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a b s t r a c t 

Nowadays, Convolutional Neural Network (CNN) has achieved great success in various computer vision 

tasks. However, in classic CNN models, convolution and fully connected (FC) layers just perform linear 

transformations to their inputs. Non-linearity is often added by activation and pooling layers. It is natu- 

ral to explore and extend convolution and FC layers non-linearly with affordable costs. In this paper, we 

first investigate the power mean function, which is proved effective and efficient in SVM kernel learning. 

Then, we investigate the power mean kernel, which is a non-linear kernel having linear computational 

complexity with the asymmetric kernel approximation function. Motivated by this scalable kernel, we 

propose Power Mean Transformation, which nonlinearizes both convolution and FC layers. It only needs 

a small modification on current CNNs, and improves the performance with a negligible increase of model 

size and running time. Experiments on various tasks show that Power Mean Transformation can im- 

prove classification accuracy, bring generalization ability and add different non-linearity to CNN models. 

Large performance gain on tiny models shows that Power Mean Transformation is especially effective in 

resource restricted deep learning scenarios like mobile applications. Finally, we add visualization experi- 

ments to illustrate why Power Mean Transformation works. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Convolutional neural network (CNN) is a very successful visual

representation learning approach. As a fundamental tool in com-

puter vision, it is essential to improve the CNN’s performance and

generalization ability. Previous researches mostly focus on develop-

ing novel network structures and making the CNN models deeper,

e.g., the Inception family [1,2] and the ResNet family [3–6] . In addi-

tion to these structures, some researches focus on developing new

kinds of non-linear activation functions, such as the ReLU fam-

ily [7–10] . 

Beyond these improvements on general CNN structures, some

researches also propose new non-linear layers to improve the per-

formance on fine-grained tasks, e.g., Bilinear CNN and some vari-

ants [11–17] . These layers are often used after the end of the fea-

ture extraction part of CNN models and have immense computa-

tional complexity. Thus, they cannot be applied to early layers in

a CNN and have difficulty in scaling to large problems. In sum-

mary, existing methods have not paid enough attention to the ba-

sic building blocks of CNN models: the convolution layers and FC

layers. 
∗ Corresponding author. 
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In this paper, the proposed method is motivated by power

ean SVM (abbreviated as PmSVM) [18] , which is a non-linear

VM with linear computational complexity and has higher accu-

acy than traditional linear SVM. Based on its non-linear kernel

pproximation function, we demonstrate a new non-linear trans-

ormation: Power Mean Transformation. Power Mean Transforma-

ion adds non-linearity to current CNN models, including both in-

ut images and output features. The overall structure of our Power

ean Transformation is shown in Fig. 1 . Power Mean Transforma-

ion can be applied in any place of CNN models. For better effi-

iency and to achieve the balance between accuracy and speed,

ower Mean Transformation is used at two places in this paper:

ransformation to the input images (which is abbreviated as pm-

) and transformation to output features (which is abbreviated as

m-o). For models with both pm-i and pm-o, we abbreviate it as

m-i&o. 

In contrast with those non-linear layers designed for fine-

rained tasks, we only add a negligible amount of parameters and

lmost zero running time to the original model by using Power

ean Transformation. The theoretical complexity of Power Mean

ransformation is linear to the number of elements in its input

ensor, which is the same as ReLU, and lower than all non-linear

ayers designed for fine-grained tasks. Compared to those works

hich develop new activation functions, we add a different kind

f non-linearity before the linear layer, rather than after the linear

ayer. With this additional non-linearity, models with Power Mean

https://doi.org/10.1016/j.patcog.2018.12.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.12.029&domain=pdf
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Fig. 1. Overall structure of the proposed Power Mean Transformation. For traditional CNN models, we can add non-linear Power Mean Transformation to both the input 

images and the output features. 
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ransformation show better capacity and generalization ability. Vi-

ualizations and analyses on Power Mean Transformation illustrate

hy it works. Furthermore, Power Mean Transformation is easy to

e integrated into modern CNN models. 

Classification experiments on CIFAR-10 [19] and Ima-

eNet [20] show that Power Mean Transformation improves the

erformance on various models, especially on not-so-deep models.

hat’s more, transfer learning and object detection experiments

erify the good generalization ability of Power Mean Transfor-

ation. Finally, we perform experiments by using Power Mean

ransformation together with other non-linear layers to show that

ur transformation adds a different kind of non-linearity to CNN

odels and can cooperate with other existing non-linear layers. 

We summarize our contributions as follows. 

• We add a new pattern of non-linearity to current CNNs, achiev-

ing accuracy improvement with negligible model size and run-

ning time increase. With the large performance gain on not-so-

deep CNN models, we can directly apply Power Mean Transfor-

mation into resource restricted deep learning scenarios. 

• We add Power Mean Transformation to the input images. Fur-

thermore, we perform several visualizations to illustrate why

our transformation works and to explain our models empiri-

cally. 

. Related work 

In this section, we will briefly introduce SVM techniques and

on-linearity in CNN models. 

.1. Power mean SVM 

Support vector machines (SVMs) are learning models which can

e used for classification and regression [21] . Researchers have de-

eloped various kernel functions for SVM, and achieved signifi-

ant success on different machine learning and computer vision

asks [22–25] . 

However, most of these kernels need enormous computational

omplexity, and cannot be applied to large-scale visual problems

uch as ImageNet classification. So, some researchers propose im-

rovements on linear kernels. The power mean kernel, which has

he same computational complexity as the linear kernel with ap-

roximation techniques, is proved to be faster and more effective

han the linear kernel [18] . 

The additive kernel is a family of kernels which can be writ-

en as the sum of a scalar kernel function for each dimension,

.e., κ(x , y ) = 

∑ d 
i =1 κ(x i , y i ) . The most popular additive kernels are

he histogram intersection kernel (HIK) κHI (x, y ) = min (x, y ) and

he χ2 kernel κχ2 (x, y ) = 

2 xy 
x + y . 

In mathematics, a power mean function F p can be defined

s F p (x 1 , . . . , x n ) = ( 
∑ n 

i =1 x 
p 
i 

n ) 1 /p where p ∈ R and x 1 , . . . , x n ∈ R + .
hen p = −∞ , 0 , + ∞ , the power mean function is also well-

efined as min (x 1 , . . . , x n ) , 
n 
√ ∏ n 

i =1 x i , and max (x 1 , . . . , x n ) , respec-
ively. When p = −1 and − ∞ , the power mean function becomes

he χ2 and HIK kernel, respectively. 

With these power mean functions F p , the power mean ker-

el family is proposed for two vectors x and y : F p (x , y ) =
 d 
i =1 F p (x i , y i ) [18] . Wu and Yang [18] prove that when −∞ ≤ p ≤

 , F p ( x, y ) is a positive definite kernel. With the power mean

ernel, SVM achieves better performance than linear SVM, and

mSVM (power mean SVM [18] ) has linear training and testing

omplexity. 

.2. Non-linearity in CNN models 

Traditional CNNs are mostly composed of these layers: convo-

ution, activation, pooling, normalization and fully connected (FC)

ayers. For traditional CNNs, non-linearity is only added by activa-

ion and pooling layers which follow the linear (convolution and

C) layers. Hence, the common pattern of non-linearity in existing

NNs is one linear operation followed by another non-linear oper-

tion. It is natural to explore different patterns of non-linearity in

NN models. In this paper, we explicitly transform the linear oper-

tion to non-linear. 

Some researches focus on improving the general convolution

ayer without adding non-linearity to the convolution layer. Dilated

onvolution is proposed to enlarge the receptive field of CNN mod-

ls in computer vision tasks like semantic segmentation [26–28] .

ome work is proposed to change the convolution kernel shape to

etter fit the training data and detect small objects [29,30] . How-

ver, all these methods are performing linear transformation to the

nputs, which lacks non-linear transformation. 

Fully connected layers are the original (fundamental) part of

eural networks. They are widely used to build up the classifica-

ion part of traditional CNN models [3,31] . However, there is a se-

ious over fitting problem with fully connected layers. Some spe-

ific normalization techniques are proposed to mitigate the prob-

em [32] , and some discussions are made on fully connected lay-

rs [33,34] . However, fully connected layers are also performing

inear transformation to the inputs. 

Besides these general CNN layers, some researchers proposed

pecific non-linear layers for fine-grained classification such as the

ilinear CNN [15] . However, the bilinear CNN has great compu-

ational complexity. Compact bilinear pooling uses Fast Fourier

ransformation (FFT) and count sketch techniques to calculate the

uter product in the bilinear CNN efficiently [12] . Kernel pool-

ng approximates RBF kernel and achieves high accuracy on fine-

rained datasets [11] . Recently, some researchers have adopted bi-

inear layers into general CNN models [35] . This type of bilinear

ayer is restricted to complex network structures, and cannot be

pplied directly to simple convolution and FC layers. 

Some other researches try to integrate known distributions into

NNs [36] . Second-order information is proved to be useful for

oth fine-grained and general classification tasks with an MPN-

OV layer [13] . Li et al. [37] propose faster training methods for

PN-COV layers. However, these methods are only applied af-
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ter the CNN feature extraction part, and they also need mas-

sive amounts of parameters and high feature dimensionality, e.g.,

12,801 for kernel pooling and 32,896 for MPN-COV. The high fea-

ture dimension hinders the scalability of CNN models. 

Recently, Zoumpourlis et al. [38] propose non-linear convolu-

tion filters for CNN-based learning. However, the proposed non-

linear filters are based on the Volterra series models, which are in-

finite order computing models. Although they restricted the order

of Volterra-based convolution filters to two, the filters still have

huge computational complexity. Thus, non-linear filters are only

added at the beginning of current CNN models, and only CIFAR-

10 results are provided in [38] , which hinders the scalability to

larger models and datasets. However, Our Power Mean Transfor-

mation only adds negligible parameters, running time and feature

dimension (same as the origin CNN models), e.g., 2048 for ResNet-

based models, which can be directly applied to large-scale prob-

lems. 

3. Power mean transformation 

In this section, we will introduce Power Mean Transformation.

Based on the power mean kernel and related PmSVM techniques,

we propose Power Mean Transformation for linear layers by trans-

ferring its input non-linearly. For example, the proposed Power

Mean Transformation transfers input images non-linearly before

feeding them to the first convolution layer, which is an efficient

way to make the linear convolution operation non-linear . 

3.1. Motivation 

Modern deep learning classification models can be viewed as

having two parts: a feature extraction part and a classification part.

The classification part is often composed of FC layers and in some

cases activation layers. What classical SVMs perform is just like

the classification part of CNN models, i.e., classifying images with

extracted features. Since the power mean kernel performs better

than the linear kernel with almost zero extra computational and

time cost, we are motivated by this phenomenon: can we adopt

the power mean kernel into the classification part of CNN models?

We will first start from the classification part, i.e., we will first try

to add Power Mean Transformation to the output features of CNN

models. 

3.2. Notations 

The following notations are used in the rest of this paper. Given

a vector x , y ∈ R 

d , where x i and y i are the i -th element of x and

y , respectively. For a traditional linear transformation y = Wx + b ,

W ∈ R 

d×d is the transformation matrix, and b ∈ R 

d is the bias vec-

tor (Suppose x and y have the same shape, i.e., x , y ∈ R 

d ). 

3.3. From SVM kernel to deep learning 

After introducing power mean kernel in Section 2.1 , given a

positive definite kernel κ , the associated feature mapping function

φ is written as φ(x ) T φ(y ) = κ(x , y ) . To simplify the problem and

analyze the problem better, we follow the original problem settings

in [18] : There are a set of training examples { (x i , y i ) } n i =1 
, where n

is the number of training examples, x i ∈ R 

d and y i ∈ {−1 , +1 } . 
For SVM prediction, the formula is: 

y = 

n ∑ 

j=1 

α j y j κ(x , x j ) . (1)

where x is the SVM input, κ is the SVM kernel function, x j is a

support vector, a j is the weight factor of x j and y j is the label of
 j . According to Wu and Yang [18] , the weight vector of the SVM

lassifier is: 

 = 

n ∑ 

i =1 

a i y i φ( x i ) . (2)

oncerning a specified training example { x i , y i }, the gradient G in

he coordinate descent method is computed as: 

 = y i ω 

T φ( x i ) − 1 = y i 

n ∑ 

j=1 

a j y j κ(x i , x j ) − 1 . (3)

ccording to Eqs. (1) and (3) , we can see that there is a common

art: ω 

T φ(x ) . This function plays a vital role in SVM’s forward and

ackward pass. Hence, the authors of [18] propose the computa-

ional bottleneck in SVM as a function g : 

(x ) = ω 

T φ(x ) . (4)

ith the computational bottleneck function g , the forward and

ackward pass of SVM can be rewritten as: 

 = 

n ∑ 

j=1 

α j y j κ(x , x j ) 

= g(x ) . (5)

 = y i ω 

T φ( x i ) − 1 

= y i g( x i ) − 1 . (6)

For traditional linear kernels, both the forward and backward

ass can be computed in O ( d ) steps. But, when the mapping func-

ion φ is infinite dimensional or when it cannot be explicitly found,

he update step is not feasible or even cannot be computed. More-

ver, when we train a SVM, we need to perform backward passes

o all training examples. Hence, it is important to approximate the

omputational bottleneck function with limited time and memory

ost when the kernel is non-linear. 

Since the input vector of SVM can be normalized to a specific

ange, e.g., [0,1], by the Weierstrass approximation theorem, we

an approximate g on the closed interval (like [0,1]) by a polyno-

ial function to any degree of accuracy, i.e., we can use the ex-

lanatory function e to estimate the function accurately: e (x ) =
(1 , x , . . . x m −1 ) T for any degree m ∈ Z 

+ . It is obvious that e is a

olynomial function of x . For efficient power mean kernel approx-

mation, Wu and Yang [18] observe that g is mostly monotone

nd the curve is similar to a rotated version of quadratic func-

ion. Based on the observations, Wu and Yang [18] propose an ex-

lanatory variable function e for additive kernels: e (x ) = (1 , ln (x +
) , ln 

2 (x + β)) , in which the ln function is applied to every ele-

ent x i in x separately, and β is a positive constant to make the

n function well defined. The explanatory variable function is a

econd-order function. Although we can use higher-order functions

o approximate g with lower error, the second order function is a

ood balance between the approximation accuracy and the com-

utational complexity. In the PmSVM paper, the authors claim that

ased on the explanatory variable function, non-symmetric kernel

pproximation is proposed for calculating the power mean ker-

el [18] : 

(x , y ) = 

d ∑ 

i =1 

κ(x i , y i ) 

≈
d ∑ 

i =1 

( 

1 

ln ( x i + β) 

ln 

2 
( x i + β) 

) T 

X 

−1 

( 

κ(y i , c 0 ) 
κ(y i , c 1 ) 
κ(y i , c 2 ) 

) 

. (7)
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here X is a constant 3 × 3 matrix, c 0 , c 1 , c 2 are constant anchor

oints in PmSVM. With the constant anchor points defined before,

he X in Eq. (7) is calculated by [18] : 

 = 

⎛ 

⎝ 

1 ln (c 0 + β) ln 

2 
(c 0 + β) 

1 ln (c 1 + β) ln 

2 
(c 1 + β) 

1 ln (c 2 + β) ln 

2 
(c 2 + β) 

⎞ 

⎠ . (8) 

n [18] , the authors originally chose (0.01, 0.06, 0.75) for anchor

oints since they observed that most feature values are in the

ange [0.01, 0.1] in the experimented datasets. However, the Cheby-

hev nodes were later proposed as better anchor points: 

 i = cos 

(
2 i − 1 

2(m + 1) π

)
, i = 1 , . . . , m + 1 , (9)

ased on the Chebyshev nodes, if we need n ′ anchor points, the

nchor points can be easily calculated by settings m = n ′ − 1 in Eq.

9) . Since ln (0) is not defined, a small positive β is needed to be

dded. In PmSVM, the authors set β = 0 . 05 . 

Compared to the traditional SVM kernel calculation process,

his formula is a non-asymmetric formula which transfers the non-

inear power mean kernel calculation into a linear calculation pro-

ess. 

Fig. 2 shows the results of using Eq. (7) to approximate the χ2 

ernel κχ2 (x, y ) = 

2 xy 
x + y when 0 < x < 0.6, 0 < y < 0.6. From these two

gures, we can easily see that the approximation mesh is almost

he same as the mesh which is generated by the original χ2 kernel,

xcept for some small regions. In fact, the average deviation is 7 ×
0 −3 , and the average relation deviation is only 3.25%. 

Since this approximation is effective and scalable, we want to

mport it into CNN models. Since Eq. (7) is asymmetric, i.e., if we

wap the value x and y in Eq. (7) , the value of Eq. (7) will be differ-

nt (although they are almost the same). If we treat the x i as input

ariable and treat other variables as constants in Eq. (7) , we can

ee that we only need to transfer x i to (1 , ln (x i + β) , ln 

2 (x i + β)) ,

he other parts X 

−1 ( κ(y, c 0 ) , κ(y, c 1 ) , κ(y, c 2 ) ) 
T 

can be viewed as a

onstant matrix ( z , z , z ), and the formula can be rewritten as: 
0 1 2 
(x , y ) = 

d ∑ 

i =1 

κ(x i , y i ) 

≈
d ∑ 

i =1 

( 

1 

ln ( x i + β) 

ln 

2 
( x i + β) 

) T ( 

z 0 
z 1 
z 2 

) 

= 

d ∑ 

i =1 

z 0 + z 1 ln ( x i + β) + z 2 ln 

2 
( x i + β) , (10) 

here x i , y i is the i th element of x, y . For SVM prediction, it is

erformed through Eq. (1) . With Eq. (7) , it becomes: 

 = 

n ∑ 

j=1 

α j y j κ(x , x j ) + b 

≈
n ∑ 

j=1 

α j y j z 0 

d ∑ 

i =1 

1 + 

n ∑ 

j=1 

α j y j z 1 

d ∑ 

i =1 

ln ( x i + β) 

+ 

n ∑ 

j=1 

α j y j z 2 

d ∑ 

i =1 

ln 

2 
( x i + β) + b 

= c 0 
T 1 + c 1 

T ln (x + β) + c 2 
T ln 

2 
(x + β) + b , (11) 

here y is the predict label, x j is a support vector, a j 
s the weight factor of x j , y j is the label of x j . In Eq.

11) , c 0 = (a 1 y 1 z 0 , . . . , a n y n z 0 ) , c 1 = (a 1 y 1 z 1 , . . . , a n y n z 1 ) and c 2 =
(a 1 y 1 z 2 , . . . , a n y n z 2 ) summarize those variables that do not depend

n x . As shown in Eq. (11) , after transforming x into (1 , ln (x +
) , ln 

2 (x + β)) , the prediction process is a simple linear one. In-

pired by this SVM predict process, we can bring this transforma-

ion into traditional linear layers in CNN, including the convolution

ayer and fully connected layer. 

For a CNN linear layer, the forward process can be seen as y =
x + b . When we bring non-linear transformation e of x into the

orward process, it becomes: 

 = W (e (x )) + b 

= W (z 0 1 , z 1 ln (x + β) , z 2 ln 

2 
(x + β)) + b 

= z 0 W1 + z 1 W ln (x + β) + z 2 W ln 

2 
(x + β) + b 

= z 1 W ln (x + β) + z 2 W ln 

2 
(x + β) + b + z 0 W1 
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e  
= z 1 W ln (x + β) + z 2 W ln 

2 
(x + β) + (b + b 1 ) 

= 

[
z 1 W 

z 2 W 

]
[ ln (x + β) , ln 

2 
(x + β)] + (b + b 1 ) 

= W z [ ln (x + β) , ln 

2 
(x + β)] + (b + b 1 ) . (12)

In Eq. (12) , b 1 = z 0 W1 becomes part of the bias and W z = 

[
z 1 W 

z 2 W 

]
is the new transformation matrix for the new non-linear input

variable [ ln (x + β) , ln 

2 (x + β)] . Then, with the non-linear transfor-

mation of x , the traditional linear layer can be easily modified to

be non-linear. Although we can further explore higher order ap-

proximation terms such as ln 

3 (x + β) , our experiments show that

they often lead to more parameters and computations, but at the

same time lower accuracy in CNN models. 

In PmSVM, z 0 , z 1 , z 2 are constant values and will be calculated

before the SVM training process using regression skills, and they

are important for approximating the power mean kernel. But ac-

cording to Eq. (12) , z 0 , z 1 , z 2 can be integrated into the W matrix

of linear layers (as W z and b 1 ), and in the era of deep learning, it

is fashionable to learn parameters from a large amount of data di-

rectly. So we follow this trend: we let the transformed linear layer

learn W z directly, i.e., don’t manually decide the value of z . 

After discussing z , it is easy to perform forward transformation.

The constant b 1 = z 0 W1 term can be easily integrated into the bias

term in modern CNN linear layers according to Eq. (12) , and we

do not keep the constant term. For the original PmSVM, features

are scaled between [0,1], and PmSVM does not need to handle the

situation when features are smaller than zero. For the classification

part, extracted features of modern CNN models are larger than or

equal to 0 since features are mostly ReLU activated and pooled

after convolution layers, and we do not need to handle this case

either. 

Hence, we use the following transformation: when Power Mean

Transformation gets an input x , it transforms x into ( ln (x +
β) , ln 

2 (x + β)) , where β is a constant and we will discuss it later

in Section 4.1 . 

With this forward pass, let ∂ l 
∂y 

be the gradient of Power Mean

Transformation’s output. Since y = [ ln (x + β) , ln 

2 (x + β)] , by the

chain rule we have: 

∂ l 

∂y 
= 

∂ l 

∂[ ln (x + β) , ln 

2 
(x + β)] 

, (13)

∂ l 

∂x 

T 
= 

∂ l 

∂y T 
∂y 

∂x 

T 

= 

∂ l 

∂( ln (x + β)) T 
ln (x + β) 

∂x 

T 
+ 

∂ l 

∂( ln 

2 
(x + β)) T 

ln 

2 
(x + β) 

∂x 

T 
. 

(14)

With these forward and backward formulas, the Power Mean

Transformation can be easily integrated into CNN models, and use

existing optimizers to train it in an end-to-end fashion. 

We want to add that Power Mean Transformation can be added

into a CNN model very conveniently: only 3 lines of code in Torch.

3.4. Beyond the classification part 

Then, we add Power Mean Transformation before the classifica-

tion part in CNN models. As aforementioned, convolution layers are

just the weight sharing version of FC layers. We can easily extend

Power Mean Transformation to the input of convolution layers in

CNN models. 

Previously, applying Power Mean Transformation is easy: we do

not need to handle negative values. However, for general Power
ean Transformation, we need to handle negative inputs, e.g., nor-

alized image inputs and outputs of convolution layers. In this

ase, since the convolution layer is also a classical linear layer

hich can handle negative inputs easily, we use the signed loga-

ithm, i.e., for positive inputs, we just use ln ( | x | + β) , ln 

2 ( | x | + β) ,

or negative inputs, we use − ln ( | x | + β) , − ln 

2 ( | x | + β) to replace

he original outputs. After this process, we can perform the same

on-linear transformation to convolution layers’ inputs and then

rain the model directly by back propagation. 

Finally, the algorithm of Power Mean Transformation is in

lgorithm 1 , in which ◦ means element-wise product. 

lgorithm 1 Power Mean Transformation. 

1: Forward process: 

2: Input : Input matrix x input , constant value β
3: Output : Output matrix x out put 

4: sign x = sign (x ) 

5: e 1 (x ) ← sign x ◦ ln (| x | + β) 

6: e 2 (x ) ← sign x ◦ ( ln (| x | + β)) 2 

7: x out put = concatenate [ e 1 , e 2 ] 

8: return x out put 

9: Backward process : 

10: Input : Input gradient g out put , input matrix x input , and con-

stant value β
11: Output : Output gradient g input 

12: sign x = sign (x ) 

13: g input = g out put ◦ 1 
| x | + β ◦ sign x + g out put ◦ 2 ln ( | x | + β) 

| x | + β ◦ sign x 
14: return g input 

Because Power Mean Transformation will double the parameter

ize of next linear layers (since the W term becomes 

[
z 1 W 

z 2 W 

]
), ap-

lying Power Mean Transformation at more places in CNN models

ill directly increase model size and result in unfair comparison.

n this paper, we just put Power Mean Transformation at the be-

inning part of CNN models, i.e., we perform Power Mean Transfor-

ation to normalized input images. This choice directly affects the

hole model. Furthermore, adding Power Mean Transformation at

he beginning part adds few parameters to the current CNN mod-

ls, since the first convolution layer of current CNN models will

ave the least output channels among all convolution layers. Fi-

ally, we can easily visualize the effect of our Power Mean Trans-

ormation. 

. Experiments 

In this section, we will show empirical experimental results of

he proposed Power Mean Transformation. 

.1. Implementation details 

Before diving into implementation details, we first need to de-

ide the value of β . In Power Mean Transformation, to keep ex-

racted features non-negative, and more importantly, when x =
 , Power Mean Transformation should lead to the same value

s those for small positive and negative values that approach 0,

.e., Power Mean Transformation should be continuous and mostly

ifferentiable for forward and backward pass. Thus, the formula

hould be ln (0 + β) = − ln (0 + β) . So we choose β = 1 . The β
alue is same for all Power Mean Transformation, including Power

ean Transformation at input and output. 

We will mainly evaluate our transformation on two kinds

f popular state-of-the-art models: VGG-based models [31] and

esNet-based models [3] . For all experiments of VGG-based mod-

ls, we use the Caffe toolbox [39] . For all ResNet-based mod-
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Table 1 

Power Mean Transformation results on the CIFAR-10 dataset on ResNet-20, 

preResNet-110 and WRN-28-10 models. The best result is marked in bold. The 

first column shows the mode of Power Mean Transformation. The second col- 

umn indicates whether it is fine-tuned or trained from scratch. The third, fourth 

and fifth columns show the Power Mean Transformation results on ResNet-20, 

preResNet-110 and WRN-28-10, respectively. 

pm train ResNet-20 preResNet-110 WRN-28-10 

/ scratch 8.75% 6.37% 4.00% 

pm-i ∗(scratch) 8.30 ± 0.21% 6.49 ± 0.07% 4.04 ± 0.07% 

scratch 8.18 ± 0.23% 5.90 ± 0.08% 3.95 ± 0.08% 
∗(fine-tune) 8.10 ± 0.19% 6.21 ± 0.10% 4.02 ± 0.10% 

fine-tune 7.98 ± 0.22% 5.80 ± 0.09% 3.90 ± 0.06% 

pm-o ∗(scratch) 8.08 ± 0.17% 6.43 ± 0.14% / 

scratch 8.18 ± 0.22% 6.00 ± 0.07% 3.80 ± 0.12% 
∗(fine-tune) 7.88 ± 0.15% 6.31 ± 0.09% / 

fine-tune 7.90 ± 0.21% 5.80 ± 0.08% 3.75 ± 0.09% 

pm-i&o ∗(scratch) 7.84 ± 0.17% 6.46 ± 0.23% / 

scratch 7.63 ± 0.13% 5.70 ± 0.10% 3.66 ± 0.08% 
∗(fine-tune) 7.78 ± 0.16% 6.22 ± 0.13% / 

fine-tune 7.60 ± 0.14% 5.55 ± 0.14 % 3.62 ± 0.09 % 
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ls, we use the popular Torch platform for better efficiency. For

ther transfer learning tasks, we use the original platform of base-

ine methods. All experiments are conducted on an Ubuntu 14.04

erver with two Intel E5-2680 v4 CPUs and M40 Nvidia GPUs sup-

ort. 

.2. CIFAR-10 results 

We first evaluate our Power Mean Transformation on the CIFAR-

0 dataset. For CIFAR-10 experiments, we choose two ResNet mod-

ls and one wide ResNet model: ResNet-20, pre-activation ResNet-

10 (abbr. preResNet-110) and wide ResNet with depth = 28 and

iden factor = 10 (abbr. WRN-28-10). These three models vary in

epth and width: ResNet-20 is a relatively shallow model with

 comparable error rate on CIFAR-10 while preResNet-110 is a

eep model with state-of-the-art error rate. WRN-28-10 widens

he ResNet structure and achieves the lowest error rate. We can

asily examine the effectiveness of Power Mean Transformation on

ifferent models. 

Power Mean Transformation will double the parameter of the

uccessive layer in CNN models, e.g., Power Mean Transformation

t input and Power Mean Transformation at output will add 0.4 k

nd 0.64 k parameters to the original ResNet-20 and preResNet-110

odels. For fair comparison, we add an extra baseline: For mod-

ls with Power Mean Transformation at input, we compare it with

odels which add an extra convolution layer after the first layer.

or models with Power Mean Transformation at output, we com-

are it with models which add an extra convolution layer before

he last global averaging pooling layer and fully connected layer.

he extra convolution layer will have the same number of output

hannels as the first or last convolution layer. A batch normaliza-

ion and ReLU layer will follow all extra convolution layers. 

Specifically, for all three models, we add an extra 3 × 3 convo-

ution layer with 16 input and output channels to compare with

ower Mean Transformation at input. The extra convolution layer

ill add 2.3 k parameters to the models, which exceeds the pa-

ameters that Power Mean Transformation at input increases. Suc-

essively, we add an extra 3 × 3 convolution layer with 64 input

nd output channels to compare with Power Mean Transformation

t output. The extra convolution layer will add 36.9 k parameters

o the ResNet-20 and preResNet-110 models, which is far beyond

he 0.64 k Power Mean Transformation at output parameters. For

RN-28-10 models, since the large dimensionality (640) of WRN-

8-10’s last convolutional layer’s output, it will add about 3M pa-

ameters if we add an extra convolution layer. Hence, we do not

erform experiments on WRN-28-10’s Power Mean Transformation

t output. 

The hyper-parameter is set same for all three models: batch size

28, 0.0 0 01 weight decay, 0.9 momentum. We will train all mod-

ls with learning rate 0.1 for 60 epochs, 0.02 for 60 epochs, 0.004

or 40 epochs and 0.0 0 08 for 40 epochs. For wide-resnet models,

e set the dropout rate as 0 in all our models. For all models with

m, we report the mean and std of all 5 runs’ results. Results are

hown in Table 1 . Those models denoted by “/” are baseline mod-

ls and Those models denoted by “∗” are models with correspond-

ng extra convolution layers. From those tables, we can easily have

hese conclusions: 

• Power Mean Transformation works both for input images and

output features. With pm-i, we can achieve 0.57% and 0.47%

performance gain on both ResNet-20 and preResNet-110. The

performance boosts are 0.69% and 0.37% on both models with

pm-o, respectively. Finally, when we combine pm-i and pm-o,

we achieve about 1.2% and 0.8% improvement on both ResNet

models. 
• Fine-tuning also improves the accuracy. For all models we

have mentioned before, fine-tuning improves about 0.2% in two

ResNet based models. 

• With state-of-the-art models, Power Mean Transformation can

also improve the accuracy. On top of WRN-28-10 model, pm-

i&o can reduce the error rate by 0.38% (about 10% drop in rela-

tive error rate). 

• Compared to our stronger baseline models, Power Mean Trans-

formation also shows better results. ResNet-20“∗” models per-

form better than ResNet-20 with pm-o models. This phe-

nomenon may due to that ResNet-20 is a relatively small

model. But for all other models, especially for preResNet-110

and WRN-28-10, models with Power Mean Transformation have

better results, which indicates that the Power Mean Transfor-

mation bring new kind of non-linearity to CNN models, not just

deepen or widen current CNN models. 

.3. ImageNet results 

We conduct empirical experiments on the ImageNet 2012

ataset. In this section, we also prepare several models: 

• Compressed VGG models (ThiNet): Various techniques are de-

veloped for compressing CNNs. Among these models, ThiNet

achieves state-of-the-art (better than AlexNet) performance

with only 1.32M parameters [40] . We choose it as one of the

baseline models to evaluate Power Mean Transformation’s ef-

fectiveness on small networks. We add pm-i, pm-o and pm-i&o

to ThiNet to validate the performance empirically. 

• Original VGG16 models: The VGG16 model is widely used in

many computer vision tasks [31] , so we choose VGG16 as a

baseline network to evaluate the performance of Power Mean

Transformation on models with moderate accuracy. We add

pm-i to VGG16. 

• ResNet models: The pre-activation version of ResNet achieves

state-of-the-art results on ImageNet classification tasks [4] . We

choose preResNet-200 (the deepest version of pre-activation

ResNet) to evaluate the performance of Power Mean Transfor-

mation on deep models. We add pm-i, pm-o and pm-i&o to

preResNet-200 to validate the performance empirically. 

For ResNet models, first we train the preResNet-200 model with

m-i&o from scratch. As expected, preResNet-200 pm-i&o shows

etter accuracy than the original preResNet-200 model with a

.27% margin. That is, training models with Power Mean Trans-

ormation from scratch slightly increased its accuracy (compared
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Table 2 

Power Mean Transformation results on the Ima- 

geNet dataset. Note that all models are fine-tuned. 

The first column shows the mode of Power Mean 

Transformation. The second column shows results 

on the ThiNet model, the third column shows re- 

sults on the VGG16 model and the fourth column 

shows results on the preResNet-200 model. 

pm ThiNet VGG16 prePreNet-200 

/ 59.34% 70.97% 78.34% 

pm-i 59.50% 71.50 % 78.57% 

pm-o 60.43% / 78.58% 

pm-i&o 60.60 % / 78.73 % 
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the model without Power Mean Transformation). Then, based on

our observations on CIFAR-10, we choose to perform fine-tuning in

the rest experiments. We set the base fine-tuning learning rate to

0.001, momentum to 0.9 and weight decay to 5 × 10 −4 . We decay

the learning rate by 10 when the training loss does not decrease.

Results are shown in Table 2 . 

Besides the performance comparison, we also compare the

number of parameters and running time of different models. Re-

sults are in Table 3 . From these tables, we can easily have these

observations: 

• pm-i and pm-o work on both shallow and deep models with

the ImageNet dataset. This observation shows Power Mean

Transformation is useful for a variety of models. With pm-i,

we can achieve 0.16% gain on ThiNet, 0.53% gain on VGG16

and 0.23% gain on preResNet-200. The performance boosts are

1.09% and 0.24% on ThiNet and preResNet-200 with pm-o, re-

spectively. Finally, when pm-i and pm-o are combined, we

achieve 1.26% improvement on ThiNet and 0.39% improvement

on preResNet-200. 

• Power Mean Transformation improves the performance with

negligible parameters. For pm-i, the number of added param-

eters is the same as that of the original first convolution layer,

e.g., with VGG-16 models, pm-i only adds 1728 parameters, re-

sulting in a 0.53% performance improvement. For pm-o, the

number of added parameters is the same as the original classi-

fication layer. 

• Power Mean Transformation adds nearly zero running time. For

example, with both pm-i and pm-o, preResNet-200 only in-

creases about 4ms running time for the forward pass and 8ms

running time for the backward pass, which in total only occu-

pies about 1.5% of the original running time. 

• Power Mean Transformation doesn’t work for sparsely dis-

tributed outputs. In Table 2 , The VGG pm-o and VGG pm-i&o

models do not perform well. Actually, the pm-o can be only

added after the VGG16’s fc7 layer. But fc7’s output follows

a relatively sparse distribution and Power Mean Transforma-

tion does not work well on that distribution. However, modern

CNN models have used global average pooling to replace fully

connected layers [1,3,5] , and the distribution of global average

pooling layer is relatively dense, which Power Mean Transfor-

mation will work, e.g., the results we have shown on ThiNet

and preResNet-200. 

• Power Mean Transformation works better on relatively shallow

models. For ResNet-20 on CIFAR and ThiNet on ImageNet, we

get about 1% performance gain, which is significantly higher

than the performance boost in other models. This phenomenon

may indicate that Power Mean Transformation can be applied

in resource restricted deep learning scenarios like mobile ap-
plications. m  
.4. Transfer learning results 

Besides classification performance on the ImageNet dataset,

eneralization ability is another crucial measurement of CNN mod-

ls’ performance. 

We choose scene classification, fine-grained image recognition

nd object detection tasks to evaluate Power Mean Transforma-

ion’s generalization ability. For scene classification, we use the

IT Indoor67 dataset [41] . For fine-grained image recognition,

e choose the CUB-200 dataset [42] . We choose all models in

ection 4.3 as our models in experiments. 

For both classification tasks, we set the base learning rate to

.001, and other hyperparameters remain the same as those in

ection 4.3 . The learning rate will be divided by 10 when the

oss does not decrease. For object detection, we choose the R-

CN method [43] with online hard example mining [44] and pre-

rained ResNet-50 as our baseline model, and we use the mean

verage Precision (mAP) metric. For detection hyperparameter set-

ings, we follow the traditional hyperparameter settings for all

hese experiments, i.e., we first reimplement the baseline methods

ith the original model to get a fair comparison, then we keep

ll the hyperparameters same, just replacing the original model

ith our models by adding Power Mean Transformation. We fol-

ow the official guide in the R-FCN paper: using online hard ex-

mple mining (OHEM), a weight decay of 0.0 0 05 and a momen-

um of 0.9 [44] . We use single-scale training: images are resized

uch that the scale (shorter side of image) is 600 pixels. The results

re post-processed by non-maximum suppression (NMS) using a

hreshold of 0.3 IoU [45] . We also use the python code to perform

ur experiments. PASCAL VOC 07 and 12 training and validation

ata are used as training data, and VOC07 test data are used as

esting data [46] . 

The results are shown in Table 4 . From these tables, we can eas-

ly have these observations as below: 

• For both classification tasks, models with Power Mean Trans-

formation perform better than original models, especially on

ThiNet based models. The results indicate that all three modes

of Power Mean Transformation brings better generalization

ability to the model. 

• For scene classification tasks, preResNet-200 models do not per-

form well. It seems that preResNet-200 models are overfitted

on MIT Indoor67 dataset. 

• For object detection, ResNet-50 pm-o achieves 77.60% mAP

while ResNet-50 only achieves 76.60% mAP. Object detection

models only use the feature extraction part of CNN classifica-

tion models, i.e., the classification part is discarded in detec-

tion models. These results directly show that pm-o brings bet-

ter feature extraction ability to the model. 

Based on various experiments on Power Mean Transformation,

e can conclude that Power Mean Transformation brings better

eneralization ability than their respective original models. 

.5. Cooperate with other non-linear layers 

In this section, we will present joint learning results of Power

ean Transformation plus other non-linear layers. 

MPN-COV, which is proposed by Li et al. [13] , proves that

econd-order covariance information is useful for classification

asks, achieving better accuracy on the large-scale ImageNet

ataset with different baseline models. 

We want to test Power Mean Transformation on top of the

PN-COV method. For simplicity, we choose MIT Indoor67 and

esNet-50 with MPN-COV (MPN-COV-ResNet-50) as our baseline

odel, and use the same hyper-parameters as in Section 4.4 . For
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Table 3 

Power Mean Transformation model size (number of parameters) and running time 

comparison on the ImageNet dataset. The second column represents model size and 

the third to fifth column represent forward time, backward time and total time for 

each model. Note that for all models, we set the batch size to 32 to get a fair com- 

parison, and we run 20 iterations of each model and take the average running time as 

final results. 

Model Model size Forward Backward Total 

ThiNet 1.32 M 27.00 ms 55.03 ms 82.03 ms 

ThiNet w/ pm-i 1.32 M 27.04 ms 55.06 ms 82.07 ms 

ThiNet w/ pm-o 1.58 M 27.15 ms 55.10 ms 82.25 ms 

ThiNet w/ pm-i&o 1.58 M 27.17 ms 55.11 ms 82.26 ms 

VGG-16 138.34 M 188.24 ms 425.95 ms 614.20 ms 

VGG-16 w/ pm-i 138.35 M 190.80 ms 426.50 ms 617.30 ms 

preResNet-200 64.77 M 352.24 ms 624.00 ms 976.25 ms 

preResNet-200 w/ pm-i 64.80 M 355.30 ms 630.26 ms 985.56 ms 

preResNet-200 w/ pm-o 66.81 M 354.47 ms 628.95 ms 983.42 ms 

preResNet-200 w/ pm-i&o 66.84 M 358.23 ms 632.20 ms 990.43 ms 

Table 4 

Power Mean Transformation transfer learn- 

ing results. Note that for all models, dif- 

ferent subtable represents different tasks’ 

results. For ThiNet models, the “∗” models 

represent the results from [40] . 

Scene classification on Indoor67 

Model Accuracy 

ThiNet ∗ 62.69% 

ThiNet 64.25% 

ThiNet w/ pm-i 64.60% 

ThiNet w/ pm-o 65.37% 

ThiNet w/ pm-i&o 65.66% 

VGG-16 73.80% 

VGG-16 w/ pm-i 74.80 % 

preResNet-200 72.62% 

preResNet-200 w/ pm-i 73.35% 

preResNet-200 w/ pm-o 73.45% 

preResNet-200 w/ pm-i&o 73.20% 

Fine-Grained classification on CUB-200 

Model Accuracy 

ThiNet ∗ 64.67% 

ThiNet 64.90% 

ThiNet w/ pm-i 64.93% 

ThiNet w/ pm-o 65.90% 

ThiNet w/ pm-i&o 66.02% 

VGG-16 72.01% 

VGG-16 w/ pm-i 72.50% 

preResNet-200 79.12% 

preResNet-200 w/ pm-i 79.33% 

preResNet-200 w/ pm-o 79.64% 

preResNet-200 w/ pm-i&o 79.81 % 

R-FCN Detection 

Model mAP 

ResNet-50 77.60% 

ResNet-50 w/ pm-o 76.60% 
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he MPN-COV-ResNet-50 model, we achieve 78.02% accuracy while

PN-COV-ResNet-50 pm-o gets 78.92% accuracy on it. 

From these results, we have these findings: 

• Power Mean Transformation can effectively perform joint train-

ing with other non-linear layers. 

• Power Mean Transformation adds a different kind of non-

linearity to CNN models, compared to traditional non-linear

layers like the bilinear or MPN-COV layer. We can work to-
gether with these layers, and achieve even higher accuracy.  
. Visualizations and analyses 

This section will give some visualization results on Power Mean

ransformation and some theoretical analyses of why Power Mean

ransformation works. 

For pm-o, it is easy to explain why it works. After the feature

xtraction part of CNN models, the remaining classification part is

ften composed with one or a few simple fully connected layers,

hich can be seen as a simple linear (or non-linear) classifier. As

hown by Wu and Yang [18] , PmSVM has better accuracy than lin-

ar SVM. Hence, when we come into the CNN models, Power Mean

ransformation should also perform better than basic fully con-

ected layers with its guided non-linearity, and our experiments

alidated this hypothesis. 

For pm-i, i.e., adding Power Mean Transformation before any

onvolution layer, it is more complicated to analyze than pm-o be-

ause convolution layers have changed the semantic meanings. We

se the excitation back propagation (exBP) algorithm [47] , which

s a powerful visualization algorithm that can model the top-down

ttention of a CNN classifier for generating task-specific attention

aps. The algorithm can tell us the location of CNN’s attention

n specific layers. In our experiments, since we want to focus on

he input images, we set the target layer to the input layer, i.e.,

e directly watch the focus on input images. For implementation

etails, we perform the original pre-processing on input images

rst. Then we do the signed ln (1 + x ) and ( ln (1 + x )) 2 transforma-

ion of inputs. After that step, we get three tensors with H × W × 3

hapes (including the original image tensor). 

exBP will return backprop gradients for each location of inputs

s results. After getting results of exBP on three image tensors,

e use this strategy to visualize our images: for each tensor, we

umming it up along the depth dimension. After that, we use the
2 
3 quantile as the threshold of inputs. For those spatial locations

hose values are larger than the threshold, we set the pixels as

ed (i.e., these pixels are highlighted). Otherwise, we set the pixels

s their original values. The final figure is in Fig. 3 . 

Among these figures, we can have the following findings: 

• It’s obvious to see that the ln (1 + x ) and ln 

2 (1 + x ) highlighted

maps focus on different areas. The ln (1 + x ) part mostly focuses

on the continuous area, while the ln 

2 (1 + x ) part mainly fo-

cuses on discontinuities. For example, we can look into the bird

picture (the third row). We find that ln (1 + x ) excitation is al-

most focused on the bird, while ln 

2 (1 + x ) excitation is mostly

on discontinuities, e.g., the borders and tails. Because disconti-

nuity is obviously high frequency information and regions with

slowly-changing textures are low-frequency, we conclude that

the ln (1 + x ) heat map is highlighted for low frequency and the
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Fig. 3. The exBP heat map of VGG16 baseline model and VGG16 pm-i model. The first column shows the input images. The second and third column show the ln (1 + x ) 

and ( ln (1 + x )) 2 heat map for VGG16 pm-i model. The fourth column shows the fused heat map of the second and third column. The fifth column shows the heat map of 

the VGG16 model. For these visualized outputs, the red regions mean that particular model is focused on these regions. The picture is best viewed in the electronic version. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2 (1 + x ) heat map is highlighted for high frequency informa-

tion. 

• When we combined the low-frequency and high-frequency

parts, the highlighted parts often occupy the whole object.

However, for the original VGG16 model, the highlighted area

does not include the whole object, as we see in the fourth col-

umn and fifth column. This phenomenon may explain why pm-

i works. 

6. Conclusion 

In this paper, we first investigate the Power Mean SVM, which

is an effective non-linear SVM with linear computational com-

plexity. Motivated by the efficient asymmetric kernel approxima-

tion function in Power Mean SVM, we explore the non-linearity

of CNN linear layers, adopting related kernel approximating tech-

niques into CNN, adding a new pattern of non-linearity to current

CNN models and propose a simple but effective transformation,

Power Mean Transformation, to integrate into CNN models. Various

results on CIFAR-10 and ImageNet show that our transformation

improves the capacity of CNN models with negligible parameter

and execution time increase. Furthermore, transfer learning exper-

iments validate that Power Mean Transformation brings generaliza-

tion ability to CNN models. Finally, Visualization experiments illus-

trate why Power Mean Transformation works. In the future work,

we will further focus on exploring Power Mean Transformation

with fewer parameters and applying Power Mean Transformation

to more places in CNN models. 
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