Learning Environmental Calibration Actions L AIVipA
for Policy Self-Evolution s

Chao Zhang, Yang Yu, Zhi-Hua Zhou emails: {zhangc, yuy, zhouzh}@lamda.nju.edu.cn
National Key Laboratory for Novel Software Technology, Nanjing University

1.Motivation 3.Proposed Method: POSEC

: “@ . Physical world N | | Framework
1 reinforcement learning _S'ml_“at'on error 1s Extraction of environmental features:
'-’t IS highly costly inevitable | 1. run some calibration actions

2. observe the environment states after each action
3. the observations are used as the features

Simulators are l With the environment features, aggregate previous policies
usually very helpful Previuosly: for the new env1r0nment

> * measure Inaccuracy
« physical world changes

AN
S

/ Simulate d po||cy B pollcygeneratlon
+ manual adUStment - combination base policies |
J _: 13 wetz:ilght; ° Djl
. . | @ction Dbsewatlmns wi X _
Can the policy be self-evolvable to adapt to its | AR %
- " e J
enVITOnment? new environment aﬂmi | | ° "Et regression policy to run | leIC}f execution
o (s S1P S ﬂf‘
m- B g %-
2.Idea - B 25
- . action 4 ':'I
Learn a meta-policy over environments - A ,:' oy, % 3
]] action5 |} i Ly
1. collect a set of previous environments Hssume: 4 -(-“ |
2. assoclate pol!c:les with eNVIroNMenNts g, e state and action spaces,
3. learn a mapping from environment but different transitions
features to policy parameters need to solve ™ !
such policy Is generalizable to new environments calibration regression base
In a new environment: map the environmental features to the policy actions model policies
But’ hOW to Obtain the envirOnmentaI features? I 1 t t. ..
. - . mpiementation
[Peng et al. 2018]: Implicitly Our idea: p
learned in the LSTM policy explicitly extract features by Assume a configurable simulator is available
model probing the environment to generate environments
... base po“cies

_ Sample Mz different configurations of the environment
4 _ EXpe Il ments In every environment: train a policy heavily, as a base policy

Experimental task (State 23 dim, Action 7 dim) base policies set: {71, T2,..., T, |

Robotic arm Controlling to aCCOmpliSh tasks: | [combination We|ghts ...
» Pusher: pushes a cylinder onto a coaster . Task generation: linear combination policy: =, (als) = Zt 1 L m(als)
w
variables r_forearm_link and Zt L
 Striker: hits a ball to a target][_er?é_ilegél]nk are sampled Draw another set of M2 different configurations of the environment
rom |U.1, U.9o|, i . . .
| * upper_arm link and In each environment: the reward objective function about 7w (als)
* Thrower: throws a ball into a box r_elbow flex_link are sampled
from [0.2, 0.6], independently Jupp(w) = / P (T)R(7)dT
and uniformly at random. T

Taking the Pusher task as an example

Three policy learning methods In the new environment

Optimal weights: w; = arg max Jy;pps (w)

solved by a derivative-free optimization
method [vu et al., IUCAI'6; Hu et al., AAAI'7]

solved combination weights (W1, W2, Ws,..., Ww) of base policies

Experlmented algorithms
1. The policy trained directly from scratch |
2 The po |Cy tralnec us|ng LSTM for envwonment adaptatlon ... regreSS|On mOdeI crrrrrree————— \\ ...
3. The policy evolved by POSEC
H In each of the M2 environment:
e S - e - . \
Comparisons of T = run the calibration ;
performance in T Fo s w0 we wo 0 actions A
new environments 3 s :
(TRPO+LSTM c 201 N (assume glven) /,/
need to be trained = % rosEommammion || g | _ o
online) - POSEG it allston acton e | the environmental features combination weights
100 | | TRPO+LSTM = a0 | ‘ ‘
0 50 100 150 200 250
Number of iterations of TRPO T mberof erstona ol PO instance M regression model W |abel
(3.) Pusher (¢) Thrower
0 . . . w 0 | | | . . .
Comparison Of o — DH00L]| T Callbratlon actlons ...
refi nement o . - o g-zoo b e A R i A] . .
training from S Draw the final set of M3 configurations {MDP,, ..., MDP .}
@ 28000 T] . . .
different initial c , -l - For every environment, and calibration actions A:
OI'CleS % 100/ ’/ | ’ ?\(l)um er100?teratio1n5300 TFH300 = . . .
P s environment predicted combination combined policy:
_IEESI foning TRPOALSTH — : T
150 J . e features: F(MDP, A) weights: §*° F(MDP,A) 7g«TF(MDP,A)
0 50 100 150 200 250 8 '
Number of iterations of TRPO g Opt|ma| aCtionS-
(a) Pusher =700
d b -I: d . demo -1500 ?\Ioumber:)??teratioLioofTR§?)O =0 A* — arg ma’X Z / G*TF (MDP” A) ()R(T)dT SOlved by the derlvatlve-
source codes can be found at: (© Thrower free optimization again

https://github.com/eyounx/POSEC video:

