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Introduction 

•  Evolutionary Algorithms (EAs): Algorithms that mimic 
natural evolution? 

•  There are several famous EAs with different historical 
backgrounds. 
–  Genetic Algorithms 
–  Evolution Strategies 
–  Particle Swarm Optimizer 
–  Ant Colony Optimization 
–  etc. 
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Introduction 

Successful applications of EAs: 
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Introduction 

•  Framework of EAs 

•  Most EAs are Stochastic Population-Based Generate-
and-Test algorithms.  
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What Is an Evolutionary Algorithm?

(OK, you can open your eyes and wake up now.)

1. Generate the initial population P (0) at random, and set
i← 0;

2. REPEAT

(a) Evaluate the fitness of each individual in P (i);

(b) Select parents from P (i) based on their fitness in P (i);

(c) Generate offspring from the parents using crossover and
mutation to form P (i + 1);

(d) i← i + 1;

3. UNTIL halting criteria are satisfied



Introduction 

•  Different EAs: variants of the same Generate-and-Test 
Algorithm, depending on  
–  representations,  
–  variation operators,  
–  selection schemes. 

•  Talking in classical AI: EAs face the same fundamental 
issues, i.e., representation and search.  
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Introduction 

•  EAs do not require rich domain knowledge to use, 
although domain knowledge can be incorporated into 
EAs. 

•  That means, EAs are particularly suitable for 
optimization problems whose objective functions are 
–  Not differentiable 
–  Not continuous 
–  Even without explicit mathematical formulations 
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Introduction 

This tutorial concerns the following general questions 
regarding using EAs in practice. 
 

1.  Algorithm Configuration: How to configure an EA for my real-
world problem? 

 

2.  Constraints Handling: How to tackle problems with 
constraints? 

 

3.  Evolutionary Multi-Objective Optimization: How to 
simultaneously optimize multiple objective functions? 

 

4.  Scaling Up EAs: How to address large scale problems with EAs? 
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Introduction 

•  Numerical optimization problems are used in most illustrative 
examples, but many techniques/ideas are readily applicable (or 
can be easily adapted) to other types of optimization problems.  

•  Some interchangeably used terminologies 
–  Individual ! a solution to an optimization problem ! a point in the 

solution space (search space) 

–  Population ! a set of solutions 
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Algorithm Configuration 

•  Let’s start with a very basic optimization problem: 

 
 

•  To solve it with an EA, one needs to first determine: 
–  How to encode (represent) a solution x 
–  What is the variation operator and its parameters 
–  What is the selection scheme and its parameters 

•  Design my own problem-specific operators/schemes (ambitious 
but challenging) 

•  Choose operators/schemes/parameters from an EA toolbox (more 
realistic). 
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minimize   f (x)



Algorithm Configuration 

•  Question: If an EA toolbox is available (which is true), 
which operators/parameters shall I use? 

 

•  Aim: To find an appropriate EA instance (configuration 
of EA) for an optimization task. 
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Algorithm Configuration 

•  Configuring an EA involves setting the values of  
–  categorical variables (type of operators/schemes) 
–  numerical variables (e.g., crossover rate, population-size) 
 

•  We refer both the categorical and numerical variables as 
parameter of EAs 

•  More formally, Configuring an EA is another search 
problem, for which the best parameter vectors are 
searched to maximize the performance. 
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Algorithm Configuration 

•  Performance measures may differ in different context: 
–  The best solution quality 
–  The time required to reach a threshold of solution quality 

•  Due to the stochastic nature of EAs, a performance 
measure can be viewed as a random variable. 

 

•  Multiple runs are usually required to get a reliable 
estimate of performance.  
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Algorithm Configuration 

•  The rough idea: Generate-and-Test 

•  Example 1-1: A naïve approach 
–  Generate p candidate parameter vectors 
–  Get p EA instances, each configured with a parameter vector 
–  Run each EA instance for r times 
–  In each run, n solution vectors is generated and tested 
–  Compare the parameter vectors using performance measures 

to get the best configuration. 
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Algorithm Configuration 

•  The naïve approach requires calculating the objective 
function f(x) for prn times. – sounds too costly. 

•  Smarter approach is needed to reduce search effort. 
–  Reduce p 
–  Reduce r  
–  Reduce n 
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Algorithm Configuration 

•  Racing procedures: An approach for reducing r. 

•  Basic idea: Stop running (testing) an EA instance if 
there is indication that it is not promising.  

•  By not promising, we mean an EA instance performs 
significantly worse than the best EA instance identified 
so far.   

•  EA instances are compared after each run rather than 
after running all of them for r times.  
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Algorithm Configuration 

•  Example 1-2: 

•  Many parameter vectors may be removed without 
running r times. 18"18"

 

1.  Generate p candidate parameter vectors 
 

2.  Set E as the set of p EA instances 
 

3.  REPEAT: 
•  Run each EA instance once and update its (average) performance 
•  Identify the EA instance with the best performance 
•  Remove from E the EA instances whose performance is 

significantly worse than the best EA instance  
 

4.  Until size(E)=1 or the number of runs reaches r 
 



Algorithm Configuration 

•  There are a few statistical tests that can be used to 
indicate significant difference in performance. 
–  Analysis of Variance (ANOVA). 
–  Kruskal-Wallis (Rank Based Analysis of Variance).  
–  Hoeffding’s bound. 
–  Unpaired Student T-Test. 
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Algorithm Configuration 

•  Racing procedure may not be sufficient in case: 
–  p is very large 
–  The set of candidate parameter vectors is infinite 
 

•  Basic idea: To apply an iterative search procedure to the 
parameter space.  
–  Meta-EA: using EAs to search for the best configuration 
–  Iterative local search 

•  Hopefully, the best configuration can be found with less 
trial parameter vectors. 
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Algorithm Configuration 

•  Example 1-3: 
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1.  Generate p’ candidate parameter vectors (p’<p) 
 

2.  Get p’ EA instances 
 

3.  REPEAT 

•  Run each EA instance for r times and assess its performance 
•  Generate another p’ parameter vectors 
 

4.  Until halting criterion is satisfied 
 



Algorithm Configuration 

•  Iterative search can be combined with a racing 
procedure to reduce both p and r . 

•  Example 1-4: 
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1.  Generate p’ candidate parameter vectors (p’<p) 
 

2.  Get p’ EA instances 
 

3.  REPEAT 

•  Applying Racing procedure to compare performance of EA instances 
•  Generate another p’ parameter vectors 
 

4.  Until halting criterion is satisfied 
 



Algorithm Configuration 

•  Further enhancement: Modeling the landscape of 
performance measures 
–  For identifying promising parameter vectors 
–  For filtering out unpromising parameter vectors 

•  The modeling task is a supervised learning problem 
–  Input data: parameter vectors 
–  Target: performance 
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Algorithm Configuration 

•  Example 1-5 (Sequential Parameter Optimization): 

 

24"24"

 

1.  Generate p’ candidate parameter vectors (p’<p) 
 

2.  Get p’ EA instances 
 

3.  Run each EA instance for r times and assess its performance 
 

4.  Build a model M to approximate the performance landscape  
 

5.  REPEAT 

•  Generate another p’ parameter vectors 
•  Identify the most promising parameter vectors with M 
•  Only the promising parameter vectors are run for r times 
•  Update M with the newly “assessed” parameter vectors 
 

6.  Until halting criterion is satisfied 
 



Algorithm Configuration 

•  Remark on reducing n 
–  The key question involved: Will the “relative order” of two 

EAs maintain unchanged during the evolution? 

–  The lesson learned: the answer is problem and algorithm 
dependent, and thus few systematic approach have been 
investigated for this issue. 
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Fig. 2. The self-adaptation curves of p, fp and CRm for f5, f9, fcec5,
and fcec9. On the vertical axes are shown their values (between 0 and 1),
while on the horizontal axes are shown the number of generations.
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Fig. 3. The evolution curves for f5, f9, fcec5 and fcec9. The vertical
axes show the distance to the optimum and the horizontal axes show the
number of generations.
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Algorithm Configuration 

•  So far, we mainly touched the case of configuring EA on a single 
optimization task (problem instance) 

 
•  What if we want to find a more general configuration that can be 

applied to multiple problem instances? 
 
•  Previously introduced ideas can be adapted to this scenario. 
 
•  Instead of looking at the results of r runs, comparisons are made 

mainly based on the performance on multiple problem instances. 
–  F-RACE 
–  ParamILS 
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Algorithm Configuration 

•  A good configuration for multiple problem instances is 
attractive from practical viewpoint.  

 

•  However… 
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Algorithm Configuration 

•  A good configuration for multiple problem instances is 
attractive from practical viewpoint.  

 

•  However… 
–  In many scenario it is unlikely such a configuration exists. 
–  Advantages of having many alternative configurations are not fully 

exploited  
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Algorithm Configuration 

•  A good configuration for multiple problem instances is 
attractive from practical viewpoint.  

 

•  However… 
–  In many scenario it is unlikely such a configuration exists. 
–  Advantages of having many alternative configurations are not fully 

exploited  

•  How about establishing a good “portfolio” of configurations 
(e.g., a combination of multiple EA instances)?  
–  Making use of advantages of different algorithms, rather than putting 

all the eggs (time) into a single basket (configuration). 
–  Hopefully not too time-consuming since only one portfolio is needed 

for all problems. 

29"29"



Algorithm Configuration 

30"30"

•  Population-based Algorithm Portfolio (PAP) 

Select a few constituent configurations from  
a pool of candidate configurations 

Construct a concrete PAP instantiation with  
the constituent EA instances 

Apply the PAP instantiation to each problem 

Output the best solution obtained  
for each problem 



Algorithm Configuration 

•  The way of building a PAP instantiation: 
–  A PAP instantiation maintains multiple sub-populations.  
–  Each sub-population is evolved with a constituent EA 

instances.  
–  Information is shared among sub-populations by activating 

a migration scheme periodically.  

•  Sounds simple, more important… 
–  If combining different EAs in this way won’t lead to any 

advantage over using a single algorithm. Why bother 
seeking the so-called constituent algorithms?  
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Algorithm Configuration 

•  A preliminary experiment  
– 4 Candidate EA instances: CMA-ES, G3PCX, SaNSDE, wPSO 
– 11 PAP instantiations 

•  27 Benchmark problems 

•  Each PAP instantiation  
–  Compared to its constituent configurations alone to verify whether there 

would be any advantage of PAP over its constituent algorithms. 
–  Compared to G-CMA-ES to verify whether portfolio of some “weak” EA 

instances could outperforms the state-of-the-art. 
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Algorithm Configuration 

•  Wilcoxon Test Results (Significance level 0.05): “w-d-l” stands 
for “win-draw-lose” 

•  Portfolios of configurations led to the best performance 
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Algorithm Configuration 

•  Additional Remarks 
–  Operators/parameters can also be adjusted on-the-fly. This 

type of EAs are usually called adaptive/self-adaptive EAs. 

–  With a unified “representation” of EA’s behaviors, there will 
huge room for involving machine learning techniques. 

–  Algorithm configuration is also closely related to the 
emerging terminology “hyper-heuristic”. 
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Constraint Handling 

•  We now consider a more challenging (realistic) problem:  

 
•   f(x): the objective function 

•  gi(x): the inequality constraints 

•  hj(x): the equality constraints 
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minimize   f (x)
subject to: gi (x) ≤ 0,   i =1...m
                 hj (x) = 0,   j =1...p



Constraint Handling 

•  Note: The global optimum in the feasible space might not be the 
same as that in the whole search space. 
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Constraint Handling 

•  Handling constraints in an EA framework 
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Constraint Handling 

•  Suppose n individuals are to be selected from N individuals 

•  The selection procedure can be conducted via pair-wise 
comparisons between the N individuals 

•  The purist approach (The naïve approach) 
–  Feasible individuals are always preferred over infeasible ones. 
–  Between two feasible individuals, the one having a better objective value 

is preferred. 
–  Between two infeasible individuals, the one having smaller constraint 

violation is preferred.  
–  An example of constraint violation:  
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Gi (x) =max(0,  gi (x))



Constraint Handling 

•  Is an infeasible individual really less preferable to a feasible one? 

•  A counter example (which point is better, B for C?) 

•  Key issue for constraint handling: balance between objective 
function and constraints 
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Constraint Handling 

•  Penalty function methods: 

•  where 
•  Equality constrains can be converted into inequality ones 
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Constraint Handling 

•  Penalty function methods relies on the values of penalty 
coefficient.  

 

•  Static Penalties 
–  Penalty coefficients are pre-defined and fixed 
 

•  Dynamic Penalties  
–  Penalty coefficients changes according to a predefined sequence 

•  Adaptive and Self-Adaptive Penalties 
–  Penalty coefficients changes according to a predefined sequence 

42"42"



Constraint Handling 

•  Example 2-1: Dynamic Penalty 

•  T: generation number 

•  C: predefined constant 

•  General Principle: the penalty coefficient increase with T,  

•  That means, feasibility gradually becomes more and more 
important (similar to a coarse-to-fine search procedure) 
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Constraint Handling 

•  Example 2-2: Adaptive Penalty 

 
 

•  where 

•  xold is the previously evaluated individuals 

•  Focus on the constraints that are more difficult to satisfy. 

•  Also known as co-evolution type approach. 
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Φ(x) = f (x)+ riGi (x)
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Constraint Handling 

•  In essence, penalty function methods transform the the fitness 
landscapes 

 
•  Let 
  

•  What does                        mean? 
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Φ(x) = f (x)+ riGi (x)
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Constraint Handling 

•  Different r’s lead to different rankings of individuals 

•  Change fitness " Change ranks " Change selection 

•  Why not modify the ranks of individuals directly? 

46"46"

f (x1)+ rG(x1)< f (x2 )+ rG(x2 )

f (x1)< f (x2 )&G(x1)<G(x2 )⇒ r  has no impact on the comparison

f (x1)< f (x2 )&G(x1)>G(x2 )⇒ increase r  will eventually change the comparison

f (x1)> f (x2 )&G(x1)<G(x2 )⇒ decrease r  will eventually change the comparison



Constraint Handling 

•  Example 2-3: Stochastic Ranking 
–  Using a bubble-sort-like procedure to rank individuals. 

–  In one comparison, either f(x) or G(x) is used, but not both 

–  Use a random number u to determine whether f(x) will be use 
when doing a comparison. 

–  Use a parameter Pf  to balance between f(x) and G(x) 

–  Pf  is the probability of using f(x) in ranking 
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Constraint Handling 

•  Example 2-3: Stochastic Ranking 
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Input:  x1...xN
for  i =1 to N
      sample u∈U(0,1)
      if  G(xi ) =G(xi+1) = 0 or (u < Pf )  then
          if  f (xi )> f (xi+1)  then
              swap(xi, xi+1)
          end
      else if  G(xi )>G(xi+1)  then
              swap(xi, xi+1)
      end
end



Constraint Handling 

•  Recall the key issue: balance between objective function and 
constraints violation. 

•  That means, we want to maintain a good trade-off between these 
two factors. 

•  The concept of Pareto dominance can also be employed to 
achieve this.  

•  Treat G(x) as another objective function, which is to be 
minimized, basically: 
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f (x1)< f (x2 )&G(x1)<G(x2 )⇒ x1  dominates x2

f (x1)> f (x2 )&G(x1)>G(x2 )⇒ x1  is dominated by x2

Otherwise, x1  and x2  are nondominated by each other



Constraint Handling 

•  How to use Pareto dominance to handle constraints? 
 

•  Obviously, it can be used to compare individuals.  
 

•  There are a lot of other efforts, we take the so-called Adaptive 
Tradeoff Model (ATM) as an example. 

 

•  Now, let’s move our focus from individuals to populations 
–  The population contains infeasible individuals only (case 1) 

–  The population contains both feasible and infeasible individuals (case 2) 

–  The population contains feasible individuals only (case 3) 
 

•  The three cases can be addressed with different schemes. 
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Constraint Handling 

•  Case 1 (where the Pareto dominance concept take effect):  

–  Only non-dominated individuals seem promising.  

–  As there is no feasible individuals, we strive to get some ones.  

•  Identify the non-dominated individuals 

•  Sort them based on G(x) in ascending order. 

•  Select the first half of them as the offspring individuals. 
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Constraint Handling 

•  Case 2:  

–  Transform f(x) of infeasible individuals. 

–  Normalize f(x) and G(x) to [0, 1]. 

–  Combine f(x) and G(x) using a penalty function. 

•  Case 3: treat as an unconstrained optimization problem 
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f ' (x) =max{C * fmin + (1−C)* fmax,  f (x)}
fmin :  the smallest f (x) for feasible individuals
fmax :  the smallest f (x) for feasible individuals
C :     Proportion of feasible individuals in the population

f final (xi ) = fnorm (xi )+Gnorm (xi )



Constraint Handling 

•  Additional Remarks 
–  Stochastic ranking may serve as an off-she-shelf tool, since it 

is simple to implement, and involves only one parameter Pf .  

–  Different types of approaches can be combined to form a 
hybrid CH technique for a specific problem. 

–  Algorithm configuration methods are also applicable to CH 
techniques selection/configuration.  
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Evolutionary Multi-Objective Optimization 

•  Multi-objective optimization problem: 

 
•  The objective functions may be conflicting or incommensurable.  

•  Instead of a single optimal solution, a set of the best trade-off 
solutions (Pareto optimal solutions) are sought.  
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minimize   F(X) = ( f1(x),..., fm (x))



Evolutionary Multi-Objective Optimization 

•  EAs for MOP are usually called Multi-Objective Evolutionary 
Algorithms (MOEAs).  

•  Becoming a prosperous sub-area of EC since 1985. 
 

•  More than 5600 papers has been published by January 2011, 
66.8% published after 2002. 

 

•  Almost all types of EAs have their MO version. 
 

•  Quite successful in the real world " attracted many researchers 
outside the EC-community (e.g., Decision Making). 
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Evolutionary Multi-Objective Optimization 

•  Multi-objective optimization itself involves multiple criteria.  

•  Intuitively, we want a set of solutions that is good in terms of: 

–  Convergence (to the Pareto front) 

–  Spread (along the Pareto front) 
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Evolutionary Multi-Objective Optimization 

•  Our starting point: Non-dominated Sorting Genetic Algorithm II 
(NSGA-II), published in 2002. 

•  Probably the most influential work on MOEAs, cited by 9226 
(by Google Scholar) 

•  Majority of papers on MOEAs emerges after this seminal work. 

•  Many of them adopt similar framework as NSGA-II. 
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Evolutionary Multi-Objective Optimization 

•  NSGA-II 

 

•  Fast Non-dominated Sorting for selection 
–  Divide the population into several fronts by definition of non-domination 

–  Crowding distance is utilized to select exact N individuals 
59"59"
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(b) Select parents from P (i) based on their fitness in P (i);

(c) Generate offspring from the parents using crossover and
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Evolutionary Multi-Objective Optimization 

•  Divide the population into several fronts 

•  Rank means the index of fronts 
•  The procedure can be implemented more efficiently (i.e., “Fast”) 60"60"

Input: P = x1...x2N{ }
Initialize k =1,  Q =∅

while P ≠∅
          for each xi ∈ P
               if xi  is not dominated by any x j ∈ P
                  rank(xi )=k
                  Q =Q∪{xi}
               end
          end
          P = P /Q
          k = k +1
end        



Evolutionary Multi-Objective Optimization 

•  Individuals are selected according to their rank in ascending order. 
 

•  Suppose individuals on several fronts have been selected, but not 
all individuals on the next front can be preserved, since we only 
need exactly N individuals.  

 

•  Crowding distance: Select the individuals close to “sparse 
region” (preserve diversity to get good spread)     
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Evolutionary Multi-Objective Optimization 

•  The selection procedure of NSGA-II 
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Evolutionary Multi-Objective Optimization 

•  The crowding distance is a little bit ad hoc and may have 
drawbacks. (Which one should be preserved, point C or Y)? 

 
•  An (intuitive) question: what is an individual’s contribution to “spread”.   

•  In fact, the “spread” itself can hardly be measured (there are several metrics).  

•  The (essential) source of difficulty: Selection in MOEAs involves comparison 
of two sets of individuals, rather than two individuals.  
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Fig. 3. Crowding degree estimation.

NSGA-II may obtain more solutions in one region of the
objective space, while obtaining fewer solutions in some
other regions.

2) The selection strategy based on the crowding distance
is unilateral.
Because all MOEAs search for the solutions in an iterative
way, the most important part of an MOEA is how it oper-
ates in a single iteration (usually referred to as a generation
in the evolutionary computation literature). From Alg. 1,
we can observe that, in each generation of NSGA-II, the
parent population and offspring population are first
combined to make an intermediate population . Then,

is sorted into different nondominated fronts through the
function fast-non-dominated-sort; and for every nondom-
inated front, the crowding distance of each individual in
it is calculated. The parent population for the next gener-
ation is finally selected from based on their nondomi-
nated levels and crowding distances. During this process,
when calculating the crowding distance of a solution, only
those solutions belonging to the same nondominated front
are considered. However, this may lead to an inappropriate
selection of solutions. For example, the rectangular, and
circular points in Fig. 4 belong to two nondominated fronts.
Assume that all of the rectangular points have been se-
lected, and we need to select some circular points based
on the crowding distance. Based on the selection strategy
of NSGA-II, point A will be selected prior to point B, but
this is somewhat counter-intuitive because point B is obvi-
ously less crowded than point A.

Having the above two drawbacks of NSGA-II in mind, we
propose two alternative approaches to deal with them. First, in-
stead of calculating the crowding distance using the 1-norm dis-
tance between the two nearest points to a given solution, we
calculate it with the harmonic average distance. Assume the dis-
tances of the -nearest solutions of a solution are .
Then the harmonic average distance associated with this solu-
tion can be calculated as

(9)

Fig. 4. Crowding degree estimation.

To overcome the second drawback of NSGA-II, we propose
the following scheme. After sorting the solutions in the interme-
diate population into a number of fronts, if some solutions are
to be selected from a front, the crowding distance will be calcu-
lated based on both the solutions belonging to the same front,
and all the previously selected solutions. In this way, the unde-
sirable scenario illustrated in Fig. 4 will be prevented.

Incorporating the above two schemes into the framework
of NSGA-II, we obtain a new MOEA, the HaD-MOEA. The
pseudo-code of HaD-MOEA is shown in Alg. 2. Specifically,
lines 12-15 present the detailed steps of the two novel schemes
adopted by HaD-MOEA. Taking advantage of the two new
schemes, we expect the solutions obtained by HaD-MOEA
to spread better in the objective space than those obtained by
NSGA-II.

When applying HaD-MOEA to a system with modules, a
solution is encoded by an -dimensional vector (chromosome).
Each element represents the testing time consumed by a module,
and the sum of these elements should not exceed the total testing
time . Besides, HaD-MOEA cannot guarantee always gener-
ating solutions that satisfy this constraint during search. There-
fore, whenever a solution obtained violates the constraint, it will
be repaired by using the procedures presented in Table III.

Alg. 2. The Pseudo-Code of HaD-MOEA.

1: Initialize: Set the population size to , and randomly
generate the parent population .

2: Set the generation number .

3: while do

4: Generate the offspring population from with the
same population size.

5: Combine the parent and offspring population via
.

6: Sort all solutions of to get all non-dominated
fronts where

.

7: Set , and .

8: while the parent population size do



Evolutionary Multi-Objective Optimization 

•  Indicator-based MOEAs 
–  Make use of quality indicators to assign every individual a 

single-objective fitness. 
 

–  Typically, the fitness an individual is defined based on how 
much the quality indicator decreases if the individual is 
removed from the population (indicator loss).  

 

–  Only involves pair-wise comparison of individuals 
 

–  General Principle: the quality indicator should be coherent 
with “convergence” and “spread”. 
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Evolutionary Multi-Objective Optimization 

•  The hypervolume indicator 
–  Favor large volume of the dominated portion 

–  Strict Pareto compliance 
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Evolutionary Multi-Objective Optimization 

•  Example 3-1: Selection with the hypervolume indicator 

–  Calculate the contribution to hypervolume is in general costly, though 
there exist several more efficient implementations.  

–  Example 3-1 is a greedy selection scheme. it may (theoretically) perform 
arbitrarily bad If more than 1 individual is to be removed. 
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Input: P = x1...x2N{ }
while P > N
     for each xi ∈ P
        calculate its contribution to hypervolume c(xi ) 
     end
     x* = argmin

x
{c(xi )}

     P = P / {xi}
end



Evolutionary Multi-Objective Optimization 

•  MOEA based on Decomposition (MOEA/D): old things become 
new again.  

 

•  Decomposition means convert an MOP into several single 
objective sub-problems. 

 

•  The objective function of each sub-problem is an aggregation of 
all fi , i.e.,  

•  Decomposition is a basic idea behind many traditional 
mathematical programming methods for MOPs.  
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Φ(x) = λi fi (x)
i=1

m

∑



Evolutionary Multi-Objective Optimization 

•  MOEA/D: Basic characteristics 

•  Generating a numbers of even spread weight vectors λ’s, each 
defines a sub-problem.  

•  Each individual corresponds to a sub-problem. 

•  The population consists of the best individuals found so far for 
each sub-problem. 

•  Maintain an external archive to store all non-dominated solution 
found during evolution. 
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Evolutionary Multi-Objective Optimization 

•  Form of the sub-problems: Tchebycheff approach 

 
•  Since           is continuous of λ, the optimal solution to two sub-

problems should be close to each other if the weight vectors are 
close to each other.  

•  Hence,  new individuals are generated by applying variation 
operators to individuals of neighboring sub-problems.  
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minimize  Φ(x) =max λi fi (x)− zi
*{ }

Φ(x)



Evolutionary Multi-Objective Optimization 

•  Illustration of MOEA/D 
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Evolutionary Multi-Objective Optimization 

•  Example 3-1: An implementation of MOEA/D 
•  Initialization 

1.  Generate N uniformly spread weight vectors 
2.  For each sub-problem, identify T neighboring sub-problems by 

calculating the Euclidean distance between weight vectors  
3.  Initialize z*=[z1 …zm] and N individuals x 
 

•  Repeat until halting condition is satisfied 
1.  For each individual, randomly select two neighboring sub-problems, 

applying variation operator to the 2 corresponding individuals, get x’ 
2.  Update z*:  zi*=min{fi(x), zi*},  
3.  If x’ is better than an individual corresponding to a neighboring sub-

problem, replace that individual with x’. 
4.  Update the external archive. 
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Evolutionary Multi-Objective Optimization 

•  Additional Remarks 
–  We described frameworks rather than specific MOEAs. 

Numerous concrete implementations can be developed by 
incorporating existing operators and schemes (e.g., the 
constraints handling techniques).  

–  A post-processing procedure is required to finally pick out a 
solution that suits the real-world application the best. 

–  So far, most successful stories of MOEAs are for problems 
with less than 5 objective functions.    
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Outline 

•  Introduction 
 
•  Algorithm Configuration 

•  Constraints Handling 

•  Evolutionary Multi-Objective Optimization 

•  Scaling Up EAs 

•  Summary 
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Scaling Up EAs  

•  Although EAs have achieved great success in the domain of 
optimization, most reported studies are obtained using small 
scale problems (e.g. numerical optimization with D < 100). 

"
•  The term “large scale” may refers to  
–  Large number of design variables (e.g., high-dimensional solution space) 
–  Large number of constraints 
–  Large number of objective functions (MOP) 

"
•  Different types of large scale problem needs tailored techniques 

to scale up EAs. We focus on high-dimensional single objective 
numerical optimization problem.    
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Scaling Up EAs  

75"75"

Nature Computing

•  Are all problems of thousands of variables difficult? 

• No!
• Only Nonseparable problems are difficult.

•  A function f (x) is separable iff [2]

argmin  f (x1,··· ,xD) =                                      (x1,··· ,xD)

(arg min f (x1,··· ), ... , arg min f (··· ,xD) )                        x1                                                          xD                                      
•  Examples:

• Separable: 

• Nonseparable: 

Large Scale Numerical Optimization

6
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Scaling Up EAs  

What Makes Large Scale Problems Difficult? 

•  Solution space often increases exponentially with the growth of 
problem dimensionality. 

 

•  Problem complexity may increase with the growth of 
dimensionality, e.g., the number of local optima. 

 

•  Candidate search directions often increase exponentially. EAs 
might fail to find the promising search directions. 

 

•  Fitness evaluation may also becomes more costly.  
 

•  Basic (old) idea: divide-and-conquer. 
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Scaling Up EAs  

Cooperative Coevolution (CC) for large scale problems.  
•  Decomposes the objective problem into some sub-problems; 
•  Evolves each sub-problem separately using EAs; 
•  Combines the solutions to all sub-problems to form the solution 

to the original problem. 

Design Issues of CC for Large Scale Optimization  
•  How to group interacting decision variables into the same group? 
•  How to optimize each subgroup of decision variables? 
•  How to evaluate and combine solutions for sub-problems? 
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Scaling Up EAs  

CC with random grouping (EACC-G):  
 

•  Without sufficient prior knowledge, the simplest way is to group 
decision variables randomly. 

•  The problem phase is done in a predefined number of cycles. 
Each cycle consists of the following steps: 
–  Split D decision variables into m groups, each contains s variables. 
–  Optimize each sub-problem with an EA. 
–  Solutions for each sub-problem is evaluated by combining with the best 

solution obtained for the other sub-problems. 
–  Assign a weight to each sub-problem. 
–  Evolve the weight vectors for the best, the worst and a random members 

of current population. 
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Scaling Up EAs  

79"79"



Scaling Up EAs  

80"80"

Nature Computing

The probability of EACC-G to assign two interacting variables xi 
and xj into the same group for at least k cycles is:

N: Number of Cycles;   m: Number of Groups

• For example, given a 1000-D problem, when m = 10, P1 

             =0.9948, P2 =0.9662
• Even the simple random grouping strategy has some chance to 
   group two interacting variables together.

Benefit of Random Grouping
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Scaling Up EAs  

•  Test Suite: 13 minimization problems (1000-dimensional). 

•  Applying SaNSDE to the problem directly. 

•  DECC-G: using SaNSDE as basic optimizer. 
 

•  The numbers of FEs were set to 5e+06 for all algorithms. 
 

•  Results of 25 independent runs were collected for each problem. 
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Scaling Up EAs  
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Nature Computing

Comparison between DECC-G and SaNSDE on functions f1 − f7 
(unimodal), with dimension D = 1000, averaged over 25 runs.

Results (Unimodal)

16

# of Dim SaNSDE DECC-G

f1 1000 6.97E+00 2.17E-25
f2 1000 1.24E+00 5.37E-14
f3 1000 6.43E+01 3.71E-23
f4 1000 4.99E+01 1.01E-01
f5 1000 3.31E+03 9.87E+02
f6 1000 3.93E+03 0.00E+00
f7 1000 1.18E+01 8.40E-03



Scaling Up EAs  
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Nature Computing

Comparison between DECC-G and SaNSDE on functions f8 − f13 
(multimodal), with dimension D = 1000, averaged over 25 runs.

Results (MultiModal)

17

# of Dim SaNSDE DECC-G

f8 1000 -372991 -418983
f9 1000 8.69E+02 3.55E-16
f10 1000 1.12E+01 2.22E-13
f11 1000 4.80E-01 1.01E-15
f12 1000 8.97E+00 6.89E-25
f13 1000 7.41E+02 2.55E-21



Scaling Up EAs  
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Nature Computing
Drawbacks of EACC-G:

•   Require predefined size of group, which is difficult to 
       determine beforehand

•   Assume the sizes of all groups are equal

•   The nature of random grouping remarkably limits the 
       chance of categorizing all interacting variables into the 
       same group

Drawbacks of the CC with Random Grouping

19



Scaling Up EAs  
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Nature Computing

A Way Out: Learning the Separability of Problem

20

Variable Interaction Learning - A Bottom-Up Approach

1.   Start by treating each decision variable as a single group
2.! learn the interactions between variables
3.! combine interacting variables into the same group
4.! goto step 2 until stopping criterion is met

Target

1.! provide a fine-grain learning mechanism on the separability
2.! every variable interaction learned by the mechanism is correct
3.! make use of the separability information gathered by learning



Scaling Up EAs  
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Nature Computing

CCVIL: A Two-stage Algorithm

21

Cooperative Coevolution with Variable Interaction Learning

1.! Initialization: Randomly initialize a population of solutions, and 
     randomly choose an individual from the population.
2.! Learning Stage: Repeat a number of learning cycles, each  
      leaning cycle consists of three steps:
         (1) Randomly permute the sequence of decision variables
         (2) Scan over the permuted decision variables sequence to check 
              the interaction between each pair of successive variables. If  
              evidence of interaction is discovered, mark the two variables as   
              ”belonging to the same group”.
3.   Optimization Stage:
         (1)  Categorize the decision variables according to the 
               information obtained in the learning stage
         (2)  Solve the problem using CC framework



Scaling Up EAs  

87"87"



Scaling Up EAs  

88"88"

Nature Computing

Detecting Interactions Between Variables

23

Definition

A function is separable, if it satisfies the Equation [9]:

Two decision variables i and j are interacting if there is a 
decision vector   whose ith and jth variable can be substituted 
with values xi′ and xj′ so that Equation holds.[10]
 

!arg! !"#
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Scaling Up EAs  
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No Free Lunch: The Learning Overhead

26

The Learning stage costs FEs and a trade-off between learning and 
evolution (optimization) needs to be set. 

Appropriate setting for learning cycle can deal with both separable 
functions and non-separable functions:

Termination Conditions for Learning Stage

•   If no interactions were learned after Kˇ cycles, we treat it as 
        separable function and thus the learning stage will terminate.

•   If any interaction has been learned before reaching the Kˇ 
        cycles, we treat it as a non-separable function. In this case,
        learning stage only stops if:

•   all N dimensions have been combined into one group
•   60% of FEs has been consumed in learning stage



Scaling Up EAs  

•  CEC2010 Test Suite: 20 minimization problems (1000-D) with 
different degree of separability 

•  Basic optimizer: JADE. 
 

•  The numbers of FEs were set to 3e+06 for all algorithms. 
 

•  Results of 25 independent runs were collected for each problem. 
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Experimental Results

28
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Scaling Up EAs  

Are Interactions between variables worthy of learning? 
•  Learning is itself a hard problem.  
•  Unlikely that all the interactions can be learned. 
•  Is partial interaction information still beneficial? 

A preliminary experiments: 
•  For a problem with D variables, interaction information can be 

represented as a binary string of length D2  
•  Tune the “portion” of prior grouping information.  
•  Would more prior grouping information lead to better 

performance? 
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Scaling Up EAs  

96"96"



Scaling Up EAs  
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Scaling Up EAs  

•  Additional Remarks 
–  Distributed/parallel structure is another way for scaling up 

EAs. These methods usually divide the population (into 
several sub-populations), rather than the problem. 

–  How to divide a problem is problem-dependent (especially 
for combinatorial optimization). 

–  Scaling up EAs in case of many objective functions or 
constraints is also attracting more and more investigations.     
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Outline 

•  Introduction 
 
•  Algorithm Configuration 

•  Constraints Handling 

•  Evolutionary Multi-Objective Optimization 

•  Scaling Up EAs 

•  Summary 
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Summary 

We revisited the most commonly encountered issues when using 
EAs (as a search method) in practice: 
 

•  How to determine the appropriate EC model, search operators 
and schemes for our specific task.  

 

•  How to handle constraints in the framework of EAs. 
 

•  How to deal with multi-objective optimization problems. 

•  How to improve the efficiency of EAs if we are unsatisfied with 
their performance on some large scale problems.     
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Summary 

Some important Topics that are not cover by this tutorial: 

•  Handling Uncertainty 
–  Robust optimization 

–  Dynamic optimization 

–  Robust optimization over time (ROOT) 

•  Integrating EAs with other search techniques 
–  EA+ local search (especially useful for combinatorial optimization) 

–  Memetic Algorithm 

–  Surrogate Assisted EA 
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Thanks for your time! 
Q&A? 
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