
Learning Environmental Calibration Actions
for Policy Self-Evolution

1.Motivation

4.Experiments

3.Proposed Method: POSEC

Chao Zhang, Yang Yu, Zhi-Hua Zhou emails: {zhangc, yuy, zhouzh}@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University

• Pusher: pushes a cylinder onto a coaster

• Striker: hits a ball to a target

• Thrower: throws a ball into a box

Experimental task (State 23 dim, Action 7 dim)

Physical world

reinforcement learning

is highly costly

Simulation error is

inevitable
• measure inaccuracy

• physical world changes

Simulators are

usually very helpful Previuosly:

simulated policy

+ manual adjustment

Can the policy be self-evolvable to adapt to its
environment?

2.Idea

Learn a meta-policy over environments

1. collect a set of previous environments

2. associate policies with environments

3. learn a mapping from environment

features to policy parameters

In a new environment: map the environmental features to the policy

But, how to obtain the environmental features?

such policy is generalizable to new environments

[Peng et al. 2018]: Implicitly

learned in the LSTM policy

model

Our idea:

explicitly extract features by

probing the environment

assume:

same state and action spaces,

but different transitions

Extraction of environmental features:

Sample M1 different configurations of the environment

base policies set:

Draw another set of M2 different configurations of the environment

In each environment: the reward objective function about

solved by a derivative-free optimization

method [Yu et al., IJCAI’16; Hu et al., AAAI’17]

solved combination weights (W1, W2, W3,…, WM1) of base policies

calibration actions

Draw the final set of M3 configurations {MDP1, …, MDPM3}

Experimented algorithms

1. The policy trained directly from scratch

2. The policy trained using LSTM for environment adaptation

3. The policy evolved by POSEC

Three policy learning methods in the new environment

Comparisons of

performance in

new environments

(TRPO+LSTM

need to be trained

online)

source codes can be found at:

https://github.com/eyounx/POSEC

Framework

Comparison of

refinement

training from

different initial

policies.

Implementation

variables r_forearm_link and

r_wrist_flex_link are sampled

from [0.1, 0.5],

r_upper_arm_link and

r_elbow_flex_link are sampled

from [0.2, 0.6], independently

and uniformly at random.

…

Taking the Pusher task as an example

1. run some calibration actions

2. observe the environment states after each action

3. the observations are used as the features

In every environment: train a policy heavily, as a base policy

In each of the M2 environment:

the environmental features

regression modelinstance label

With the environment features, aggregate previous policies
for the new environment

need to solve

calibration

actions

regression

model

base

policies

Assume a configurable simulator is available

to generate environments

linear combination policy:

Optimal weights:

run the calibration

actions A

(assume given)

combination weights

Optimal actions:

regression model

combination weights

base policies

environment

features:

For every environment, and calibration actions A:

predicted combination

weights:

solved by the derivative-

free optimization again

combined policy:

Robotic arm controlling to accomplish tasks:

Task generation:

demo

video:

