
Recent Advances on Practical Evolutionary
Optimization�

Ke Tang and Xin Yao

USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI)
School of Computer Science and Technology

University of Science and Technology of China

August 5, 2013�

1"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
1"1"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
2"2"

Introduction

•  Evolutionary Algorithms (EAs): Algorithms that mimic
natural evolution?

•  There are several famous EAs with different historical
backgrounds.
–  Genetic Algorithms
–  Evolution Strategies
–  Particle Swarm Optimizer
–  Ant Colony Optimization
–  etc.

3"3"

Introduction

Successful applications of EAs:

4"4"

Aerospace�
G."S."Hornby"et"al.,"Automated"antenna"design"with"evolu@onary"algorithms.""
American"Ins@tute"of"Aeronau@cs"and"Astronau@cs,"2006.�

Logis@c�
Thomas"Weise,"Alexander"Podlich,"Kai"Reinhard,"Chris@an"Gorldt,"and"Kurt"Geihs"(2009):""
"Evolu@onary"Freight"Transporta@on"Planning,""in"Applica@ons"of"Evolu@onary"Compu@ng"�

Architecture"

Ludger"Hovestadt."Beyond"the"Grid"U"Architecture"and"Informa@on"Technology.""
Applica@ons"of"a"Digital"Architectonic."Birkhäuser"Basel"/"Boston"2009.�

Robo@cs�
Zykov"V.,"My@linaios"E.,"Adams"B.,"Lipson"H."(2005)""SelfUreproducing"machines",""
Nature"Vol."435"No."7038,"pp."163U164""

Introduction

•  Framework of EAs

•  Most EAs are Stochastic Population-Based Generate-
and-Test algorithms.

5"5"

c�Xin Yao 3'

&

$

%

What Is an Evolutionary Algorithm?

(OK, you can open your eyes and wake up now.)

1. Generate the initial population P (0) at random, and set
i← 0;

2. REPEAT

(a) Evaluate the fitness of each individual in P (i);

(b) Select parents from P (i) based on their fitness in P (i);

(c) Generate offspring from the parents using crossover and
mutation to form P (i + 1);

(d) i← i + 1;

3. UNTIL halting criteria are satisfied

Introduction

•  Different EAs: variants of the same Generate-and-Test
Algorithm, depending on
–  representations,
–  variation operators,
–  selection schemes.

•  Talking in classical AI: EAs face the same fundamental
issues, i.e., representation and search.

6"6"

Introduction

•  EAs do not require rich domain knowledge to use,
although domain knowledge can be incorporated into
EAs.

•  That means, EAs are particularly suitable for
optimization problems whose objective functions are
–  Not differentiable
–  Not continuous
–  Even without explicit mathematical formulations

7"7"

Introduction

This tutorial concerns the following general questions
regarding using EAs in practice.

1.  Algorithm Configuration: How to configure an EA for my real-
world problem?

2.  Constraints Handling: How to tackle problems with
constraints?

3.  Evolutionary Multi-Objective Optimization: How to
simultaneously optimize multiple objective functions?

4.  Scaling Up EAs: How to address large scale problems with EAs?

8"8"

Introduction

•  Numerical optimization problems are used in most illustrative
examples, but many techniques/ideas are readily applicable (or
can be easily adapted) to other types of optimization problems.

•  Some interchangeably used terminologies
–  Individual ! a solution to an optimization problem ! a point in the

solution space (search space)

–  Population ! a set of solutions

9"9"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
10"10"

Algorithm Configuration

•  Let’s start with a very basic optimization problem:

•  To solve it with an EA, one needs to first determine:
–  How to encode (represent) a solution x
–  What is the variation operator and its parameters
–  What is the selection scheme and its parameters

•  Design my own problem-specific operators/schemes (ambitious
but challenging)

•  Choose operators/schemes/parameters from an EA toolbox (more
realistic).

11"11"

minimize f (x)

Algorithm Configuration

•  Question: If an EA toolbox is available (which is true),
which operators/parameters shall I use?

•  Aim: To find an appropriate EA instance (configuration
of EA) for an optimization task.

12"12"

To
ol
bo

x�

Representa@on"1"
Representa@on"2"
Representa@on"3�

Operator"1"
Operator"2"
Operator"3�

Scheme"1"
Scheme"2"
Scheme"3�

EA"instance�

Operator"&"
Parameter�

Scheme"&"
Parameter�

Representa@on�

Algorithm Configuration

•  Configuring an EA involves setting the values of
–  categorical variables (type of operators/schemes)
–  numerical variables (e.g., crossover rate, population-size)

•  We refer both the categorical and numerical variables as
parameter of EAs

•  More formally, Configuring an EA is another search
problem, for which the best parameter vectors are
searched to maximize the performance.

13"13"

Algorithm Configuration

•  Performance measures may differ in different context:
–  The best solution quality
–  The time required to reach a threshold of solution quality

•  Due to the stochastic nature of EAs, a performance
measure can be viewed as a random variable.

•  Multiple runs are usually required to get a reliable
estimate of performance.

14"14"

Algorithm Configuration

•  The rough idea: Generate-and-Test

•  Example 1-1: A naïve approach
–  Generate p candidate parameter vectors
–  Get p EA instances, each configured with a parameter vector
–  Run each EA instance for r times
–  In each run, n solution vectors is generated and tested
–  Compare the parameter vectors using performance measures

to get the best configuration.

15"15"

Algorithm Configuration

•  The naïve approach requires calculating the objective
function f(x) for prn times. – sounds too costly.

•  Smarter approach is needed to reduce search effort.
–  Reduce p
–  Reduce r
–  Reduce n

16"16"

Algorithm Configuration

•  Racing procedures: An approach for reducing r.

•  Basic idea: Stop running (testing) an EA instance if
there is indication that it is not promising.

•  By not promising, we mean an EA instance performs
significantly worse than the best EA instance identified
so far.

•  EA instances are compared after each run rather than
after running all of them for r times.

17"17"

Algorithm Configuration

•  Example 1-2:

•  Many parameter vectors may be removed without
running r times. 18"18"

1.  Generate p candidate parameter vectors

2.  Set E as the set of p EA instances

3.  REPEAT:
•  Run each EA instance once and update its (average) performance
•  Identify the EA instance with the best performance
•  Remove from E the EA instances whose performance is

significantly worse than the best EA instance

4.  Until size(E)=1 or the number of runs reaches r

Algorithm Configuration

•  There are a few statistical tests that can be used to
indicate significant difference in performance.
–  Analysis of Variance (ANOVA).
–  Kruskal-Wallis (Rank Based Analysis of Variance).
–  Hoeffding’s bound.
–  Unpaired Student T-Test.

19"19"

Algorithm Configuration

•  Racing procedure may not be sufficient in case:
–  p is very large
–  The set of candidate parameter vectors is infinite

•  Basic idea: To apply an iterative search procedure to the
parameter space.
–  Meta-EA: using EAs to search for the best configuration
–  Iterative local search

•  Hopefully, the best configuration can be found with less
trial parameter vectors.

20"20"

Algorithm Configuration

•  Example 1-3:

21"21"

1.  Generate p’ candidate parameter vectors (p’<p)

2.  Get p’ EA instances

3.  REPEAT

•  Run each EA instance for r times and assess its performance
•  Generate another p’ parameter vectors

4.  Until halting criterion is satisfied

Algorithm Configuration

•  Iterative search can be combined with a racing
procedure to reduce both p and r .

•  Example 1-4:

22"22"

1.  Generate p’ candidate parameter vectors (p’<p)

2.  Get p’ EA instances

3.  REPEAT

•  Applying Racing procedure to compare performance of EA instances
•  Generate another p’ parameter vectors

4.  Until halting criterion is satisfied

Algorithm Configuration

•  Further enhancement: Modeling the landscape of
performance measures
–  For identifying promising parameter vectors
–  For filtering out unpromising parameter vectors

•  The modeling task is a supervised learning problem
–  Input data: parameter vectors
–  Target: performance

23"23"

Algorithm Configuration

•  Example 1-5 (Sequential Parameter Optimization):

24"24"

1.  Generate p’ candidate parameter vectors (p’<p)

2.  Get p’ EA instances

3.  Run each EA instance for r times and assess its performance

4.  Build a model M to approximate the performance landscape

5.  REPEAT

•  Generate another p’ parameter vectors
•  Identify the most promising parameter vectors with M
•  Only the promising parameter vectors are run for r times
•  Update M with the newly “assessed” parameter vectors

6.  Until halting criterion is satisfied

Algorithm Configuration

•  Remark on reducing n
–  The key question involved: Will the “relative order” of two

EAs maintain unchanged during the evolution?

–  The lesson learned: the answer is problem and algorithm
dependent, and thus few systematic approach have been
investigated for this issue.

25"25"

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

p

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

fp

0 1000 2000 3000 4000 5000
0.4

0.6

0.8

1

f
5

CRm

0 500 1000 1500
0.4

0.6

0.8

0 500 1000 1500
0.4

0.6

0.8

0 500 1000 1500
0

0.5

1

f
9

p

fp

CRm

0 500 1000 1500 2000 2500 3000
0

0.5

1

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000
0.4

0.6

0.8

1

f
cec5

p

fp

CRm

0 500 1000 1500 2000 2500 3000
0.4

0.6

0.8

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000
0

0.5

1

f
cec9

p

fp

CRm

Fig. 2. The self-adaptation curves of p, fp and CRm for f5, f9, fcec5,
and fcec9. On the vertical axes are shown their values (between 0 and 1),
while on the horizontal axes are shown the number of generations.

0 1000 2000 3000 4000 5000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

f
5

SaNSDE
SaDE
NSDE

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

f
9

SaNSDE
SaDE
NSDE

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

f
cec5

SaNSDE
SaDE
NSDE

0 500 1000 1500 2000 2500 3000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

f
cec9

SaNSDE
SaDE
NSDE

Fig. 3. The evolution curves for f5, f9, fcec5 and fcec9. The vertical
axes show the distance to the optimum and the horizontal axes show the
number of generations.

1114 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Yes:"Blue"curve"vs."Green"Curve"
"
No:"Blue"Curve"vs."Red"Curve�

Algorithm Configuration

•  So far, we mainly touched the case of configuring EA on a single
optimization task (problem instance)

•  What if we want to find a more general configuration that can be

applied to multiple problem instances?

•  Previously introduced ideas can be adapted to this scenario.

•  Instead of looking at the results of r runs, comparisons are made

mainly based on the performance on multiple problem instances.
–  F-RACE
–  ParamILS

26"26"

Algorithm Configuration

•  A good configuration for multiple problem instances is
attractive from practical viewpoint.

•  However…

27"27"

Algorithm Configuration

•  A good configuration for multiple problem instances is
attractive from practical viewpoint.

•  However…
–  In many scenario it is unlikely such a configuration exists.
–  Advantages of having many alternative configurations are not fully

exploited

28"28"

Algorithm Configuration

•  A good configuration for multiple problem instances is
attractive from practical viewpoint.

•  However…
–  In many scenario it is unlikely such a configuration exists.
–  Advantages of having many alternative configurations are not fully

exploited

•  How about establishing a good “portfolio” of configurations
(e.g., a combination of multiple EA instances)?
–  Making use of advantages of different algorithms, rather than putting

all the eggs (time) into a single basket (configuration).
–  Hopefully not too time-consuming since only one portfolio is needed

for all problems.

29"29"

Algorithm Configuration

30"30"

•  Population-based Algorithm Portfolio (PAP)

Select a few constituent configurations from
a pool of candidate configurations

Construct a concrete PAP instantiation with
the constituent EA instances

Apply the PAP instantiation to each problem

Output the best solution obtained
for each problem

Algorithm Configuration

•  The way of building a PAP instantiation:
–  A PAP instantiation maintains multiple sub-populations.
–  Each sub-population is evolved with a constituent EA

instances.
–  Information is shared among sub-populations by activating

a migration scheme periodically.

•  Sounds simple, more important…
–  If combining different EAs in this way won’t lead to any

advantage over using a single algorithm. Why bother
seeking the so-called constituent algorithms?

31"31"

Algorithm Configuration

•  A preliminary experiment
– 4 Candidate EA instances: CMA-ES, G3PCX, SaNSDE, wPSO
– 11 PAP instantiations

•  27 Benchmark problems

•  Each PAP instantiation
–  Compared to its constituent configurations alone to verify whether there

would be any advantage of PAP over its constituent algorithms.
–  Compared to G-CMA-ES to verify whether portfolio of some “weak” EA

instances could outperforms the state-of-the-art.

32"32"

Algorithm Configuration

•  Wilcoxon Test Results (Significance level 0.05): “w-d-l” stands
for “win-draw-lose”

•  Portfolios of configurations led to the best performance

33"33"

Algorithm Configuration

•  Additional Remarks
–  Operators/parameters can also be adjusted on-the-fly. This

type of EAs are usually called adaptive/self-adaptive EAs.

–  With a unified “representation” of EA’s behaviors, there will
huge room for involving machine learning techniques.

–  Algorithm configuration is also closely related to the
emerging terminology “hyper-heuristic”.

34"34"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
35"35"

Constraint Handling

•  We now consider a more challenging (realistic) problem:

•  f(x): the objective function

•  gi(x): the inequality constraints

•  hj(x): the equality constraints

36"36"

minimize f (x)
subject to: gi (x) ≤ 0, i =1...m
 hj (x) = 0, j =1...p

Constraint Handling

•  Note: The global optimum in the feasible space might not be the
same as that in the whole search space.

37"37"

Constraint Handling

•  Handling constraints in an EA framework

38"38"

EA�

Representa@on� Special"Representa@on�

Varia@on�

Special"varia@on"operator�

Repair"operator�

Selec@on�

Purist'approach�

Penalty'func2on'methods�

Stochas2c'Ranking�

"
Requires"deep"domain"
knowledge,"some@mes"
impossible"to"design"
"

"
More"general"and"easy"
to"use,"focus"of"this"talk"
"

Constraint Handling

•  Suppose n individuals are to be selected from N individuals

•  The selection procedure can be conducted via pair-wise
comparisons between the N individuals

•  The purist approach (The naïve approach)
–  Feasible individuals are always preferred over infeasible ones.
–  Between two feasible individuals, the one having a better objective value

is preferred.
–  Between two infeasible individuals, the one having smaller constraint

violation is preferred.
–  An example of constraint violation:

39"39"

Gi (x) =max(0, gi (x))

Constraint Handling

•  Is an infeasible individual really less preferable to a feasible one?

•  A counter example (which point is better, B for C?)

•  Key issue for constraint handling: balance between objective
function and constraints

40"40"

Constraint Handling

•  Penalty function methods:

•  where
•  Equality constrains can be converted into inequality ones

41"41"

Φ(x) = f (x)+ riGi (x)
i=1

m

∑ + cjH j (x)
j=1

p

∑

New"
objec@ve"
func@on� Original"

objec@ve"
func@on� Penalty"

coefficient�

Constraint"
viola@on�

Gi (x) = (max(0, gi (x)))a Hi (x) = (max(0, hi (x)))b

hj (x)⇒ hj (x) −ε ≤ 0

Constraint Handling

•  Penalty function methods relies on the values of penalty
coefficient.

•  Static Penalties
–  Penalty coefficients are pre-defined and fixed

•  Dynamic Penalties
–  Penalty coefficients changes according to a predefined sequence

•  Adaptive and Self-Adaptive Penalties
–  Penalty coefficients changes according to a predefined sequence

42"42"

Constraint Handling

•  Example 2-1: Dynamic Penalty

•  T: generation number

•  C: predefined constant

•  General Principle: the penalty coefficient increase with T,

•  That means, feasibility gradually becomes more and more
important (similar to a coarse-to-fine search procedure)

43"43"

Φ(x) = f (x)+CT Gi (x)
i=1

m

∑ + H j (x)
j=1

p

∑

Constraint Handling

•  Example 2-2: Adaptive Penalty

•  where

•  xold is the previously evaluated individuals

•  Focus on the constraints that are more difficult to satisfy.

•  Also known as co-evolution type approach.

44"44"

Φ(x) = f (x)+ riGi (x)
i=1

m

∑ + ciH j (x)
j=1

p

∑

ri =mean(Gi (xold)), ci =mean(Hi (xold))

Constraint Handling

•  In essence, penalty function methods transform the the fitness
landscapes

•  Let

•  What does mean?

45"45"

Φ(x) = f (x)+ riGi (x)
i=1

m

∑ + ciH j (x)
j=1

p

∑ = f (x)+ rG(x)

Φ(x1)<Φ(x2)

Constraint Handling

•  Different r’s lead to different rankings of individuals

•  Change fitness " Change ranks " Change selection

•  Why not modify the ranks of individuals directly?

46"46"

f (x1)+ rG(x1)< f (x2)+ rG(x2)

f (x1)< f (x2)&G(x1)<G(x2)⇒ r has no impact on the comparison

f (x1)< f (x2)&G(x1)>G(x2)⇒ increase r will eventually change the comparison

f (x1)> f (x2)&G(x1)<G(x2)⇒ decrease r will eventually change the comparison

Constraint Handling

•  Example 2-3: Stochastic Ranking
–  Using a bubble-sort-like procedure to rank individuals.

–  In one comparison, either f(x) or G(x) is used, but not both

–  Use a random number u to determine whether f(x) will be use
when doing a comparison.

–  Use a parameter Pf to balance between f(x) and G(x)

–  Pf is the probability of using f(x) in ranking

47"47"

Constraint Handling

•  Example 2-3: Stochastic Ranking

48"48"

Input: x1...xN
for i =1 to N
 sample u∈U(0,1)
 if G(xi) =G(xi+1) = 0 or (u < Pf) then
 if f (xi)> f (xi+1) then
 swap(xi, xi+1)
 end
 else if G(xi)>G(xi+1) then
 swap(xi, xi+1)
 end
end

Constraint Handling

•  Recall the key issue: balance between objective function and
constraints violation.

•  That means, we want to maintain a good trade-off between these
two factors.

•  The concept of Pareto dominance can also be employed to
achieve this.

•  Treat G(x) as another objective function, which is to be
minimized, basically:

49"49"

f (x1)< f (x2)&G(x1)<G(x2)⇒ x1 dominates x2

f (x1)> f (x2)&G(x1)>G(x2)⇒ x1 is dominated by x2

Otherwise, x1 and x2 are nondominated by each other

Constraint Handling

•  How to use Pareto dominance to handle constraints?

•  Obviously, it can be used to compare individuals.

•  There are a lot of other efforts, we take the so-called Adaptive
Tradeoff Model (ATM) as an example.

•  Now, let’s move our focus from individuals to populations
–  The population contains infeasible individuals only (case 1)

–  The population contains both feasible and infeasible individuals (case 2)

–  The population contains feasible individuals only (case 3)

•  The three cases can be addressed with different schemes.
50"50"

Constraint Handling

•  Case 1 (where the Pareto dominance concept take effect):

–  Only non-dominated individuals seem promising.

–  As there is no feasible individuals, we strive to get some ones.

•  Identify the non-dominated individuals

•  Sort them based on G(x) in ascending order.

•  Select the first half of them as the offspring individuals.

51"51"

Constraint Handling

•  Case 2:

–  Transform f(x) of infeasible individuals.

–  Normalize f(x) and G(x) to [0, 1].

–  Combine f(x) and G(x) using a penalty function.

•  Case 3: treat as an unconstrained optimization problem

52"52"

f ' (x) =max{C * fmin + (1−C)* fmax, f (x)}
fmin : the smallest f (x) for feasible individuals
fmax : the smallest f (x) for feasible individuals
C : Proportion of feasible individuals in the population

f final (xi) = fnorm (xi)+Gnorm (xi)

Constraint Handling

•  Additional Remarks
–  Stochastic ranking may serve as an off-she-shelf tool, since it

is simple to implement, and involves only one parameter Pf .

–  Different types of approaches can be combined to form a
hybrid CH technique for a specific problem.

–  Algorithm configuration methods are also applicable to CH
techniques selection/configuration.

53"53"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
54"54"

Evolutionary Multi-Objective Optimization

•  Multi-objective optimization problem:

•  The objective functions may be conflicting or incommensurable.

•  Instead of a single optimal solution, a set of the best trade-off
solutions (Pareto optimal solutions) are sought.

55"55"

minimize F(X) = (f1(x),..., fm (x))

Evolutionary Multi-Objective Optimization

•  EAs for MOP are usually called Multi-Objective Evolutionary
Algorithms (MOEAs).

•  Becoming a prosperous sub-area of EC since 1985.

•  More than 5600 papers has been published by January 2011,
66.8% published after 2002.

•  Almost all types of EAs have their MO version.

•  Quite successful in the real world " attracted many researchers
outside the EC-community (e.g., Decision Making).

56"56"

Evolutionary Multi-Objective Optimization

•  Multi-objective optimization itself involves multiple criteria.

•  Intuitively, we want a set of solutions that is good in terms of:

–  Convergence (to the Pareto front)

–  Spread (along the Pareto front)

57"57"

Evolutionary Multi-Objective Optimization

•  Our starting point: Non-dominated Sorting Genetic Algorithm II
(NSGA-II), published in 2002.

•  Probably the most influential work on MOEAs, cited by 9226
(by Google Scholar)

•  Majority of papers on MOEAs emerges after this seminal work.

•  Many of them adopt similar framework as NSGA-II.

58"58"

Evolutionary Multi-Objective Optimization

•  NSGA-II

•  Fast Non-dominated Sorting for selection
–  Divide the population into several fronts by definition of non-domination

–  Crowding distance is utilized to select exact N individuals
59"59"

c�Xin Yao 3'

&

$

%

What Is an Evolutionary Algorithm?

(OK, you can open your eyes and wake up now.)

1. Generate the initial population P (0) at random, and set
i← 0;

2. REPEAT

(a) Evaluate the fitness of each individual in P (i);

(b) Select parents from P (i) based on their fitness in P (i);

(c) Generate offspring from the parents using crossover and
mutation to form P (i + 1);

(d) i← i + 1;

3. UNTIL halting criteria are satisfied

Specialized"
Selec@on"
Scheme�

Evolutionary Multi-Objective Optimization

•  Divide the population into several fronts

•  Rank means the index of fronts
•  The procedure can be implemented more efficiently (i.e., “Fast”) 60"60"

Input: P = x1...x2N{ }
Initialize k =1, Q =∅

while P ≠∅
 for each xi ∈ P
 if xi is not dominated by any x j ∈ P
 rank(xi)=k
 Q =Q∪{xi}
 end
 end
 P = P /Q
 k = k +1
end

Evolutionary Multi-Objective Optimization

•  Individuals are selected according to their rank in ascending order.

•  Suppose individuals on several fronts have been selected, but not
all individuals on the next front can be preserved, since we only
need exactly N individuals.

•  Crowding distance: Select the individuals close to “sparse
region” (preserve diversity to get good spread)

61"61"

Evolutionary Multi-Objective Optimization

•  The selection procedure of NSGA-II

62"62"

Evolutionary Multi-Objective Optimization

•  The crowding distance is a little bit ad hoc and may have
drawbacks. (Which one should be preserved, point C or Y)?

•  An (intuitive) question: what is an individual’s contribution to “spread”.

•  In fact, the “spread” itself can hardly be measured (there are several metrics).

•  The (essential) source of difficulty: Selection in MOEAs involves comparison
of two sets of individuals, rather than two individuals.

63"63"

568 IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 3, SEPTEMBER 2010

Fig. 3. Crowding degree estimation.

NSGA-II may obtain more solutions in one region of the
objective space, while obtaining fewer solutions in some
other regions.

2) The selection strategy based on the crowding distance
is unilateral.
Because all MOEAs search for the solutions in an iterative
way, the most important part of an MOEA is how it oper-
ates in a single iteration (usually referred to as a generation
in the evolutionary computation literature). From Alg. 1,
we can observe that, in each generation of NSGA-II, the
parent population and offspring population are first
combined to make an intermediate population . Then,

is sorted into different nondominated fronts through the
function fast-non-dominated-sort; and for every nondom-
inated front, the crowding distance of each individual in
it is calculated. The parent population for the next gener-
ation is finally selected from based on their nondomi-
nated levels and crowding distances. During this process,
when calculating the crowding distance of a solution, only
those solutions belonging to the same nondominated front
are considered. However, this may lead to an inappropriate
selection of solutions. For example, the rectangular, and
circular points in Fig. 4 belong to two nondominated fronts.
Assume that all of the rectangular points have been se-
lected, and we need to select some circular points based
on the crowding distance. Based on the selection strategy
of NSGA-II, point A will be selected prior to point B, but
this is somewhat counter-intuitive because point B is obvi-
ously less crowded than point A.

Having the above two drawbacks of NSGA-II in mind, we
propose two alternative approaches to deal with them. First, in-
stead of calculating the crowding distance using the 1-norm dis-
tance between the two nearest points to a given solution, we
calculate it with the harmonic average distance. Assume the dis-
tances of the -nearest solutions of a solution are .
Then the harmonic average distance associated with this solu-
tion can be calculated as

(9)

Fig. 4. Crowding degree estimation.

To overcome the second drawback of NSGA-II, we propose
the following scheme. After sorting the solutions in the interme-
diate population into a number of fronts, if some solutions are
to be selected from a front, the crowding distance will be calcu-
lated based on both the solutions belonging to the same front,
and all the previously selected solutions. In this way, the unde-
sirable scenario illustrated in Fig. 4 will be prevented.

Incorporating the above two schemes into the framework
of NSGA-II, we obtain a new MOEA, the HaD-MOEA. The
pseudo-code of HaD-MOEA is shown in Alg. 2. Specifically,
lines 12-15 present the detailed steps of the two novel schemes
adopted by HaD-MOEA. Taking advantage of the two new
schemes, we expect the solutions obtained by HaD-MOEA
to spread better in the objective space than those obtained by
NSGA-II.

When applying HaD-MOEA to a system with modules, a
solution is encoded by an -dimensional vector (chromosome).
Each element represents the testing time consumed by a module,
and the sum of these elements should not exceed the total testing
time . Besides, HaD-MOEA cannot guarantee always gener-
ating solutions that satisfy this constraint during search. There-
fore, whenever a solution obtained violates the constraint, it will
be repaired by using the procedures presented in Table III.

Alg. 2. The Pseudo-Code of HaD-MOEA.

1: Initialize: Set the population size to , and randomly
generate the parent population .

2: Set the generation number .

3: while do

4: Generate the offspring population from with the
same population size.

5: Combine the parent and offspring population via
.

6: Sort all solutions of to get all non-dominated
fronts where

.

7: Set , and .

8: while the parent population size do

Evolutionary Multi-Objective Optimization

•  Indicator-based MOEAs
–  Make use of quality indicators to assign every individual a

single-objective fitness.

–  Typically, the fitness an individual is defined based on how
much the quality indicator decreases if the individual is
removed from the population (indicator loss).

–  Only involves pair-wise comparison of individuals

–  General Principle: the quality indicator should be coherent
with “convergence” and “spread”.

64"64"

Evolutionary Multi-Objective Optimization

•  The hypervolume indicator
–  Favor large volume of the dominated portion

–  Strict Pareto compliance

65"65"

Evolutionary Multi-Objective Optimization

•  Example 3-1: Selection with the hypervolume indicator

–  Calculate the contribution to hypervolume is in general costly, though
there exist several more efficient implementations.

–  Example 3-1 is a greedy selection scheme. it may (theoretically) perform
arbitrarily bad If more than 1 individual is to be removed.

66"66"

Input: P = x1...x2N{ }
while P > N
 for each xi ∈ P
 calculate its contribution to hypervolume c(xi)
 end
 x* = argmin

x
{c(xi)}

 P = P / {xi}
end

Evolutionary Multi-Objective Optimization

•  MOEA based on Decomposition (MOEA/D): old things become
new again.

•  Decomposition means convert an MOP into several single
objective sub-problems.

•  The objective function of each sub-problem is an aggregation of
all fi , i.e.,

•  Decomposition is a basic idea behind many traditional
mathematical programming methods for MOPs.

67"67"

Φ(x) = λi fi (x)
i=1

m

∑

Evolutionary Multi-Objective Optimization

•  MOEA/D: Basic characteristics

•  Generating a numbers of even spread weight vectors λ’s, each
defines a sub-problem.

•  Each individual corresponds to a sub-problem.

•  The population consists of the best individuals found so far for
each sub-problem.

•  Maintain an external archive to store all non-dominated solution
found during evolution.

68"68"

Evolutionary Multi-Objective Optimization

•  Form of the sub-problems: Tchebycheff approach

•  Since is continuous of λ, the optimal solution to two sub-

problems should be close to each other if the weight vectors are
close to each other.

•  Hence, new individuals are generated by applying variation
operators to individuals of neighboring sub-problems.

69"69"

minimize Φ(x) =max λi fi (x)− zi
*{ }

Φ(x)

Evolutionary Multi-Objective Optimization

•  Illustration of MOEA/D

70"70"

Evolutionary Multi-Objective Optimization

•  Example 3-1: An implementation of MOEA/D
•  Initialization

1.  Generate N uniformly spread weight vectors
2.  For each sub-problem, identify T neighboring sub-problems by

calculating the Euclidean distance between weight vectors
3.  Initialize z*=[z1 …zm] and N individuals x

•  Repeat until halting condition is satisfied
1.  For each individual, randomly select two neighboring sub-problems,

applying variation operator to the 2 corresponding individuals, get x’
2.  Update z*: zi*=min{fi(x), zi*},
3.  If x’ is better than an individual corresponding to a neighboring sub-

problem, replace that individual with x’.
4.  Update the external archive.

71"71"

Evolutionary Multi-Objective Optimization

•  Additional Remarks
–  We described frameworks rather than specific MOEAs.

Numerous concrete implementations can be developed by
incorporating existing operators and schemes (e.g., the
constraints handling techniques).

–  A post-processing procedure is required to finally pick out a
solution that suits the real-world application the best.

–  So far, most successful stories of MOEAs are for problems
with less than 5 objective functions.

72"72"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
73"73"

Scaling Up EAs

•  Although EAs have achieved great success in the domain of
optimization, most reported studies are obtained using small
scale problems (e.g. numerical optimization with D < 100).

"
•  The term “large scale” may refers to
–  Large number of design variables (e.g., high-dimensional solution space)
–  Large number of constraints
–  Large number of objective functions (MOP)

"
•  Different types of large scale problem needs tailored techniques

to scale up EAs. We focus on high-dimensional single objective
numerical optimization problem.

74"74"

Scaling Up EAs

75"75"

Nature Computing

• Are all problems of thousands of variables difficult?

• No!
• Only Nonseparable problems are difficult.

• A function f (x) is separable iff [2]

argmin f (x1,··· ,xD) = (x1,··· ,xD)

(arg min f (x1,···), ... , arg min f (··· ,xD)) x1 xD
• Examples:

• Separable:

• Nonseparable:

Large Scale Numerical Optimization

6

!!"#$!%&%'(x) = [x!!!10cos(2!x!)+ 10]
!

!!!
!

!!"!!"#"$(x) = (x!
!

!!!
)!

!

!!!
!

Scaling Up EAs

What Makes Large Scale Problems Difficult?

•  Solution space often increases exponentially with the growth of
problem dimensionality.

•  Problem complexity may increase with the growth of
dimensionality, e.g., the number of local optima.

•  Candidate search directions often increase exponentially. EAs
might fail to find the promising search directions.

•  Fitness evaluation may also becomes more costly.

•  Basic (old) idea: divide-and-conquer.
76"76"

Scaling Up EAs

Cooperative Coevolution (CC) for large scale problems.
•  Decomposes the objective problem into some sub-problems;
•  Evolves each sub-problem separately using EAs;
•  Combines the solutions to all sub-problems to form the solution

to the original problem.

Design Issues of CC for Large Scale Optimization
•  How to group interacting decision variables into the same group?
•  How to optimize each subgroup of decision variables?
•  How to evaluate and combine solutions for sub-problems?

77"77"

Scaling Up EAs

CC with random grouping (EACC-G):

•  Without sufficient prior knowledge, the simplest way is to group
decision variables randomly.

•  The problem phase is done in a predefined number of cycles.
Each cycle consists of the following steps:
–  Split D decision variables into m groups, each contains s variables.
–  Optimize each sub-problem with an EA.
–  Solutions for each sub-problem is evaluated by combining with the best

solution obtained for the other sub-problems.
–  Assign a weight to each sub-problem.
–  Evolve the weight vectors for the best, the worst and a random members

of current population.

78"78"

Scaling Up EAs

79"79"

Scaling Up EAs

80"80"

Nature Computing

The probability of EACC-G to assign two interacting variables xi
and xj into the same group for at least k cycles is:

N: Number of Cycles; m: Number of Groups

• For example, given a 1000-D problem, when m = 10, P1

 =0.9948, P2 =0.9662
• Even the simple random grouping strategy has some chance to
 group two interacting variables together.

Benefit of Random Grouping

13

!! =
!
! (1!)

!(1 − 1
!)

!!!
!

!!!
!

Scaling Up EAs

•  Test Suite: 13 minimization problems (1000-dimensional).

•  Applying SaNSDE to the problem directly.

•  DECC-G: using SaNSDE as basic optimizer.

•  The numbers of FEs were set to 5e+06 for all algorithms.

•  Results of 25 independent runs were collected for each problem.

81"81"

Scaling Up EAs

82"82"

Nature Computing

Comparison between DECC-G and SaNSDE on functions f1 − f7
(unimodal), with dimension D = 1000, averaged over 25 runs.

Results (Unimodal)

16

of Dim SaNSDE DECC-G

f1 1000 6.97E+00 2.17E-25
f2 1000 1.24E+00 5.37E-14
f3 1000 6.43E+01 3.71E-23
f4 1000 4.99E+01 1.01E-01
f5 1000 3.31E+03 9.87E+02
f6 1000 3.93E+03 0.00E+00
f7 1000 1.18E+01 8.40E-03

Scaling Up EAs

83"83"

Nature Computing

Comparison between DECC-G and SaNSDE on functions f8 − f13
(multimodal), with dimension D = 1000, averaged over 25 runs.

Results (MultiModal)

17

of Dim SaNSDE DECC-G

f8 1000 -372991 -418983
f9 1000 8.69E+02 3.55E-16
f10 1000 1.12E+01 2.22E-13
f11 1000 4.80E-01 1.01E-15
f12 1000 8.97E+00 6.89E-25
f13 1000 7.41E+02 2.55E-21

Scaling Up EAs

84"84"

Nature Computing
Drawbacks of EACC-G:

• Require predefined size of group, which is difficult to
 determine beforehand

• Assume the sizes of all groups are equal

• The nature of random grouping remarkably limits the
 chance of categorizing all interacting variables into the
 same group

Drawbacks of the CC with Random Grouping

19

Scaling Up EAs

85"85"

Nature Computing

A Way Out: Learning the Separability of Problem

20

Variable Interaction Learning - A Bottom-Up Approach

1. Start by treating each decision variable as a single group
2.! learn the interactions between variables
3.! combine interacting variables into the same group
4.! goto step 2 until stopping criterion is met

Target

1.! provide a fine-grain learning mechanism on the separability
2.! every variable interaction learned by the mechanism is correct
3.! make use of the separability information gathered by learning

Scaling Up EAs

86"86"

Nature Computing

CCVIL: A Two-stage Algorithm

21

Cooperative Coevolution with Variable Interaction Learning

1.! Initialization: Randomly initialize a population of solutions, and
 randomly choose an individual from the population.
2.! Learning Stage: Repeat a number of learning cycles, each
 leaning cycle consists of three steps:
 (1) Randomly permute the sequence of decision variables
 (2) Scan over the permuted decision variables sequence to check
 the interaction between each pair of successive variables. If
 evidence of interaction is discovered, mark the two variables as
 ”belonging to the same group”.
3. Optimization Stage:
 (1) Categorize the decision variables according to the
 information obtained in the learning stage
 (2) Solve the problem using CC framework

Scaling Up EAs

87"87"

Scaling Up EAs

88"88"

Nature Computing

Detecting Interactions Between Variables

23

Definition

A function is separable, if it satisfies the Equation [9]:

Two decision variables i and j are interacting if there is a
decision vector whose ith and jth variable can be substituted
with values xi′ and xj′ so that Equation holds.[10]

!arg! !"#
(!!,… ,!!)

! x! ,… , x! = (arg!!"#
(!!)

! x! ,… ,… , arg!!"#
(!!)

! … , x!)!

x!

Scaling Up EAs

89"89"

Scaling Up EAs

90"90"

No Free Lunch: The Learning Overhead

26

The Learning stage costs FEs and a trade-off between learning and
evolution (optimization) needs to be set.

Appropriate setting for learning cycle can deal with both separable
functions and non-separable functions:

Termination Conditions for Learning Stage

• If no interactions were learned after Kˇ cycles, we treat it as
 separable function and thus the learning stage will terminate.

• If any interaction has been learned before reaching the Kˇ
 cycles, we treat it as a non-separable function. In this case,
 learning stage only stops if:

• all N dimensions have been combined into one group
• 60% of FEs has been consumed in learning stage

Scaling Up EAs

•  CEC2010 Test Suite: 20 minimization problems (1000-D) with
different degree of separability

•  Basic optimizer: JADE.

•  The numbers of FEs were set to 3e+06 for all algorithms.

•  Results of 25 independent runs were collected for each problem.

91"91"

Scaling Up EAs

92"92"

Experimental Results

28

��

Scaling Up EAs

Are Interactions between variables worthy of learning?
•  Learning is itself a hard problem.
•  Unlikely that all the interactions can be learned.
•  Is partial interaction information still beneficial?

A preliminary experiments:
•  For a problem with D variables, interaction information can be

represented as a binary string of length D2
•  Tune the “portion” of prior grouping information.
•  Would more prior grouping information lead to better

performance?

93"93"

Scaling Up EAs

94"94"

Scaling Up EAs

95"95"

Scaling Up EAs

96"96"

Scaling Up EAs

97"97"

Scaling Up EAs

•  Additional Remarks
–  Distributed/parallel structure is another way for scaling up

EAs. These methods usually divide the population (into
several sub-populations), rather than the problem.

–  How to divide a problem is problem-dependent (especially
for combinatorial optimization).

–  Scaling up EAs in case of many objective functions or
constraints is also attracting more and more investigations.

98"98"

Outline

•  Introduction

•  Algorithm Configuration

•  Constraints Handling

•  Evolutionary Multi-Objective Optimization

•  Scaling Up EAs

•  Summary
99"99"

Summary

We revisited the most commonly encountered issues when using
EAs (as a search method) in practice:

•  How to determine the appropriate EC model, search operators
and schemes for our specific task.

•  How to handle constraints in the framework of EAs.

•  How to deal with multi-objective optimization problems.

•  How to improve the efficiency of EAs if we are unsatisfied with
their performance on some large scale problems.

100"100"

Summary

Some important Topics that are not cover by this tutorial:

•  Handling Uncertainty
–  Robust optimization

–  Dynamic optimization

–  Robust optimization over time (ROOT)

•  Integrating EAs with other search techniques
–  EA+ local search (especially useful for combinatorial optimization)

–  Memetic Algorithm

–  Surrogate Assisted EA

101"101"

References for Further Reading

Algorithm Configuration

1.  A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing evolutionary
algorithms,” Swarm and Evolutionary Computation, Vol. 1, no. 1, pp. 19-31, 2011.

2.  T. Bartz-Beielstein, C. Lasarczyk and M. Preuss, “Sequential parameter optimization,” in
Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’05), Edinburgh,
Scotland, IEEE Press, vol. 1, pp. 773–780, 2005.

3.  F. Hutter, H. Hoos and T. Stützle, “Automatic algorithm configuration based on local search,” in
Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-07), pp. 1152–
1157, 2007.

4.  M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, “F-race and IteratedF-Race: An overview,” in
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (eds), Experimental Methods for the
Analysis of Optimization Algorithms, Springer, Berlin, Germany, pp. 311–336, 2010.

102"102"

References for Further Reading

Constraints Handling

1.  C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art,” Computer Methods in Applied
Mechanics and Engineering, vol. 191, no. 11/12, pp. 1245–1287, 2002.

2.  T. P. Runarsson and X. Yao, “Stochastic Ranking for Constrained Evolutionary
Optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284-294,
2000.

103"103"

References for Further Reading

Evolutionary Multi-Objective Optimization

1.  A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan and Q. Zhang, “Multiobjective
evolutionary algorithms: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 32-49, 2011.

2.  Q. Zhang and H. Li, “MOEA/D:Amultiobjectiveevolutionaryalgorithm based on
decomposition,” IEEE Transactions Evolutionary Computation, vol. 11, no. 6, pp. 712–731,
2007.

3.  K. Bringmann, T. Friedrich, F. Neumann and M. Wagner, “Approximation-guided
evolutionary multi-objective optimization,” in Proceeding of the Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI-2011), pp. 1198–1203,
Barcelona, Spain, 2011.

104"104"

References for Further Reading

Scaling Up EAs

1.  Z. Yang, K. Tang and X. Yao, “Large Scale Evolutionary Optimization Using Cooperative
Coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985-2999, 2008.

2.  W. Chen, T. Weise, Z. Yang and K. Tang, “Large-Scale Global Optimization using
Cooperative Coevolution with Variable Interaction Learning,” in Proceedings of the 11th
International Conference on Parallel Problem Solving From Nature (PPSN), Kraków,
Poland, September 11–15, 2010, pp. 300–309, Lecture Notes in Computer Science, Volume
6239, Part II, Springer-Verlag, Berlin, Germany.

105"105"

�

�

�

Thanks for your time!
Q&A?

106"106"

