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[Peng et al. 2018]: Implicitly Our idea: p
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_ Sample Mz different configurations of the environment
4 _ EXpe Il ments In every environment: train a policy heavily, as a base policy

Experimental task (State 23 dim, Action 7 dim) base policies set: {71, T2,..., T, |
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Taking the Pusher task as an example

Three policy learning methods In the new environment

Optimal weights: w; = arg max Jy;pps (w)

solved by a derivative-free optimization
method [vu et al., IUCAI'6; Hu et al., AAAI'7]

solved combination weights (W1, W2, Ws,..., Ww) of base policies
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