1)-EA with bitwise mutation (flip each bit with probability %):

the probability of flipping i particular bits: (—)*(1 — —)"~*
n n
0.351
0.3r
0.25F
2 oz
;‘; 0.15f
S ol
P

- 0.05r
0
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ERT of (1+1)-EA in OneMax

OneMax: f(z) =)
1=1

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

@ @ ...... @: o+
\5\. \e/‘

many transitions

(1+1)-EA with bitwise mutation (flip each bit with probability %):
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ERT of (1+1)-EA in OneMax

i=1
the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

...... (5)-s
\/\/\/ 4

(1+1)-EA with bitwise mutation (flip each bit with probability %):
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ERT of (1+1)-EA in OneMax

OneMax: f(x Z T

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

(1+1)-EA with bitwise mutation (flip each bit with probability %):
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ERT of (1+1)-EA in OneMax

OneMax: f(x Z T

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

p=n( )"y
n—1\,1. n—1,_,
p= (")

(1+1)-EA with bitwise mutation (flip each bit with probability %):

LAVIDA NI ECa



P N
intro. to theory Markov chain problem dependency RTA analysis tools on parameters on comparison with classics on real-world situations summary

ERT of (1+1)-EA in OneMax

OneMax: f(x Z T

the solutions with the same number of 1-bits share the same f value

solutions with solutions with solutions with solutions with
O 1-bits 1 1-bits 2 1-bits n 1-bits

(1+1)-EA with bitwise mutation (flip each bit with probability %):

LAVIDA NI ECa



analysis tools on parameters on comparison with classics on real-world situations summary

P N
problem dependency RTA

intro. to theory Markov chain

ERT of (1+1)-EA in OneMax

OneMax: f(x Z T

(1+1)-EA with bitwise mutation (flip each bit with probability )

probability of transition p > et (l )( n-1 )”_1
- 1 n n
expected #steps the 1 1 1
transition happens < --n - (14 )n_l ~ N -e
n—1 n—1 n—1
n—1
summed up o enH, ~enlnn
1=0 ’
ERT upper bound O(nlnn)

&&ICla
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ERT of (1+1)-EA in Linear Pseudo-Boolean Functions

n
Linear Pseudo-Boolean Functions: argmax » w;w;

xe{0,1}tm™ .
of which OneMax is a special case 10,1} =1

where w; (# 0) are the weights

ERT of (1+1)-EA:
@ (’n, 1I1 n) [Droste, et al. 98]

specially designed algorithm takes ©(n) steps:
when not allowed to access the weight directly,

test every bit independently: 2n steps

recall that the EA does not have the knowledge about the problem
only a factor of Inn 1s paid for guessing the problem

LAMDA nrem  Tgdia
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Examples in simple cases

Algorithm J\
Problem Measurement

OneMax
Lixiear Pseudo-Boolean Functions
LeadingOnes (1+1)-EA  Expected Running Time
LongPath (ERT)

probing problems help disclose properties of EAs

but EAs will not be used to solve these problems in practice

LAVIDA NI EECa
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General analysis tools

running time analysis 1s commonly problem specific

going to derive the ERT of an EA 1n a problem

need a guide to tell what to look and what to follow to
accomplish the analysis

- Fitness Level Method
- Drift Analysis
- Convergence-rate Based Method

LAVIDA NIe:\e
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Fitness Level Method ..o 0,

partition the solution space @ — S*

solution into subspaces

space

Then calculate:

1. initialization probability of being in each subspace 7 (S;)

2. bounds of progress probability v; < P (&1 € U;'n:i+18j | & =)

for z € & u; > P(&41 € UL, 1S5 | & = o)
the ERT 1s then upper bounded by: and lower bounded by:
m—1
1 1
? o 87, o
MCE SRS S
1<:<m-—1 71=1 1<:<m-—1

LAVIDA NI ECa
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Example in OneMax

solutions with solutions with solutions with solutions with
0 1-bit 1 1-bit 2 1-bits n 1-bits

OO @ ...... (5)-s

initialization distribution: my(S;) =

2n

progress probability for x € S;:

a lower bound: flipping one 0-bit but no 1-bits: (n 1_ Z) (ﬁ)( - )1
m— 1 m—1
ERT: ) = Z — < mo(So) O(nlnn)
1<i<m—1 =i =1 UJ

LAVIDA nrem  EECia
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Variants of Fitness Level Method

The fitness level method has been extended to derive tighter
ERT bounds, by incorporating distribution of the transitions.

[Sudholt, 10] [Sudholt, 13]
(sp)=s

Incorporating tail bounds for sharp results. wit. 13)
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optimal
solutions

V() 4 S*

i o

distance function V measuring
“distance” of a solution to

Then calculate: optimal solutions. V(z")=0

1. initialization probability of solutions 7o ()

2. bounds of progress distance c < EWV(&) —VI(Er) | &)
for every step: ¢, > E[V(ft) B V(ng) ‘ ft]
the ERT 1s then upper bounded by: and lower bounded by:

erx mo(z)V(z)/c > _zex To(x)V(x)/cy
most simplified version
LAVIDA nrem  EECia



intro. to theory Markov chain problem dependency RTA analysis tools on parameters on comparison with classics on real-world situations

Example in LeadingOnes

LeadingOnes Problem: argmax ) | [

fitness: f(z) =) |[=

i=1 j=1

Distance function: V (x) = n — f(x)

The drift: B[V (&) — V(&41) | &] =

I(V (&) > V(1)) EIV (&) — V(Ev1) | &t
I(V (&) <V (&+1))EV (&) — V(Etr1) | &e]+
I(V (&) = V(&41)) BV (&) — V(Ev1) | &t

Only need to care the expected progress:

11...10...... probability of making progress >=
probability of increasing at least one leading 1-bit

EV(E) ~V(Ea) 6121 (1- ) > (1- )yl > —

n n n en
LAVIDA NI EECa
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Example in LeadingOnes

LeadingOnes Problem: argmax ) | [

fitness: f(z) =) |[=

i=1 j=1

Distance function: V (xz) =n — f(x)

BV(&) V(&) [ & 21 (1 )

V/
s |~
=
|
|
S
L
v
|

ERT 1is then upper bounded as

Z mo(x)V (x) < V((00...0)) n c O(n?)

1

rEX en en en

the exact running time is approximate 0.86 72 ssucher.ctal. 10}
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Variants of Drift Analysis

Other forms of drift analysis for better usability

[Happ, et al., 08] [Doerr, et al., 12] [Doerr & Goldberg, 13]

Incorporate tail bounds for sharp results
[Oliveto & Witt, 08] [Lehre & Witt, 13]
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Convergence-rate Based Method ..« zuou.0s

N only care about

N\

- * G the reach at the X
2 % optima /Eéﬁ\

Then calculate:
bounds of getting optima o < Z Pl1e X" & =x)P&=a | & ¢ XT)

for every step: @ X
Be > Z Py € X |G =a)P(G=x|& ¢ XT)
T g X*
the ERT 1s then upper bounded by: and lower bounded by:
+00 t—2 4+ 00 t—2
o7y +Zt0ft—1 H(i—&i) 5o +Ztﬁt—1 H(i—@;)
t=2 i=0 t=2 i=0

LAVIDA NI ECa
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Example in Trap

ITrap Problem: ar% m‘;‘;XZ Wi conskraint counting
re10,1 ™ ,,
n 0‘% l“bi&$
Z. w;z; < C
1=1 S
where wy = wo = ... = W,_1 > 1,wn:C:1—|—Z
i=1

fitness: f(x) = I[Zé_l w;x; < C Zn w;z; — C

1=1

for any solution with 7 bits different to

fitness

the optimal solution

1., 1. .
/ 0 1234567 8 P(g € X' [ & =2) = (=)'(1— )"

. ~ number of 1-bits
optimal solution

LAVIDA NIe:\e
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Example in Trap

Trap Problem:

fitness: f(z) = I[Zé_l wiz; < C Zé_l w;z; — C

At the first step:
Y PG eX | &=a)P(&=x|&¢ X

g X*

n—1
=3 Ple € X7 | = 0)P(6o = )

1=0 CEEX»L'

-2 -7

n—1 1 e—11
— (1

)") o ™~
In the later steps:

n 21 e 2"

Y Pl eXt | &g=n)P&G=x]&¢X")<

rgX*

fitness

Wk

the distribution moves
toward the wrong direction

e—1 1

27’L
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Example in Trap

Trap Problem:

on real-world situations

fitness: f(z) = I[Zil wiz; < C Zé_l w;z; — C

Y PG eXt | G=a)P(&=a]& ¢ X™) <

g X*

ERT 1s lower bounded by

—+ o0 t—2
Bo + Ztﬁt—1 H(Z — Bi) =
=2 i=0

fitness

e Q(2")

LAVIDA NIe:\e
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On configurations of EAs

----------------------

[initialization] evaluation &
selection

1 1
] 1
A} 1
M ¢
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On the effect of population

EAs maintaining a population of solutions:

(1+))-EA

1:
2:
3:

4
5
6:
7
8
9:

s < a randomly drawn solution from X
for t=1,2,... do

Pop < call mutate(s) A times

s’ < the best soluwtion in Pop

if f(s') > f(s) then

s < s

end if

terminate if meets a stopping criterion
end for

and also (N+N)-EA

(u+1)-EA

1

. Pop = {s1,52,...,5,} < prandomly drawn
solutions
. for t=1.2,... do

s < select from Pop with probability
proportional to the fitness

s’ < mutate(s)

Pop < select p solutions from Pop U s’
with probability proportional to the fitness
while keeping the best/solution

terminate if meets a stopping criterion
. end for

LAVIDA NI ECa
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On the effect of population

Can maintaining a population be beneficial?

[Jansen & Wegener, O1]: SJumpy s problem

||£v||1

Considering k = logn/loglogn, s = n

For (1+1)-EA III
trapped at the local optimum — .

ERT: O (nlog n/ log log n)

ﬁtness

number of l-bltS

For (u+1)-EA with 1 = n

probabilistic selection

spreads in the flat area
ERT: O(n3/?)

[Witt, 08]: from exponential to polynomial in an artificial problem
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On the effect of population %

Can maintaining a population be beneficial? ma £

[Jansen, et al., 05]:  SufSamp Problem

o point from L

—> direction of

increasing f-vplues

For (1+1)-EA
trapped at the local optimum path
ERT: n°W) with probability 2—$(vnlogn)

FOI' (1+/1)-EA W]th )\ — C-MN SufSamp [Jansen, et al., 05]

looking around before taking a step
follow the global path
ERT: O(c*n®)
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On the effect of population

Is population always beneficial?

In OneMax problem:
known (1+1)-EA ERT upper bound O(nInn)
(u+1)-EA ERT lower bound Q(y/unlnmn + un) (sowch,os)

In LeadingOnes problem:

known (1+1)-EA ERT upper bound O(n?)
(u+1)-EA ERT lower bound Q(unlogn + n?) wit o6

Similar results also found for
(1+/1)—EA [Jansen, et al., 05]

and (/N+N)-EA [Chen, et al., 09]

A s&mpi&. probte.ms, poput&%mm s not necessary
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On the effect of population

< local optimum global optimum
Can population be harmtul? RS e

[Chen et al., 12]: TrapZeros Problem

uuuuuuuuuuu

fitness
S A hieh

For (1+1)-EA

ERTO0%) s,

ith probability — — O(——
with p y 1= 0(—)

So BT

SINS ILIOL |ow

TrapZeros [Chen et al., 12]

For (N+N)-EA
with N>1 and N € O(Inn)

ERT: O(n?)
with probability

poly(n)
For (N+N)-EA

with N € Q(n/Inn)
ERT i1s super-polynomial with an overwhelming probability
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On the effect of crossover

(u+1)-EA

1: Pop = {s1,5s2,...,5,} + prandomly drawn
solutions

2: for t=1,2,... do

3 s < select from Pop with probability
proportional to the fitness

4: s’ «+ mutate(s)

5: Pop < select u solutions from Pop U's’

with probability proportional to the fitness
while keeping the best solution

terminate if meets a stopping criterion
end for

(u+1)-EA with crossover

1:

10:

11:
12:

Pop = {s1, s2, . .
solutions
for t=1,2,... do
if within probability p. then
S1,So < select from Pop with prob-
ability proportional to the fitness
s < arandom outcome of crossover(sy, s2)
else
s < select from Pop with probabil-
ity proportional to the fitness
end if
s’ + mutate(s)
Pop <+ select p solutions from Pop U s’
with probability proportional to the fitness
while keeping the best solution
terminate if meets a stopping criterion
end for

., S, } < prandomly drawn
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On the effect of crossover

crossover: operating on pairs of solutions

two solutions  one-point crossover  uniform crossover
exchange a part exchange each bit with a prob.

irregularity of crossover

mutation: directly related to Hamming distance

crossover: ? distance
(11110000) + (11000011): generate 8 different outcomes
(11110000) + (11100001): generate 2 different outcomes

quadratic dynamic system [Rabani,et al., 98] compare with that of Markov chain:
1 1
Plz)= ) _ P(y)P(v)(§P((x,w) | (y,0)) + 5 P((w,2) | (y,v))) P(z) =Y P(y)P(z|y)
w,v,y Yy

studies without mutation or with pseudo-population

[Watson, 01] [Dietzfelbinger, et al., 03] [Kotzing, et al., 11]
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On the effect of crossover

Can crossover be beneficial?

[Jansen & Wegener, 02]: Jump,,» Problem l I l I I l
B e
N Y
m

Considering m = [logn|

fitness

_/

number of 1-bits
For (1+1)-EA
trapped at the local optimum
ERT: ©(n!'°8™! + nlogn)

For (u+1)-EA with 1 = [log® n], small.enough p., and avoid replicates
ERT: O(n°logn)

[Kotzing, et al., 11]: the results hold when without mutation after crossover
[Jansen & Wegener, 05]: Similar results in Real Royal Road Problem

LAVIDA NI EECa




A
intro. to theory Markov chain problem dependency RTA analysis tools on parameters on comparison with classics on real-world situations summary

On the effect of crossover

Can crossover be harmful?

[Richter, 08]: Ignoble Trails Problem

Paints aon A
%k %k ok
|a™ 07| |=k

R“x increasing fithess
ah A

——  level of aif x where |[«]| = k

For (2+1)-EA without crossover, ERT is O(n")

For (2+1)-EA with uniform crossover, ERT 1s exponential
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intro. to theory Markov chain problem dependency RTA analysis tools

Multi-objective optimization

optimizes multiple objectives
simultaneously

arg max f(x)

= argmax(f1(z),..., fr())

[Laumanns, et al., 02]

A Simple Multi-objective EA (SEMO)

1: Pop = {s} < a randomly drawn solution
2: for t=1,2,... do

3: s < randomly select from Pop

4: s’ + mutate(s)

5 if As”" € Pop such that s”” dominates s’
then

6: remove solutions in Pop that are dom-
inated by s’

7: add s’ into Pop

8: end if

9: terminate if meets a stopping criterion

10: end for

performance

better price: A
better performance: A

-price

A dominates B fperf(A) > fperr(B)
f—price (A) > f—prz‘ce(B)

A and B are fperf (A) < fperf (C)
non-dominated f ...(C) > f_,rice(A)
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On the effect of crossover

Can crossover be beneficial for multi-objective optimization?

[Neumann & Theile, 10]

crossover helps jump gaps in multi-criteria all-pairs-shortest-path problem

[Qian, et al., 11]

crossover helps fill the optimal Pareto front by recombining diverse
solutions on the front, in COCZ and LOTZ problems

Can crossover be harmful for multi-objective optimization?
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On the effect of crossover

Other studies:

[Fischer & Wegener, 05]: studied crossover 1n Ising ring problems
[Sudholt, 05]: studied crossover in Ising tree problems
[Yu, et al., 10]: studied crossover in LeadingOnes problem

[Neumann, et al., 11]: studied crossover for parallel EAs
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On comparison with classical algorithms

Sorting  Given: a sequence of numbers 512[4l98|7|1]3]6
Find: the sequence ordered ascendantly N
complexity: ©(nlnn) 1]2]3]4]5]6]7[8]9

[Scharnow, et al., 04]: 6438|1725

. . v
Representation: an array of the numbers i exchange (14)
Mutation: common mutation 18 not suitable; 8143 [6]1]7]2]5

h d . /
excnange and jump operators i jump (2,6)

. 8(3(6|1|7]4/2]5
Fitness: A
counting the number of sorted pairs i’ jump (7,3)
O(n) 81312161 |7 (415

Examples of mutations [Scharnow, et al., 04]

ERT of (1+1)-EA: ©(n?Inn)
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On comparison with classical algorithms

Sorting  Given: a sequence of numbers 512|4(9(8|7]1]|3]6
Find: the sequence ordered ascendantly N
complexity: ©(nlnn) 112]3[4]5]6]7|8]9

[Doerr & Happ, 08]: Directed tree representation

/Q\ 0 e
QWO OLWE OOEROWE GEOEOE
1nitial solution ° e ° e

(6

Mutation: making two sibling nodes as parent-child
Fitness: count of corrected ordered pairs and strongly punish incorrectness

O(1)

ERT of (1+1)-EA: O(n?) Q(nlnn)
empirical estimated ERT is in the order of nlnn
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On comparison with classical algorithms

Shortest Path Given: a graph sequence of numbers
(single source) Find: the sequence ordered ascendantly

complexity: Dijkstra's algorithm O(|V|?)

[Scharnow, et al., 04]:

Representation: an array indicating the predecessors
of the index vertex

Mutation: randomly change the predecessor of some
nodes

Fitness: multi-objectives, each objective measuring
the path length from the source to a vertex

(1+1)-EA accepts solutions superior in all objectives

ERT of (1+1)-EA: O(|V|* max{In |V'|,£}) (¢ is the radius w.r.t. the source)

[Doerr, et al., 11b]
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On comparison with classical algorithms

Shortest Path Given: a graph sequence of numbers
(single source) Find: the sequence ordered ascendantly

complexity: Dijkstra's algorithm with Fibonacci heap
O(lE] + [V]In[V])

[Doerr & Johannsen, 10]: Edge-based representation
Representation: an array indicating the selected edges

z = (e1 €2 e3 € €7)

Mutation: replace a randomly chosen edge with another
edge sharing the same end-vertex

Fitness: multi-objective, an objective measure the
path length from the source to a node

ERT of (1+1)-EA: O(|E|max{In |V|,£}) (¥ is the radius w.r.t. the source)
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On comparison with classical algorithms

By EAs By classical algorithms
All Pairs Shortest Path O(|V|>In|V]) OV |?)
[Doerr, etal., 13] Floyd—Warshall algorithm
Maximum Matching O(|E|?'/ < OV |V||FE|)
( 1+e€ ) -approximate Hopcroft—Karp algorithm

[Giel & Wegener, 03]

Minimum Spanning Tree O(|E)*(In |V| + In Wmax)) O(|E|-a(|E|,|V]))

[Neumann & Wegener, 07] Chazelle’s algorithm
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On comparison with classical algorithms

[Doerr, et al., 11]: EAs can do dynamic programming
optimal substructures
overlapping subproblems

state space: § state transition func.: Fi,...,F, consistency functions: Hq,..., H,
DP problem:
F e F F e F; F e F,
T O SEE — - EE
H 1 H 1 H n
contains initial states contains states transited from the predecessor &;_; by a function in F;, and the
feasibility is checked by H;
DP algorithm:
To € So—> - —> T, €S> Ti1€85 1—> - —> T, €S,

single source shortest path:
state space: a sequence of vertices with length at most n, and starts with s (source)
initial states: { s}
state transition functions: each function adds a vertex to the given sequence
consistency: return feasible 1f the sequence 1s a path
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On comparison with classical algorithms

[Doerr, et al., 11]: EAs can do dynamic programming
optimal substructures
overlapping subproblems

state space: S state transition func.: Fi,...,F, consistency functions: Hq,..., H,
DP problem:
F e F e F; FerF,
& L OEE) — - e
H 1 H 1 H n
contains initial states contains states transited from the predecessor &;_; by a function in F;, and the
feasibility is checked by H;
DP algorithm:
To € So—m> .. — 7. cS, > T._1€S,_1—> .. —T. c S,

EAs can be configured to solve a DP problem with ERT:
O(ISo| +n-1og(>"" T -S> [Tical - |1

single source shortest path: O(n* Inn)
all pairs shortest path: O(n° Inn)
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On real-world performance

EAs are expected to be applied 1n hard problems

- problems with unknown formulae

properties about problem classes

- problems hard to solve (NP-hard)
analysis in NP-hard problems
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On properties about problem classes

[Fournier & Teytaud, 11]:

with the variable of problem class complexity
for evolutionary strategies
give lower bounds of the particular convergence rate

[Qian, et al., 12]:

in pseudo-boolean function class
for (1+1)-EA
1dentify the easiest and the hardest problem cases
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In NP-hard problems

Approximation ratio

for minimization, in every problem instance let s be the solved solution
and s be an optimal solution

f(s)
f(s*)

approximation ratio is the largest value of over all problem instances
no smaller than 1, the smaller the better

usually consider the achieved ratio within polynomial ERT
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In NP-hard problems

Minimum Vertex Cover (MVC) problem
to minimize the number of vertices covering
all edges
2 —approximation by maximum matching

can not be approximated within a factor =1.36

Minimum Set Cover (MSC) problem

to minimize the number of sets covering all
elements (uniweighted)

to minimize the total weight of a collection
of sets covering all elements (general)

In n— approximation by the greedy algorithm,
and 1s asymptotically tight

on comparison with classics

on real-world situations

summary

(" e —
oo o
o|le) @
oo @

\_

(0| ® o
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(1+1)-EA in MVC problem

. . . 1
The ERT of (1+1)-EA achieving an approximate ratio better than
1s exponential Ve > 0 [Friedrich, et al., 10]

(1—¢€)-n

(1-¢)

€

approximation ratio:

Further investigations:

Oliveto, et al., 09] studied (1+1)-EA 1n several instances of MVC problem
Friedrich, et al., 09] studied hybrid (1+1)-EA with the greedy algorithm and the
maximum matching algorithm
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intro. to theory Markov chain problem dependency RTA analysis tools on parameters

Multi-objective reformulation

1. Convert a single objective optimization problem to a multi-objective
optimization problem by extracting/adding auxiliary functions

2. Solve the multi-objective optimization problem
3. Convert the obtained Pareto set back for the single objective problem

arg min f(z) + g(z) arg min (f (%), g(sv))
g A
O
@QO0O0O00O0— f+g O
O
O
O 0o
For MVC problem > f

single objective:
arg min|number of selected vertices| + X - [number of uncovered edges|

multi-objective:
arg min([number of selected vertices|, [number of uncovered edges])
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Multi-objective reformulation

Scharnow, et al., 04] first disclosed that multi-objective reformulation may be
helpful in solving Shortest Path problem.
It 1s then confirmed by studies (e.g. [Neumann & Wegener, 07b] in shortest path and spanning tree problems)

[Friedrich, et al., 10]: by the multi-objective reformulation with SEMO,

[Laumanns, et al., 02]

1. solve the Minimum Vertex Cover bipartite A Simple Multi-objective EA (SEMO)
mmstance in p()lynomial time 1: Pop = {s} < a randomly drawn solution
2: for t=1,2,... do
. L . . 3: s < randomly select from Pop
2. obtain In n— approximate solutions for the L+ s < mutate(s)
(general) Minimum Set Cover problem in 5. if 3s” € Pop such that s dominates s’
. . then
p Olynomlal time 6: remove solutions in Pop that are dom-
inated by s’
7: add s’ into Pop
8: end if
9: terminate if meets a stopping criterion
10: end for
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A unified framework

[Yu, et al., 12] proposed a unified framework for both single- and multi-
objective EAs
1solation function: i1solates the competition among solutions

4 N ~ N ~ N
1y, . 1
*{. non-dominate /A N
T2 vl . . 42
T < Thew T3 <9 Tnew [ ~ \ T
- Y,
& ~ N
L4 dominate . 4
> can be configured as
XI5 :
X - ,
_ Y \ y 9 5 (l-l.—l) EA or a multi
o L objective EA
(1+1)-EA multi-objective EA by isolations

g 1solations, ¢ gap, 7; increase of objective value

-1 . L .
EAs can finds (Z(_J_O r;-approximate solutions in O(¢*n¢) time

should not too many isolations (g 1s polynomial in n)

should not too large variation is needed (¢ 1s constant)
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A unified framework

[Yu, et al., 12] proposed a unified framework for both single- and multi-
objective EAs
1solation function: i1solates the competition among solutions

qg—1

EAscan finds () = r;)-approximate solutions in O(¢’n°) time

1=0
Applications:
- simulate the greedy algorithm

finds H,, -approximate solutions in O(mn?) time in general MSC problem

- exceed the greedy algorithm
k—1
8k?

finds (H;, — )-approximate solutions in O(m**!n?) time for k-set
cover problem

1/k-approximate solutions for b-matching, maximum profit scheduling and
maximum asymmetric TSP problems (k-extensible systems) [Mestre, 06]
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In NP-Hard problems

Minimum Vertex Cover fixed-parameter complexity [Kratsch & Neumann, 13]
Spanning Forest [Neumann & Laumanns, 06]

Minimum Multicuts [Neumann & Reichel, 08]

Traveling Salesman [Kétzing, et al., 12][Sutton & Neumann, 12]
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convergence condikions

easy ko converqge

No Free Lunch
hecessary o consider probi&ms

- (md lem

EAs can do dvma\mia

effect of population programming

th’f‘é:‘,éf, SQ-MQT'&L Q\V\Ci CYrossovery

approaehas EAs can do and exceed

on configurations of greedy algorithm

-

~N

on comparison with cl/ssical algorithms j

~N

ATA

on performance in real-world situationsj
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convergence

[intro. to theory l *[

[ problem dependency j

[running time analysis/RTAj P 4

on configurations of EAs j

~N

[ analysis tools (

on comparison with classical algorithms j

-

~N

on performance in real-world situationsj
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Available books on EA theory

F. Neumann, C. Witt.

Bioinspired Computation in Combinatorial Optimization
— Algorithms and Their Computational Complexity.
Springer-Verlag, Berlin, Germany, 2010.

A. Auger and B. Doerr. Theory of Randomized Search

Heuristics - Foundations and Recent Developments.
World Scientific, Singapore, 2011.

LAVIDA NI ECa



intro. to theory Markov chain problem dependency RTA analysis tools on parameters on comparison with classics on real-world situations summary

Major venues of theoretical work on EAs

Major journals:
- Artificial Intelligence (Elsevier)
- Algorithmica (Springer)
- Evolutionary Computation (MIT Press)
- Theoretical Computer Science (Elsevier)
- IEEE Trans. on Evolutionary Computation (IEEE)

Major conferences:
-  PPSN (International Conference on Parallel Problem Solving From Nature, bi-annual, even year)
- GECCO (International Conference on Genetic and Evolutionary Computation, annual)
- FOGA (International Workshop on Foundations of Genetic Algorithms, bi-annual, odd year)
- CEC (IEEE Conference on Evolutionary Computation, annual)
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