
Learning Environmental Calibration Actions for Policy Self-Evolution∗

Chao Zhang, Yang Yu, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

{zhangc,yuy,zhouzh}@lamda.nju.edu.cn

Abstract

Reinforcement learning in physical world is often
expensive. Simulators are commonly employed to
train policies. Due to the simulation error, trained-
in-simulator policies are hard to be directly de-
ployed in physical world. Therefore, how to ef-
ficiently reuse these policies to the real environ-
ment is a key issue. To address this issue, this
paper presents a policy self-evolution process: in
the target environment, the agent firstly executes
a few calibration actions to perceive the environ-
ment, and then reuses the previous policies accord-
ing to the observation of the environment. In this
way, the mission of policy learning in the target
environment is reduced to the task of environment
identification through executing the calibration ac-
tions, which needs much less samples than learn-
ing a policy from scratch. We propose the POSEC
(POlicy Self-Evolution by Calibration) approach,
which learns the most informative calibration ac-
tions for policy self-evolution. Taking three robotic
arm controlling tasks as the test beds, we show that
the proposed method can learn a fine policy for a
new arm with only a few (e.g. five) samples of the
target environment.

1 Introduction
Reinforcement learning aims at continually improving the
decision-making ability of an agent through autonomous
trial-and-errors interactions with the environment [Sutton and
Barto, 1998]. Recently, reinforcement learning has shown
significant progress in applications [Silver et al., 2016; Mnih
et al., 2015]. However, the state-of-the-art reinforcement
learning algorithms would still require a lot of environment
samples (e.g., millions) in order to learn a good policy [Silver
et al., 2016]. Such high sample amount requirement blocks
reinforcement learning approaches from many applications in

∗This work is supported by National Key R&D Program of China
(2018YFB1004300), Jiangsu SF (BK20170013), and Collaborative
Innovation Center of Novel Software Technology and Industrializa-
tion. Yang Yu is the corresponding author.

physical world, where every environment sample can be ex-
pensive. For examples, a trial of physical robot experiment
commonly takes time from minutes to hours, a trial of stock
investment additionally takes money, and a trial of medical
treatment can even cost life.

To alleviate the high training cost of reinforcement learn-
ing in physical world, simulators are commonly employed.
Besides commercial simulators for special applications, there
have been developed open-source simulators such as in the
OpenAI Gym [Brockman et al., 2016], which have signifi-
cantly facilitated the recent advances of reinforcement learn-
ing research. However, as a compromise on the cheap sam-
ples, simulators always have simulation errors. Policies
trained in a simulator can behave quite differently in the real
environment, particularly when the agent takes many steps
such that the simulator error accumulates. Therefore, how
to rapidly adapt trained-in-simulator policies to the real envi-
ronment is a key issue for applying reinforcement learning in
physical world applications.

Studies on transfer reinforcement learning aims at solving
the policy adaptation problem across environments [Mehta et
al., 2008]. Transfer reinforcement learning approaches try to
reuse the experience from similar tasks, so that a good pol-
icy for a new environment can be obtained with a small cost.
These approaches can be roughly categorized according to
the type of the experience they reuse. Sample-based trans-
fer approaches transfer the source task samples to the target
task. While transferring samples directly is often prone to
negative transfer [Lazaric et al., 2008], representations and
model parameters could be more consistent across domains.
Thus a bunch of studies focused on representation transfer
and parameter transfer, which generally learn some higher-
level characteristics from a set of source tasks and reuse the
characteristics during the learning on target tasks. Different
transfer reinforcement learning approaches also assume dif-
ferent situations. While, in this work, we focus on adapting
trained-in-simulator policies to the real environment, where
the simulators have been designed to have the same goal, state
space and action spaces with the real environment.

The design of the simulator usually allows a trained-in-
simulator policy to be directly executable in the real envi-
ronment. But the policy may have insufficient performance
due to the inaccuracy of the simulated dynamics. If the agent
can perceive its environment and adjust the policy according

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3061

new environment regression

...

calibration

action 2

action 3

action 4

action 5

(s(2)1 , s(2)2 , s(2)3)

(s(3)1 , s(3)2 , s(3)3)

(s(4)1 , s(4)2 , s(4)3)

(s(5)1 , s(5)2 , s(5)3)

(s
1,
s 2
,.
..
,s

15
)

wN 1

w2

w1 ×

×

×

base policiescombination
weights

aggregated
observations

action 1

(s(1)1 , s(1)2 , s(1)3)

observations

policy to run

policy generation

policy execution

+=

Figure 1: Illustration of policy self-evolution of POSEC using calibration actions. In a new environment, the agent executes the calibration
actions to collect observations about the environment, predicts the combination weights of base polices, and obtains the final policy to run in
the environment.

to the perceived environment information, we could obtain a
good performance policy immediately in the target environ-
ment instead of re-training the policy. This observation leads
to our idea that, when the agent is deployed in the target en-
vironment, it first performs a few calibration actions for per-
ceiving the environment, and then derives a self-evolved pol-
icy from a set of pre-trained policies. In this way, the policy
learning mission for the target environment is reduced to the
environment identification task through executing the calibra-
tion actions, which may need much less environment samples
than learning a policy from scratch. Recently, [Zhou, 2016]
proposed the new concept of learnware, with properties of
reusability, evolvability and comprehensibility. The evolv-
ability emphasizes the self-evolution ability of a pre-trained
model to get accustomed to new environments, for which the
pre-trained model should be able to perceive the environment
changes and then adapt itself to the new environments. It is
evident that the study reported in this paper can be viewed as
an effort towards this direction.

In this paper, we propose the POSEC (POlicy Self-
Evolution by Calibration) approach to implement this idea. In
a new environment, or whenever the policy outcome is found
unexpected, the agent can run the self-evolution process illus-
trated in Figure 1. First, it executes a few calibration actions.
From the observations after the actions, a policy is obtained
through combining the pre-trained base policies. This policy
is the self-evolved policy that is to run in the environment. By
POSEC, only a few samples from the target environment are
needed to obtain a fine policy. In order to realize this cali-
bration process, the calibration actions, the regression model,
and the base policies need to be pre-trained. The training of
these components are in the off-line stage with the assistant
of a parameterized simulator, and is consists of three steps: in
the first step, a set of simulated tasks are drawn with the help
of the randomized simulator, and base policies are obtained
by a heavy learning in each of the task, which is doable due to
the cheap cost of training in the simulator; in the second step,
a new batch of simulated tasks is drawn, in each of which

the best combination of the base policies is calculated; in the
third stage, POSEC searches for the best calibration actions,
of which the observed outcome lead to the best prediction of
the solved combination weights.

We apply POSEC to three robotic arm controlling tasks. A
simulator of an arm with configurable lengths is employed,
and the observed outcome of calibration actions is the end
effector position of the arm. POSEC is then asked to control
new arms with randomly assigned arm lengths. Experiment
results show that POSEC can lead to a high reward policy
with only a few (1, 5 and 10) calibration actions, which can be
even better than reinforcement learning training from scratch
using a million samples.

The rest of this paper starts from introducing the related
work, then the proposed approach, the experiment results, and
the conclusion are in the sections followed.

2 Background
2.1 Reinforcement Learning
Reinforcement learning enables an agent to autonomously
discover the optimal policy through autonomous trial-and-
error interactions with its environment [Sutton and Barto,
1998]. It is commonly studied through Markov Decision Pro-
cess (MDP). An MDP consists of state space S, action space
A, reward function R(s,a), transition function P (s′|s, a), and
discounted factor γ. The goal of reinforcement learning is to
find an optimal policy π∗ : S × A → R that maps states to
distribution of actions so as to maximize the total reward. In
the discounted setting, the expected value of discounted total
rewards Jπ starting from an initial state s0 is:

J(π) = Es0,a0,...[
∑∞

t=0
γtr(st)],

where at ∼ π(·|st) and st+1 ∼ P (·|st, at). Consider the
horizon of T steps , this expression can be rewritten as the
expectation over all trajectories of length T , as

J(π) =

∫
T
Pπ(τ)R(τ)dτ,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3062

where τ is a trajectory in the trajectory space T , Pπ(τ) is
the probability that executing the policy π will generate the
trajectory τ , and R(τ) is the return of τ . We will rely more
on the trajectory-wise form of the expected total reward.

Classical reinforcement learning approaches solve the best
policy π that maximizes the expected total reward J(π). Ac-
cording to whether the MDP will be estimated, reinforcement
learning approaches can be categorized as model-based ap-
proaches [Deisenroth and Rasmussen, 2011; Brafman and
Tennenholtz, 2002; Jong and Stone, 2007] and model-free
approaches [Watkins and Dayan, 1992; Strehl et al., 2006;
Sutton et al., 2000]. In this work, we consider model-free
reinforcement learning. According to whether the policy is
directed learned, the approaches can be categorized as value-
based approaches [Watkins and Dayan, 1992; Ratitch and
Precup, 2004] and policy search approaches [Sutton et al.,
2000]. This work builds on top of reinforcement learning ap-
proaches, and both categories can be employed.

Classical reinforcement learning approaches train and use
the policy in the same environment. However, the environ-
ment often changes in applications. For example, the policy
for controlling a robotic arm could be trained in a simulator
with some simulation error. More commonly, an aged robotic
arm changes its dynamics. Thus, a robust policy should has
the ability of adapting to its environment.

2.2 Transfer Reinforcement Learning
Transfer learning reuses the experiences gained from previ-
ous tasks to help the learning in the target task [Pan et al.,
2011]. For reinforcement learning, reuse of the experience
can reduce the sample requirement to the new environments.

According to the type of experience that the target task re-
ceives from the source task, transfer reinforcement learning
approaches can be roughly divided into sample transfer, rep-
resentation transfer and parameter transfer. Sample transfer
algorithms mainly reuse the samples from the source tasks
in the target task. Direct reusing the samples from different
tasks has a large risk of negative transfer, and thus the sam-
ples need to be carefully handled. Representation and model
parameters can better reflect the similarity among tasks in our
setting, which is conducive to generalization.

Parameter transfer methods often explicitly define a dis-
tribution on the task space and try to learn and adapt policy
parameters in order reduce the number of samples required
to solve the target task. For examples, [Finn et al., 2017]
proposes to train a common model, such that the model has
the maximal performance over all tasks while can be fast
adapted to a specific task through task-specific gradient up-
dates. [Peng et al., 2017] proposed dynamic randomization
of the simulator to train the robot to adapt to the dynamic
changes of the object position in the physical world task, by
introducing LSTM to extract environment latent variables and
adjust its behavior accordingly. Comparing with to the above
studies, this work proposes to explicitly learn calibration ac-
tions for environment probing, which requires much fewer
environment steps compared with [Finn et al., 2017] and the
learned actions can be more informative compared with [Peng
et al., 2017]. [Pan et al., 2011].

2.3 Derivative-Free Optimization
Derivative-free optimization methods solve an optimization
task argminx f(x) by utilizing only the information of the
function values of f on sampled solutions. They perform the
optimization in a trial-and-error way that commonly consists
of a sampling step generating samples of x from some ex-
perience model, and a learning step updating the experience
model from the samples. Different derivative-free optimiza-
tion methods mainly differ in the design of the model and the
sampling approach. Representative methods include heuristic
approaches such as simulated annealing [Kirkpatrick et al.,
1983], CMA-ES [Hansen and Ostermeier, 2001], and more
recently theoretical-grounded approaches such as Bayesian
optimization [Shahriari et al., 2016], optimistic optimiza-
tion [Munos, 2014], and RACOS [Yu et al., 2016; Hu et al.,
2017].

Since derivative-free optimization methods rely only the
function values but not the gradient of the function, these
methods can be applied in a wide range of optimization prob-
lems, including non-differentiable and non-convex functions.
This work involves a task of optimizing the calibration ac-
tions with the target that the resulting performance is maxi-
mized. This optimization is non-differentiable, thus we will
employ the derivative-free method to solve the optimization.

3 The Proposed Method
As illustrated in Figure 1, the self-evolution process of
POSEC needs the base policies, the regression model and the
calibration actions. These are obtained in the off-line training
stage consisted of three parts: training the base policies, opti-
mizing the combination weights, and learning the calibration
actions and the regression model.

To support the learning of a set of diverse base policies, we
need to generate a range of environments. Therefore, we as-
sume that the simulator is parameterized, and we can sample
environments from a distribution over the simulator parame-
ters. A key assumption is, therefore, that the latent parameter
of the target environment is covered by the distribution. We
assume that the target environment can be realized by some
(unknown) parameter of the simulator.

3.1 Training Base Policies
We sample a set of environments by configuring the sim-
ulator with a randomly sampled parameter. Each environ-
ment corresponds to an MDP. We collect M1 environments,
{MDP1,MDP2, . . . ,MDPM1}. Any off-the-shelf policy
search algorithm can then be employed to train policies, each
for an MDP. As the result, M1 policies {π1, π2, . . . , πM1

}
have been obtained. These policies will serve as the base poli-
cies, and any further policy will be a combination of the base
policies with respect to a combination weight vector w,

πw(a|s) =
∑M1

t=1

wt∑M1

t=1 wt
πt(a|s).

Here, we only consider a linear combination of the base poli-
cies. While a nonlinear combination is also feasible, the lin-
ear combination needs less samples to be estimated and may
be more robust.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3063

3.2 Optimizing Combination Weights
We then draw another set of M2 environments
{MDP′1,MDP′2, . . . ,MDP′M2

}, and solve the combina-
tion weights of the base policies on each environment. For
the i-th environment, the expected return JMDP ′i

(·) is:

JMDP ′i
(w) =

∫
τ

Pπw(τ)R(τ)dτ,

where Pπw(τ) is the distribution about the combination poli-
cies πw over the trajectory τ = (s0, a0, s1, a1, ...).

We try to maximize the expected return to get the optimal
combination weights w∗ of the policy πw on this environ-
ment:

w∗i = argmax
w

JMDP ′i
(w).

The optimization of w can be either by gradient ascent
methods since the objective is differentiable, or by derivative-
free methods that solve the weights directly.

3.3 Optimizing Calibration Actions
After the above two steps, we have obtained a set
of base policies D = {π1, π2, . . . , πM1}, and the
combination weights w∗i for each of the environments
{MDP′1,MDP′2, . . . ,MDP′M2

}. We are then to find the re-
gression model and the calibration actions.

Given any fixed sequence of calibration actions A (initial-
ized randomly), an agent executes the actions in its environ-
ment, and the outcome states after executing each of the ac-
tion are concatenated as the feature vector of the environment,
denoted as F (MDP, A) where MDP is the environment and
A is the calibration actions.

When the environment feature vector is available, we
train a regression model to predict the optimal combination
weights from the feature vector. Because we learn from small
samples of combination weights, we use linear models to pre-
dict them. For the given actions A and all the M2 environ-
ments, consider the optimal linear regression as

θ∗ = argmin
θ

M2∑
i=1

‖w∗i − θTF (MDP′i, A)‖2, (1)

where F (MDP′i, A) denotes the feature vector constructed
from the states in MDP′i after executing every action in A.
Using this regression model with the actions A, for any envi-
ronment MDP, we now can obtain the combination weights
θ∗>F (MDP, A) of the base policies. The combined policy is
denoted as πθ∗>F (MDP,A).

Note that the calibration actions A has not been opti-
mized yet. The objective for solving A is that A can max-
imize the total reward of the combined policy on environ-
ments. To avoid overfitting, We again draw M3 environ-
ments, {MDP′′1 ,MDP′′2 , . . . ,MDP′′M3

}, for solving A. The
total reward summed over these M3 environments is used for
the objective function. Thus the optimal calibration actions
are obtained by solving

A∗ = argmax
A

M3∑
i=1

∫
Pπ

θ∗>F (MDP′′
i
,A)

(τ)R(τ)dτ (2)

Algorithm 1 POSEC Training Process

Input:
{MDPi}M1

i=1: the first batch of M1 environments;
{MDP′i}

M2
i=1: the second batch of M2 environments;

{MDP′′i }
M3
i=1: the third batch of M3 environments;

Lrl: A policy search algorithm;
Lopt−w: Optimization algorithm for combination
weights w;
Lopt−A: Optimization algorithm for calibration actions;
Lreg: Optimization algorithm for regression coefficient;
I: Number of iterations.

Output:
A∗: A sequence of the optimized calibration actions;
θ∗: A regression model.

1: ∀i = 1, 2, . . . ,M1 : πi ← the policy by running Lrl on
environment MDPi with I iterations.

2: ∀i = 1, 2, . . . ,M2 : w∗i ← the weights by running
Lopt−w on environment MDP′i.

3: Solve the calibration actions A∗ by Lopt−A and the re-
gression model θ∗ by Lreg from the objective function

(A∗, θ∗) = argmax
(A,θ)

M3∑
i=1

∫
Pπ

θ>F (MDP′′
i
,A)

(τ)R(τ)dτ

4: return A∗, θ∗

Algorithm 2 POSEC Calibration Process

Input:
MDP: A new test environment.

Output:
πself-evolved: The combination of the base policies.

1: F (MDP, A∗) ← the feature vector of the environment
build from the states after every action in A∗.

2: w∗ ← the optimal weights predicted by the regression
model θ∗ from the features F (MDP, A∗)

3: return πself-evolved(a|s) =
∑M1

t=1 w
∗
t πt(a|s)

It is clear now that we can evaluate the objective function
given the calibration actions. But the actions may be too
complex to solve by gradient ascent. We thus employ the
derivative-free optimization algorithm to solve the problem.
The derivative-free optimization algorithm uses a trial-and-
error process. It samples different actions to try; learns from
the objective value of the actions for sampling better actions.

In the general case, the training process of the full algo-
rithm is outlined in Algorithm 1, and the calibration process
in Algorithm 2.

4 Experiments
We empirically evaluate POSEC, particularly, answering the
following questions:

• Q1: Can the learned calibration actions effectively ex-
tract features for the environment, and be better than
random actions? Is the number of the calibration actions
effect the performance?

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3064

• Q2: How do the calibration actions act?

• Q3: Can the self-evolved policy serve as a better initial
policy for environment specific-refinement?

4.1 Experiment Settings
We employ three robotic arm controlling tasks that use Mu-
joco physics simulator from OpenAI Gym (https://gym.
openai.com). These three tasks are respectively called
Pusher, Striker and Thrower, that all their arms have 7 de-
gree of freedom (DOF) and are illustrated in Figure 2. Each
of these three tasks has 23 dimensional state space and 7 di-
mensional action space. Specifically, the 23 dimensional state
space consists of the angles and velocities for each of the joint
of the robotic arms, the position and velocity of the end effec-
tor, and the position of the object being manipulated. The 7
dimensional action space refers to torques of the 7-DoF mo-
tor joints. Details of each task are listed below, where d()
denotes the euclidean distance.

• Pusher. The robotic arm pushes a cylinder onto a
coaster. Given the end-effector position w, the object
being manipulated position m, the goal position q, and
the action a. The reward function is

R(s, a) = −d(m, q)− 0.5d(m,w)− 0.1aTa.

• Striker. The robotic arm hits a ball to a target. Given
the end-effector position w, the object being manipu-
lated position m, the goal position q, and the action a.
The reward function is

R(s, a) = −3d(m, q)− 0.5d(m,w)− 0.1aTa.

• Thrower. The robotic arm throws a ball into a box.
Given the ball hitting the ground position z, the goal po-
sition q, and the action a. The reward function is

R(s, a) = −d(z, q)− 0.002aTa.

(a) Pusher (b) Striker (c) Thrower

Figure 2: Experimental tasks, Pusher, Striker and Thrower. We
change the length of the robotic arm of these tasks to get different
environments.

For each task, we randomly change the robotic arm length
parameters to generate M1 = 100 different environments
(while the more the better), and then training base poli-
cies for these different environments using TRPO [Schul-
man et al., 2015], one of the best methods for the con-
trolling tasks [Duan et al., 2016]. For the randomization,
variables r forearm link and r wrist flex link
are sampled from [0.1, 0.5], r upper arm link and
r elbow flex link are sampled from [0.2, 0.6], indepen-
dently and uniformly at random. For each environment of

each task, a base policy is trained, and all these 100 policies
are represented as neural networks with the same structure
(two hidden layers with 64 nodes). In the TRPO training pro-
cess, we set the discount factor γ to be 0.99 and the number of
iteration to be 250. It needs to be noted that the discount fac-
tor will not affect the results, as it is part of the environment,
but not the algorithm parameter.

We then generateM2 = 20 different environments for each
task. The derivative-free optimization method SRACOS [Hu
et al., 2017] is employed to solve the combination weights
according to Eq.(1). We use the algorithm implementation
from https://github.com/eyounx/ZOOpt, with the
sample budget 250. Finally, we generate M3 = 20 environ-
ments to evaluate the regression model and the calibration
actions. We use SRACOS again to optimize the calibration
actions according to Eq.(2). The experiment codes are at
https://github.com/eyounx/POSEC.

4.2 Experiment Results
We address each of the three questions.

Q1) In order to investigate the effectiveness of the opti-
mized calibration actions, we compare the mean reward on
a new batch of test environments. We run POSEC with 1,
5, and 10 calibration actions, and compare with POSEC us-
ing 1 random action. We also compare POSEC with the
LSTM approach [Peng et al., 2017] that is trained over the
M1 + M2 + M3 environments. The learning from scratch
method is also included as a reference, which is by training
the TRPO with 250 iterations (i.e., 2.5 million samples).

The results are shown in Figure 3. It can be observed that,
first, comparing POSEC with different number of calibration
actions, more actions lead to better performance consistently
in the three tasks. Meanwhile, more calibration actions result
in more environmental samples. Thus, the number should be
determined in applications. Second, comparing POSEC with
1 calibration action and POSEC with 1 random action, it is
clear that random action leads to much worse performance,
due to its non-informative outcome. Third, comparing with
the LSTM method, on Pusher and Striker methods, POSEC
with 1 calibration action has already been superior, and on
Thrower, 5 calibration actions is superior. Finally, on Pusher
and Striker, POSEC with 1 calibration action (thus 1 environ-
mental sample) is better than TRPO using 250 million sam-
ples. On thrower, it is better than TRPO using 50 million
samples. This indicates that POSEC can have a strong per-
formance with only a few environment samples.

Q2) We have recorded a demo showing how the calibra-
tion actions act. It can be watched at https://github.
com/eyounx/POSEC/raw/master/POSEC.m4v. We
also observe that the learned calibration actions are quite sta-
ble across repetitions of our experiments, leading to very
small variance. Three repetitions can also been observed in
the video.

Q3) We investigate further refinement training using TRPO
on each of the task, with the POSEC policy (5 calibration ac-
tions) as the initial policy. The results are shown in Figure 4.
We can observe that POSEC initial policies consistently lead
to the best performance in the three tasks. The LSTM method
is also effective, comparing with reinforcement learning from

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3065

Number of iterations of TRPO

-100

-80

-60

-40

TRPO
POSEC w/1 random action
POSEC w/1 calibration action
POSEC w/5 calibration actions
POSEC w/10 calibration actions
TRPO+LSTM

0 50 100 150 200 250

M
ea

n
re

w
ar

d

(a) Pusher

Number of iterations of TRPO

-350

-300

-250

-200

-150

0 50 100 150 200 250

M
ea

n
re

w
ar

d

(b) Striker

Number of iterations of TRPO

-100

-80

-60

-40

-20

0 50 100 150 200 250

M
ea

n
re

w
ar

d

(c) Thrower

Figure 3: The performance comparisons of POSEC with different
actions, LSTM approach, and TRPO trained from scratch.

scratch. This enables the online training of the policy in ap-
plications in order to further improve the performance.

5 Conclusion
In this paper, we propose the POSEC (POlicy Self-Evolution
by Calibration) approach for fast policy self-evolution to fit
new environments. POSEC runs calibration actions in the
new environment, observes the outcome of the actions as
the features of the environments, and reuses the base poli-
cies to form the self-evolved policy. Experiments on three
robotic arm controlling tasks show that POSEC can effec-
tively make the agent understand the environment through
the calibration actions, resulting in self-evolved policy with
good performance. Note that in this process, the robotic arm
in the new environment needs only execute a few (e.g. 5) ac-
tions, comparing with millions of samples required by rein-

0 50 100 150 200 250
Number of iterations of TRPO

-150

-100

-50

0

M
ea

n
re

w
ar

d

TRPO
TRPO following POSEC
TRPO following TRPO+LSTM

(a) Pusher

0 50 100 150 200 250
Number of iterations of TRPO

-400

-300

-200

-100

0

M
ea

n
re

w
ar

d
(b) Striker

0 50 100 150 200 250
Number of iterations of TRPO

-150

-100

-50

0
M

ea
n

re
w

ar
d

(c) Thrower

Figure 4: Comparison of refinement training from different initial
policies.

forcement learning approaches from scratch. Meanwhile, the
performance of the policies evolved by POSEC are strongly
competitive with baselines, including the policy learned from
scratch and the policy trained using LSTM for environment
adaptation. We hope this technique, as an effort towards
the learnware, would be helpful to learn policies in real-
world expensive-to-train tasks. Meanwhile, the policy self-
evolution under more general situations, such as the environ-
ments with different state and/or action spaces, is the focus of
our next research.

References
[Brafman and Tennenholtz, 2002] Ronen I. Brafman and

Moshe Tennenholtz. R-MAX – A general polynomial time
algorithm for near-optimal reinforcement learning. Jour-
nal of Machine Learning Research, 3:213–231, 2002.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3066

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym.
arXiv:1606.01540, 2016.

[Deisenroth and Rasmussen, 2011] Marc Deisenroth and
Carl E. Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In Proceedings of
the 28th International Conference on Machine Learning,
pages 465–472, Bellevue, WA, 2011.

[Duan et al., 2016] Yan Duan, Xi Chen, Rein Houthooft,
John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In Pro-
ceedings of the 33rd International Conference on Machine
Learning, pages 1329–1338, New York, NY, 2016.

[Finn et al., 2017] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International
Conference on Machine Learning, pages 1126–1135, Syd-
ney, Australia, 2017.

[Hansen and Ostermeier, 2001] Nikolaus Hansen and An-
dreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary compu-
tation, 9(2):159–195, 2001.

[Hu et al., 2017] Yi-Qi Hu, Hong Qian, and Yang Yu. Se-
quential classification-based optimization for direct pol-
icy search. In Proceedings of the 31st Association for the
Advancement of Artificial Intelligence, pages 2029–2035,
San Francisco, CA, 2017.

[Jong and Stone, 2007] Nicholas K. Jong and Peter Stone.
Model-based exploration in continuous state spaces. In
Proceedings of the 7th International Symposium on Ab-
straction, Reformulation, and Approximation, pages 258–
272, Berlin,Germany, 2007.

[Kirkpatrick et al., 1983] Scott Kirkpatrick, Daniel Gelatt,
and Mario P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983.

[Lazaric et al., 2008] Alessandro Lazaric, Marcello Restelli,
and Andrea Bonarini. Transfer of samples in batch rein-
forcement learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, pages 544–551,
Helsinki, Finland, 2008.

[Mehta et al., 2008] Neville Mehta, Sriraam Natarajan,
Prasad Tadepalli, and Alan Fern. Transfer in variable-
reward hierarchical reinforcement learning. Machine
Learning, 73(3):289–312, 2008.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, and Georg Ostrovski. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Munos, 2014] Rémi Munos. From bandits to Monte-Carlo
tree search: The optimistic principle applied to optimiza-
tion and planning. Foundations and Trends in Machine
Learning, 7(1):1–130, 2014.

[Pan et al., 2011] Sinno Jialin Pan, Ivor W. Tsang, James T.
Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Net-
works, 22(2):199–210, 2011.

[Peng et al., 2017] Xue-Bin Peng, Marcin Andrychowicz,
Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real
transfer of robotic control with dynamics randomization.
arXiv:1710.06537, 2017.

[Ratitch and Precup, 2004] Bohdana Ratitch and Doina Pre-
cup. Sparse distributed memories for on-line value-based
reinforcement learning. In Proceedings of the 15th Euro-
pean Conference on Machine Learning, pages 347–358,
Pisa, Italy, 2004.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 33nd In-
ternational conference on Machine Learning, pages 1889–
1897, Lille, France, 2015.

[Shahriari et al., 2016] Bobak Shahriari, Kevin Swersky, Zi-
Yu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of Bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148–175, 2016.

[Silver et al., 2016] David Silver, Aja Huang, Chris J. Mad-
dison, Arthur Guez, Laurent Sifre, George A. Van Den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, and Marc Lanctot. Mastering the game
of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Strehl et al., 2006] Alexander L. Strehl, Li-Hong Li, Eric
Wiewiora, John Langford, and Michael L. Littman. PAC
model-free reinforcement learning. In Proceedings of
the 23rd International Conference on Machine Learning,
pages 881–888, Pittsburgh, PA, 2006.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Introduction to reinforcement learning. MIT Press
Cambridge, 1998.

[Sutton et al., 2000] Richard S. Sutton, David A.
McAllester, Satinder P. Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with
function approximation. In Proceedings of the 14th
Advances in Neural Information Processing Systems,
pages 1057–1063, Denver, CO, 2000.

[Watkins and Dayan, 1992] Chris Watkins and Peter Dayan.
Q-learning. Machine learning, 8(3-4):279–292, 1992.

[Yu et al., 2016] Yang Yu, Hong Qian, and Yi-Qi Hu.
Derivative-free optimization via classification. In Proceed-
ings of the 13th Association for the Advancement of Artifi-
cial Intelligence, pages 2286–2292, Phoenix, AZ, 2016.

[Zhou, 2016] Zhi-Hua Zhou. Learnware: On the future
of machine learning. Frontiers of Computer Science,
10(4):589–590, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3067

