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• Pusher: pushes a cylinder onto a coaster

• Striker: hits a ball to a target

• Thrower: throws a ball into a box

Experimental task (State 23 dim, Action 7 dim)

Physical world 

reinforcement learning 

is highly costly

Simulation error is 

inevitable
• measure inaccuracy

• physical world changes

Simulators are 

usually very helpful Previuosly: 

simulated policy 

+ manual adjustment

Can the policy be self-evolvable to adapt to its 
environment?

2.Idea

Learn a meta-policy over environments

1. collect a set of previous environments

2. associate policies with environments

3. learn a mapping from environment 

features to policy parameters

In a new environment: map the environmental features to the policy

But, how to obtain the environmental features?

such policy is generalizable to new environments

[Peng et al. 2018]: Implicitly 

learned in the LSTM policy 

model

Our idea: 

explicitly extract features by 

probing the environment

assume: 

same state and action spaces, 

but different transitions

Extraction of environmental features:

Sample M1 different configurations of the environment 

base policies set: 

Draw another set of M2 different configurations of the environment

In each environment: the reward objective function about 

solved by a derivative-free optimization 

method [Yu et al., IJCAI’16; Hu et al., AAAI’17]

solved combination weights (W1, W2, W3,…, WM1) of base policies

calibration actions

Draw the final set of M3 configurations {MDP1, …, MDPM3}

Experimented algorithms

1. The policy trained directly from scratch

2. The policy trained using LSTM for environment adaptation

3. The policy evolved by POSEC 

Three policy learning methods in the new environment

Comparisons of 

performance in 

new environments

(TRPO+LSTM 

need to be trained 

online)

source codes can be found at:

https://github.com/eyounx/POSEC 

Framework

Comparison of 

refinement 

training from 

different initial 

policies.

Implementation

variables r_forearm_link and 

r_wrist_flex_link are sampled 

from [0.1, 0.5],  

r_upper_arm_link and 

r_elbow_flex_link are sampled 

from [0.2, 0.6], independently 

and uniformly at random.

…

Taking the Pusher task as an example

1. run some calibration actions

2. observe the environment states after each action

3. the observations are used as the features

In every environment: train a policy heavily, as a base policy 

In each of the M2 environment: 

the environmental features

regression modelinstance label

With the environment features, aggregate previous policies 
for the new environment

need to solve

calibration 

actions

regression 

model

base 

policies

Assume a configurable simulator is available 

to generate environments

linear combination policy: 

Optimal weights:

run the calibration 

actions A

(assume given)

combination weights

Optimal actions:

regression model

combination weights

base policies

environment

features:

For every environment, and calibration actions A:

predicted combination 

weights: 

solved by the derivative-

free optimization again

combined policy: 

Robotic arm controlling to accomplish tasks:

Task generation:

demo 

video:


