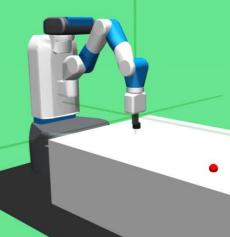
Learning Environmental Calibration Actions for Policy Self-Evolution

Chao Zhang, Yang Yu, Zhi-Hua Zhou emails: {zhangc, yuy, zhouzh}@lamda.nju.edu.cn National Key Laboratory for Novel Software Technology, Nanjing University

1. Motivation

Physical world reinforcement learning is highly costly



Simulators are usually very helpful

Simulation error is inevitable

- measure inaccuracy
- physical world changes

Previuosly: simulated policy + manual adjustment

Can the policy be self-evolvable to adapt to its

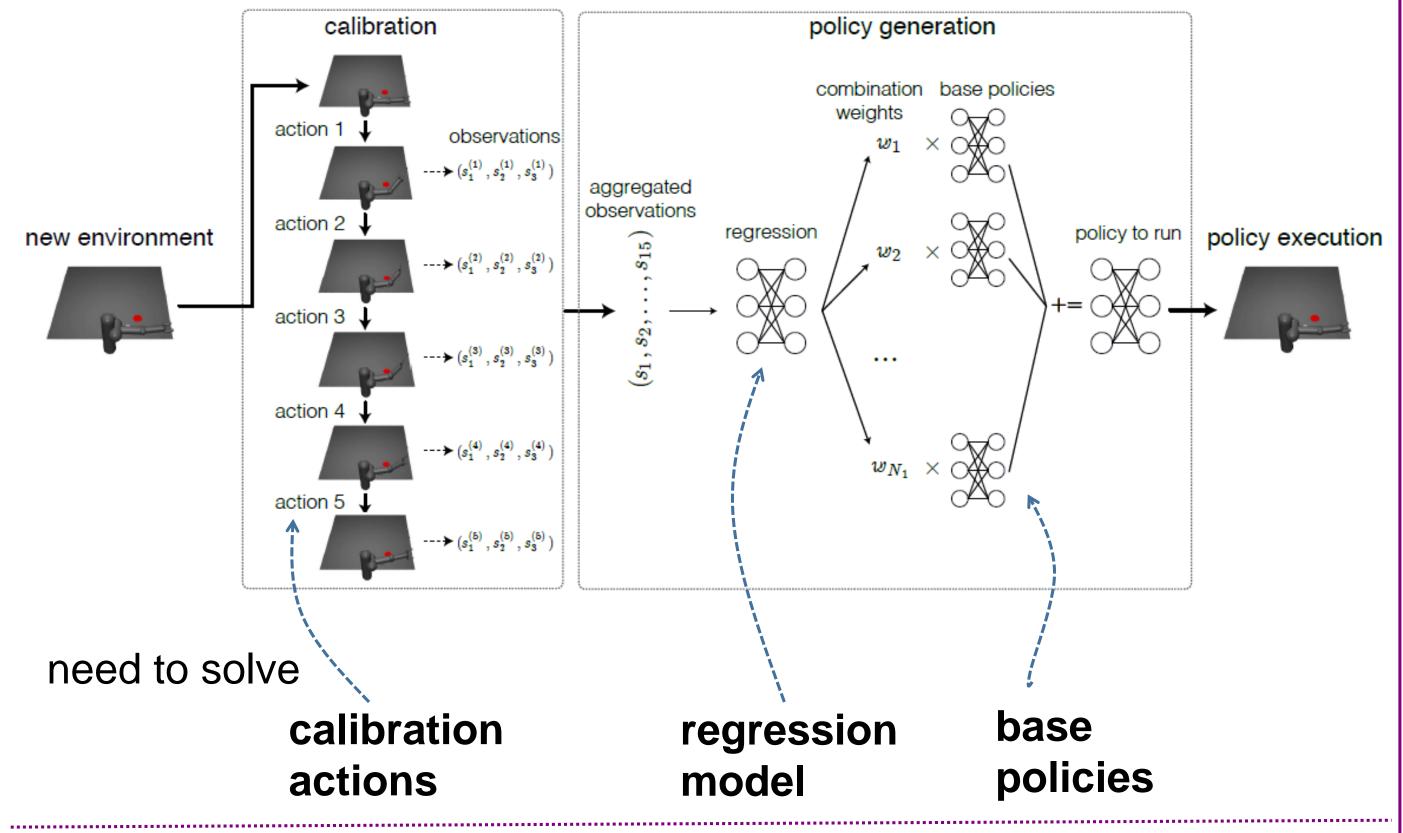
3. Proposed Method: POSEC

Framework

Extraction of environmental features:

- 1. run some calibration actions
- 2. observe the environment states after each action
- 3. the observations are used as the features

With the environment features, aggregate previous policies for the new environment



environment?

2.Idea

Learn a meta-policy over environments

- 1. collect a set of previous environments assume:
- 2. associate policies with environments
- same state and action spaces, 3. learn a mapping from environment but different transitions features to policy parameters such policy is generalizable to new environments

In a new environment: map the environmental features to the policy

But, how to obtain the environmental features?

[Peng et al. 2018]: Implicitly learned in the LSTM policy model

Our idea: explicitly extract features by probing the environment

4.Experiments

Experimental task (State 23 dim, Action 7 dim)

Robotic arm controlling to accomplish tasks:

Implementation

Assume a configurable simulator is available to generate environments

base policies ...

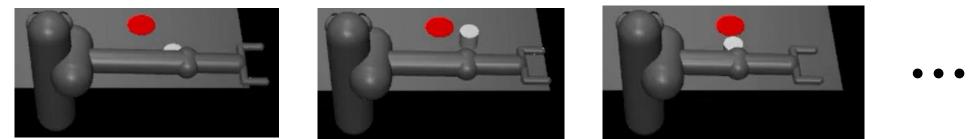
Sample *M*¹ different configurations of the environment In every environment: train a policy heavily, as a base policy

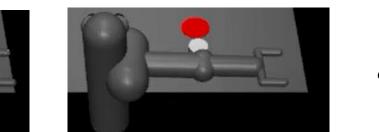
base policies set: $\{\pi_1, \pi_2, ..., \pi_{M_1}\}$

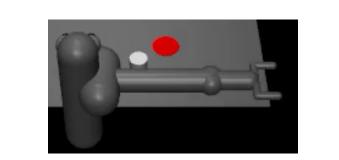
combination weights

- Pusher: pushes a cylinder onto a coaster
- Striker: hits a ball to a target
- Thrower: throws a ball into a box

Taking the Pusher task as an example







Task generation:

variables r_forearm_link and

r_wrist_flex_link are sampled

r_elbow_flex_link are sampled

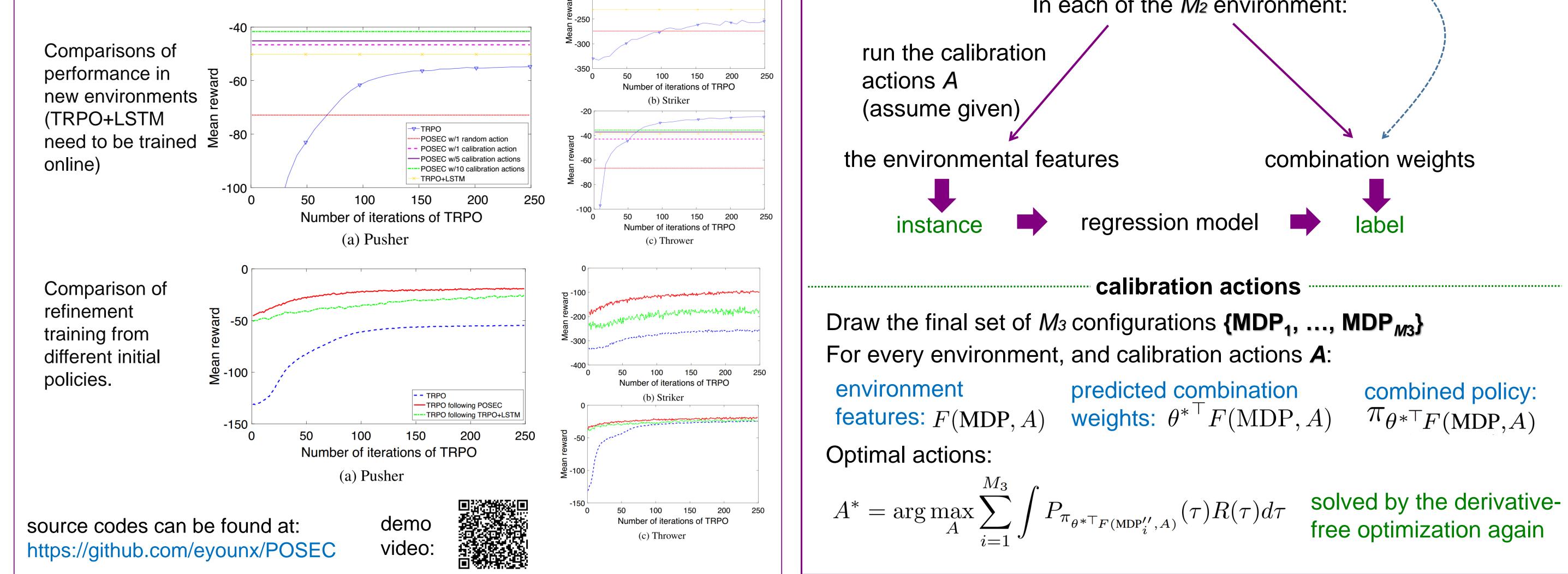
from [0.2, 0.6], independently

and uniformly at random.

from [0.1, 0.5],

r_upper_arm_link and

- Three policy learning methods in the new environment Experimented algorithms
- The policy trained directly from scratch
- The policy trained using LSTM for environment adaptation
- The policy evolved by POSEC 3.



linear combination policy: $\pi_w(a|s) = \sum_{t=1}^{M_1} \frac{w_t}{\sum_{t=1}^{M_1} w_t} \pi_t(a|s)$

Draw another set of M_2 different configurations of the environment In each environment: the reward objective function about $\pi_w(a|s)$

 $J_{MDP_i'}(w) = \int_{\tau} P_{\pi_w}(\tau) R(\tau) d\tau$

Optimal weights: $w_i^* = \arg \max J_{MDP_i'}(w)$

solved by a derivative-free optimization method [Yu et al., IJCAI'16; Hu et al., AAAI'17]

solved combination weights (*W*₁, *W*₂, *W*₃,..., *W*_{M1}) of base policies

regression model

In each of the *M*² environment: