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Abstract

CLIP has demonstrated remarkable generalization across di-
verse downstream tasks. By aligning images and texts in a
shared feature space, they enable zero-shot classification via
hand-crafted prompts. However, recent studies have shown
that hand-crafted prompts may be unsuitable in practical ap-
plications. Specifically, choosing an appropriate prompt for a
given task requires accurate data and knowledge, which may
not be obtainable in practical situations. An inappropriate
prompt can result in poor performance. Moreover, if there is
no training data, tuning prompts arbitrarily through unlabeled
test data may lead to serious performance degradation when
giving hand-crafted prompts. Our study reveals that the afore-
mentioned problems are mainly due to the biases in testing
data (Data Bias) and pre-trained CLIP model (Model Bias).
The Data Bias makes it challenging to choose an appropriate
prompt, while Model Bias renders some predictions inaccu-
rate and biased, which leads to error accumulation. To address
these biases, we propose robust test-time Adaptation for zero-
shot Prompt tuning (ADAPROMPT). Specifically, we ensem-
ble multiple prompts to avoid the worst-case results and dy-
namically tune prompts to adapt to Data Bias during testing.
Furthermore, we adopt a confidence-aware buffer to store bal-
anced and confident unlabeled test data to tune prompts in
order to overcome Model Bias. Our extensive experiments
on several benchmarks demonstrate that ADAPROMPT alle-
viates model bias, adapts to data bias and mostly outperforms
the state-of-the-art methods at a small time cost. Moreover,
our experimental results reveal that ADAPROMPT hardly en-
counters any performance degradation on these datasets.

Introduction
Benefited from recent advances in computer vision (Radford
et al. 2021; Jia et al. 2021) and natural language process-
ing (Kenton and Toutanova 2019; Brown et al. 2020; Shi,
Wei, and Li 2024), large pre-trained vision-language models
like CLIP (Radford et al. 2021) have shown the outstanding
generalization on numerous downstream tasks. These mod-
els align visual and textual contents within a common fea-
ture space through training with millions of noisy image-
text pairs. This enables zero-shot classification (Wei et al.
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2022) using appropriately hand-crafted prompts, greatly re-
ducing the cost of deploying models in real-world applica-
tions. However, the appropriate prompt, which is challeng-
ing to choose in practical applications, plays a crucial role in
downstream tasks.

Prompt tuning, a method that optimizes the prompt by us-
ing data from downstream tasks, is an effective way to tackle
the previous problems. Some studies (Zhou et al. 2022b,a)
optimize the prompt with the help of training data, which can
eliminate the need for us to manually select prompts. How-
ever, we need to collect accurate data for training, which
may be difficult or expensive in practical situations. Recent
studies (Shu et al. 2022) propose to fine-tune the prompt by
using unlabeled test data, solving the problem of unavailable
training data (Guo, Zhou, and Li 2020; Zhu et al. 2023; Tian
et al. 2023; Jia et al. 2024; Guo and Li 2024). However, they
encounter performance degradation on certain domains. In
addition, they also use a large amount of data augmentation,
which requires the model to predict at a long time cost.

Therefore, it is urgent to study a zero-shot classification
method that does not require us to manually choose the op-
timal prompts and can also solve the robustness of prompt
tuning at a small time cost. We demonstrate that existing
problems are caused by two biases, Data Bias and Model
Bias, through experimental results. Specifically, Data Bias
causes a problem that the performance of different prompts
can vary across datasets, resulting in the difficulty of select-
ing an optimal prompt for downstream tasks. Model Bias
causes prediction biases towards specific classes, leading to
error accumulation. And the errors accumulated by Model
Bias will finally result in performance degradation problem.

To this end, we propose robust test-time adaptation for
zero-shot prompt tuning, which updates the efficient and re-
liable prompts for CLIP model at a small time cost by us-
ing unlabeled test data. To tackle the Data Bias, we propose
an ensemble-tuning method for prompts optimization during
the testing. Specifically, we ensemble multiple hand-crafted
prompts, such as ”an image of a”, ”a colorful picture of a”
and ”a noisy image of a”, to avoid the worst-case prediction.
Meanwhile, we fine-tune all prompts with unlabeled test
data to adapt to Data Bias. Then, a confidence-aware data
buffer is proposed to eliminate the problem of Model Bias
during the updating process. Specifically, we store high-
confidence, class-balanced samples, which ensures robust



Figure 1: Relative performance compared to the average per-
formance of prompts evaluated on CIFAR10-C in 15 do-
mains with corruption level 3 using different initial prompts.

updates in a balanced and confident way as much as pos-
sible. The experiments show that ADAPROMPT mostly out-
performs the state-of-the-art methods and hardly encounters
any performance degradation on several benchmarks spend-
ing a small amount of time.

Our main contributions are highlighted as follows:
(a) We empirically analyze existing prompt tuning methods

by using unlabeled test data. Based on our analysis, we
point out the Data Bias and Model Bias issues. Existing
methods cannot address these two issues effectively at a
small time cost.

(b) We propose the novel ADAPROMPT, containing Prompt
Ensembling, Test-time Prompt Tuning, and Confidence-
aware Buffer, which effectively tackles the previously
proposed Data Bias and Model Bias issues.

(c) We evaluate our framework on multiple benchmark
datasets. Our experiment results show that the proposed
ADAPROMPT mostly outperforms the state-of-the-art
test-time prompt tuning methods consuming a small
amount of time.

Problem and Analysis
This section provides an overview of the problems and the
notations used. We describe zero-shot classification with
CLIP model and then introduce problems of tuning prompts
through using unlabeled test data. Specifically, we analyze
the two major problems in previous studies (Wei et al. 2022;
Shu et al. 2022), i.e. Data Bias and Model Bias.

Problem Formulation
We focus on the multi-class classification with input space
X ∈ RC×H×W and Y = {y1, ..., yK} for a K-class classifi-
cation task. We denote a CLIP (Radford et al. 2021) model
as F = {Evisual,Etext}, with Evisual and Etext being the
image and text encoders.

In the zero-shot classification task, we are given a CLIP
model F and a single test sample xt ∈ X of class yt, where
xt ∈ X and yt ∈ Y . Then, we prepend a hand-crafted

Figure 2: Relative performance compared to baseline evalu-
ated on CIFAR10-C in 15 different domains with corruption
level 3. The black line represents the baseline.

prompt prefix, such as p=”a photo of a”, to every yi ∈ Y
to form the category-specific text inputs {p; yi}. We pass
these category-specific text inputs to the text encoder to get
the text features {t1, ..., tK}, where ti = Etext({p; yi}).
Each text feature ti is paired with the image feature vt =
Evisual(xt) to compute a similarity score si = sim(ti, vt),
where sim(·, ·) denotes the cosine similarity. The predic-
tion probability on xt can be denoted by f(yi|xt;p) =

exp(si·τ)∑K
j=1 exp(sj ·τ)

, where τ is the pre-defined temperature of the

softmax function.
In test-time prompt tuning, we apply the CLIP model F

to downstream tasks with a hand-crafted prompt p0, which
is a learnable vector. The probability of zero-shot prediction
is denoted as f(yi|x;p) : X → [0, 1]. At each timestamp t,
the model adaptively evolves its parameter pt−1 → pt using
unlabeled test data and gives the predictions. The goal of
ADAPROMPT is to adaptively update the prompt in a single
domain for better performance.

Problem Analysis
The empirical results presented in Figure 1 illustrate that the
optimal prompt varies across domains. Specifically, we de-
fine ”an image of a” as the Prompt A and use ”a noisy picture
of a” as the Prompt B. The black dashed line indicates the
average performance of these two prompts on each domain.
The relative performance of Prompt A and Prompt B rises
and falls on different domains, which demonstrates that the
certain prompt may perform well in a given domain, while
it may perform badly in other domains. The results indi-
cates that it is difficult to choose a prompt that is optimal
for all domains. Without any knowledge or data from the
specific downstream task, it is impossible to choose an effec-
tive prompt for zero-shot classification. We named this phe-
nomenon described above Data Bias. This phenomenon re-
quires the zero-shot classification method to adaptively op-
timize prompts for different data.

Recent studies, e.g., TPT (Shu et al. 2022), propose to
tune the prompt at test time, which tries to solve the problem
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Figure 3: ADAPROMPT for image classification. We select confident samples from unlabeled test data stream by ensembling
multiple prompts and push them into the confidence-aware buffer, which is used to store confident and balanced samples. Then,
ADAPROMPT extracts samples from the buffer and adaptively updates all the prompts, which adapts prompts to current data.

of Data Bias. They optimize prompt using only unlabeled
test data by minimizing the following marginal entropy:

L(x) = −
K∑

k=1

f̃(yk|x;p)logf̃(yk|x;p) (1)

They additionally adopt test-time augmentation (Shan-
mugam et al. 2021) and confidence-based sample selection
methods to enhance robustness of test-time prompt tuning:

f̃(y|x;p) =
1

ρN

N∑
i=1

1[H(fi) ≤ α]f(y|Ai(x);p) (2)

where α is the entropy threshold and the ρ is a cutoff per-
centile parameter on N augmentation functions A(x) across
augmented views. Although TPT adopts test-time augmen-
tation to enhance the robustness of prompt tuning, they need
63 random data augmentation for each image and then re-
set their prompt state, which consumes a lot of time to pre-
dict. Futhermore, our experimental results in Figure 2 indi-
cate that it still faces performance degradation compared to
baseline across multiple domains. We claim that this phe-
nomenon is caused by Model Bias, i.e., the pre-trained CLIP
model has prediction bias in different domains. Test-time
prompt tuning accumulates these errors further into the opti-
mized prompt and ultimately leads to performance degrada-
tion. Moreover, Model Bias disables TPT method to contin-
uously tune the prompts, leading to the collapse of the model
as demonstrated in Table 1.

Methodology
Existing studies (Shu et al. 2022; Wei et al. 2022) us-
ing the pre-trained CLIP model face two serious problems:
Data Bias and Model Bias. In this section, we propose
ADAPROMPT with three modules:
(a) Prompt Ensembling: We use multiple prompts to ensem-

ble the output results, alleviating the negative impact of
Data Bias on a single prompt and avoiding the worst-
case prediction.

(b) Test-time Prompt Tuning: We use unlabeled test data to
tune the prompts in order to adapt them to the Data Bias
and improve the accuracy of prediction.

(c) Confidence-aware Buffer: Due to Model Bias, imbal-
anced prompt tuning can lead to error accumulation.
Therefore, we use a confidence-aware buffer to store
confident and balanced samples and use them to update
prompts to alleviate the Model Bias.

Note that ADAPROMPT is independent on TPT. Test-time
augmentation, used in TPT, also can enhance robustness of
ADAPROMPT. However, a lot of data augmentations(63 for
each image in TPT) will consume a lot of time through CLIP
model, which may not be a good choice for test data stream
in practical situations. Below we present a detailed descrip-
tion of three modules in ADAPROMPT. The overall illustra-
tion of ADAPROMPT framework is presented in Figure 3.

Prompt Ensembling
As described in Section Problem Analysis, performance of
different prompts can vary across domains. So we use dif-
ferent hand-crafted prompts and ensemble their predictions



Algorithm 1: Confidence-aware Buffer
Input: sample xt, pseudo label ŷ(xt), confidence c(xt)
Parameter: threshold τ

1: if c(xt) > τ then
2: if buffer is not full then
3: Add(xt,ŷ(xt),c(xt))
4: else
5: M← majority class(es) in buffer
6: if ŷ(xt) /∈M then
7: Randomly select a class and discard one instance

(xi,ŷ(xi),c(xi)) with the lowest confidence in
that class where ŷ(xi) ∈M

8: Add(xt,ŷ(xt),c(xt))
9: else

10: c(xj) ← the minimum confident value in class
ŷ(xt)

11: if c(xj) < c(xt) then
12: Discard the instance (xj ,ŷ(xj),c(xj)) in buffer
13: Add(xt,ŷ(xt),c(xt))
14: end if
15: end if
16: end if
17: end if

to alleviate the negative effects of Data Bias and avoid the
worst-case results. Let M denote the number of prompts
we use. We obtain the ensembled probability of different
prompts in the following formulation:

f̂(y|xt;p) =
1

M

M∑
i=1

f(y|xt;p
i) (3)

Specifically, we use a common small number of hand-
crafted prompts, such as ”an image of a”, ”a colorful image
of a” and ”a noisy picture of a”. And we obtain pseudo label
and confidence for each sample in following formulation:

ŷ(xt) = argmaxkf̂(yk|xt;p)

c(xt) = maxkf̂(yk|xt;p)
(4)

Test-time Prompt Tuning
In order to adapt all prompts to test data stream, we optimize
all prompts using unlabeled test data by cross-entropy loss.
The optimization objective is formalized as follows:

L(xt) = −
K∑

k=1

ŷk(xt)log f̂(yk|xt;p) (5)

where K represents the number of classes and ŷ repre-
sents the pseudo label obtained by Eq. (4). The purpose of
minimizing cross-entropy loss is to make the model more
confident in the predicted samples, which can adapt prompts
to Data Bias and improve the accuracy of predictions.

Confidence-aware Buffer
The temporal incoming batch of samples is random and the
predictions may be biased and inaccurate, and thus adap-

tation with a batch of biased and inaccurate unlabeled test
samples by Eq. (5) may exacerbate the bias of model predic-
tions and degrade the performance of the model. To alleviate
the problem of Model Bias, we propose a confidence-aware
buffer that uses a small buffer with confidence as the priority
and pseudo label balanced to store unlabeled samples from
test data stream. For confidence as the priority, the higher
confidence of the sample, the more accurate the prediction
will be, making it less likely to cause erroneous updates. For
pseudo label balance, we first compute the majority class(es)
in the buffer and then replace the lowest confident sample of
the majority class(es) with a new one. In addition, to ensure
the accuracy of the samples entering the buffer, we use a
threshold τ to filter out samples with low confidence. We
detail the algorithm of confidence-aware buffer as a pseudo-
code in Algorithm 1. Through the mechanism of confidence-
aware buffer, we can ensure robust updates in a balanced and
confident way by using samples in buffer, which can allevi-
ate the Model Bias.

Experiments
In this section, we conduct experiments to answer the fol-
lowing questions:

RQ1: Does our proposed method perform better than ex-
isting test-time prompt tuning methods?

RQ2: Whether our proposed method alleviate the problem
of Data Bias?

RQ3: Does ADAPROMPT relieve the problem of Model
Bias on CLIP model?

Experimental Setup
Datasets. We conduct experiments on two standard
benchmarks: CIFAR10-C and CIFAR100-C (Hendrycks and
Dietterich 2019), which contain 15 corrupt testing sets. Each
corrupt testing set has 10000 32 × 32 test images associated
with 10/100 classes. Different from the previous methods
that require training on the training set, we directly update
prompts with unlabeled test data and then predict on them.
We report the results evaluated on two different corruption
level, 3 and 5.

Compared Methods. We compare our ADAPROMPT with
the existing test-time prompt tuning methods that are de-
signed for CLIP. CLIP (Radford et al. 2021), as our base-
line, proposes to use contrastive loss to pull together im-
ages and their textual descriptions while pushing away un-
matched pairs in the feature space. TPT (Shu et al. 2022)
optimizes the prompt with a single test sample to encourage
consistent predictions across augmented views by minimiz-
ing the marginal entropy and introduce confidence selection
to filter out noisy augmentations. TPT-Continual continu-
ously updates prompt with each sample in a single domain.
In addition, all compared methods use a default prompt ”a
photo of a”.

Implementation Details. We adopt the pre-trained CLIP
model where visual model is ViT-B/16 (Dosovitskiy et al.



Dataset CIFAR10-C(s=3) CIFAR10-C(s=5) CIFAR100-C(s=3) CIFAR100-C(s=5)

Methods Source TPT Ours Source TPT Ours Source TPT Ours Source TPT Ours

Noise
Gauss. 50.03 52.86 54.50 38.00 40.08 42.48 27.81 25.54 28.61 19.60 17.31 21.92
Shot 61.74 63.32 64.92 43.14 44.74 47.89 33.81 32.22 35.30 21.36 19.04 23.95
Impul. 78.59 78.87 81.36 56.70 59.08 60.59 47.30 47.63 50.51 25.31 25.65 30.06

Blur

Defoc. 85.46 85.25 87.69 72.88 72.10 74.98 60.10 60.55 60.54 42.52 42.73 43.07
Glass 54.26 53.95 59.29 42.59 43.19 47.51 29.35 29.21 30.38 20.06 19.97 20.91
Motion 77.15 77.06 78.52 70.96 70.14 72.54 48.69 48.86 49.69 43.15 42.63 42.46
Zoom 81.57 81.35 84.29 74.66 74.89 78.30 56.08 55.96 57.22 47.89 48.12 48.72

Weather

Snow. 81.01 81.18 84.52 74.74 75.32 78.26 53.90 55.41 56.34 48.35 49.19 48.95
Frost 81.13 81.02 84.60 78.40 78.33 80.19 53.12 53.89 55.05 49.72 50.43 50.89
Fog 86.60 86.49 89.10 71.66 72.54 73.14 60.77 61.64 61.33 41.64 42.71 42.45
Brit. 88.92 88.67 91.53 85.00 85.12 88.06 64.88 65.39 66.64 57.02 57.58 59.07

Digital

Contr. 87.11 87.70 89.28 63.00 70.80 67.95 59.77 61.18 61.58 34.54 38.06 36.84
Elastic 80.27 80.75 83.46 55.40 57.10 58.88 52.53 53.43 55.01 29.21 30.05 30.56
Pixel 75.18 75.98 81.54 48.09 52.24 57.21 51.09 51.94 53.29 23.94 25.15 27.50
JPEG 69.51 69.82 72.67 60.30 61.55 63.83 39.68 40.17 42.40 32.46 32.43 34.29

Avg. 75.90 76.29 79.15 62.37 63.81 66.12 49.26 49.54 50.93 35.78 36.07 37.44

Table 1: Comparison with state-of-the-art test-time prompt tuning methods on CIFAR10-C and CIFAR100-C benchmarks with
corruption level 3 and 5. We conduct separate tests on 15 different domains for each benchmark. We omit std in this table due
to space issues. The best results are indicated in bold. Our method outperforms comparison methods in almost all cases. The
best performance is in bold.

Method CIFAR10-C(s=3) CIFAR10-C(s=5)

PA 75.91 ± 0.00 62.37 ± 0.00
PB 76.21 ± 0.00 62.77 ± 0.00
PC 72.98 ± 0.00 59.25 ± 0.00

Pbest + UP. 77.72 ± 0.24 65.32 ± 0.18
Pe 75.38 ± 0.00 61.75 ± 0.00

Pe + UP. 79.15 ± 0.23 66.12 ± 0.43

Table 2: Evaluation of each module on CIFAR10-C with cor-
ruption level 3 and 5. The average accuracy of different mod-
ules on 15 different domains is shown.

2021) as the backbone and don’t involve any training pro-
cess. For baseline, we use a non-updated CLIP with a hand-
crafted prompt, which is ”a photo of a”, to predict the results.
For TPT, we use their original hyperparameters in their pa-
per. For TPT-Continual, we use the same hyperparameters
as TPT. For ADAPROMPT , we set 64 as our buffer size and
three different hand-crafted prompts for ensembling, which
are ”an image of a”,”a colorful image of a” and ”a noisy pic-
ture of a”. Moreover, we set the batch size to 64 following
previous studies (Boudiaf et al. 2022; Niu et al. 2022). The
AdamW optimizer optimizes all the prompts with a learning
rate of 0.005. We report mean ± std accuracy over five runs
with random seed setting to 0, 1, 2, 3, 4.

Experimental Results
RQ1: Does our proposed method perform better than ex-
isting test-time prompt tuning methods?

To demonstrate the effectiveness of ADAPROMPT, we
compare ADAPROMPT with the existing test-time prompt

tuning methods to answer the question. Table 1 gives the
detailed results on CIFAR10-C and CIFAR100-C datasets
with corruption level 3 and 5. We evaluate each method on a
single domain in order. The results show that ADAPROMPT
consistently outperforms existing test-time prompt tun-
ing methods on almost every domain. Especially on the
CIFAR10-C dataset with corruption level 3, our method
achieves optimal results in each domain and 2.86% average
accuracy improvement compared to the SOTA method TPT.

RQ2: Whether our proposed method alleviate the problem
of Data Bias?

To validate that our method alleviates Data Bias on the
pre-trained CLIP model, we add a set of ablation experi-
ments. The detailed results are shown in Table 2. Table 2
gives the average results on CIFAR10-C dataset with cor-
ruption level 3 and 5. The first three rows show the aver-
age performance of using three different prompts separately.
Then, we select the best prompt from the first three rows
and update it in a single domain, which is shown in the
fourth row. Moreover, we ensemble the predictions of three
prompts without updates in the fifth row. Finally, we update
all prompts and ensemble their outputs in the last row. We
can find that although the performance of ensembling with-
out updates may not be as good as a certain good prompt, we
do avoid the worst prediction results of a single prompt. Fur-
thermore, we adapt the prompts to test data stream by updat-
ing all prompts, which improves performance and thereby
alleviates Data Bias. To further explain how the hand-craft
prompts affect performance, we present the performance of
different hand-crafted prompts.



Methods Source TPT TPT-C Ours

Noise
Gauss. 15.72 16.29 0.52 17.52
Shot 23.44 23.86 0.52 26.47
Impul. 17.47 17.58 0.52 20.76

Blur

Defoc. 32.43 32.65 0.58 34.39
Glass 11.88 12.51 0.52 14.45
Motion 31.97 32.31 0.54 33.98
Zoom 30.99 31.57 0.54 33.32

Weather

Snow. 29.69 30.90 0.55 32.82
Frost 32.98 33.25 0.58 36.30
Fog 35.81 36.36 0.58 37.97
Brit. 43.95 43.62 0.60 46.80

Digital

Contr. 22.56 23.00 0.52 25.52
Elastic 38.14 38.74 0.58 40.78
Pixel 26.38 27.72 0.55 29.42
JPEG 37.54 37.56 0.64 40.72

Avg. 28.73 29.20 0.55 31.42

Table 3: Comparison with SOTA test-time prompt tun-
ing methods on TinyImageNet-C with corruption level 3.
ADAPROMPT outperforms them in all domains.

RQ3: Does ADAPROMPT relieve the problem of Model
Bias on CLIP model?

To verify ADAPROMPT’s effectiveness in relieving Model
Bias, we conduct experiments in CIFAR100-C contrast do-
main with corruption level 3. The details are shown in Fig-
ure 4. We can see that performance of TPT-Continual be-
comes very bad, which validates that Model Bias has a
significant impact on model updates. Compared with base-
line, our method achieves performance improvement, which
proves that ADAPROMPT relieves Model Bias.

Ablation Study
We investigate the contribution of each module on the
CIFAR10-C dataset with corruption level 3 and 5. The re-
sults are shown in the Table 4. The first row gives the perfor-
mance of a non-updated CLIP with the best prompt among
three prompts we set. Then, in the second row, Me is added
to ensemble all prompts. We can see that using only mul-
tiple prompts for ensembling without updates may not im-
prove performance. Moreover, Mu is added to update the
prompt in a balanced way by using unlabeled test data in
buffer. We can see that balanced updates can adapt to Data
Bias in the third row. Finally, we show the performance of all
modules in the fourth row. We can see that updating multiple
prompts together and then ensembling can adapt to current
test data stream better, which verifies the effectiveness of
ADAPROMPT and validates that the two modules, i.e., Mu

and Me, are crucial to our framework.

More Discussion
Different visual backbones. We show the average perfor-
mance of different visual backbones on CIFAR10-C with
corruption level 3, such as RN50 and ViT-B/32. In Table 5,
ADAPROMPT can also achieve performance improvement in
different backbones.

Component CIFAR10-C(s=3) CIFAR10-C(s=5)
Me Mu

76.21 ± 0.00 62.37 ± 0.00
✓ 75.38 ± 0.00 61.75 ± 0.00

✓ 77.72 ± 0.24 65.32 ± 0.18
✓ ✓ 79.15 ± 0.23 66.12 ± 0.43

Table 4: Ablation study of ADAPROMPT on CIFAR10-C
dataset with corruption level 3 and 5. The average accuracy
on 15 different domains is reported.

Acc(%) Source TPT Ours

RN50 47.70 ±0.00 51.44 ±0.02 55.44 ± 0.30
ViT-B/32 71.30 ±0.00 73.77 ±0.03 75.81 ± 0.33

Table 5: Average accuracy of CIFAR10-C in different 15 do-
mains with corruption level 3 on different backbones.

Running time consumption. We explore the consump-
tion of running time for different methods. In Table 6, it can
be seen that ADAPROMPT consumes much less time than
TPT. When using CLIP model with longer inference time
than traditional models (such as CNN) for predictions, the
running time may also be a factor to consider.

Results on TinyImageNet-C and ImageNet-R. From Ta-
ble 3, we present the performance of ADAPROMPT on
TinyImageNet-C with corruption level 3, which contains
200 prediction classes and 15 different domains. We can see
that ADAPROMPT achieves optimal performance on 15 dif-
ferent domains and achieves 2.22% average accuracy im-
provement compared to the SOTA method TPT. The results
on ImageNet-R, which contains 200 prediction classes and
30000 testing images with artistic renditions, are shown in
Table 6. Although ADAPROMPT do not outperform TPT,
TPT uses 63 random data augmentations for each image,
which greatly consumes time and storage costs. Moreover,
to make a more holistic comparison with TPT, we present
accuracy and time cost on other datasets in the appendix.

The effect of confidence selection. We present confidence
threshold as a component of ADAPROMPT, which is used to
select confident samples pushed into the buffer. In Figure 6,
we provide the performance at different confidence thresh-
olds on CIFAR100-C with corruption level 3. We can see
that different thresholds have little impact on performance.

The trade-off between storage cost and accuracy. We
analyze the impact of buffer size on performance. In Fig-
ure 5, we show the average performance of 15 domains in
the CIFAR100-C with corruption level 3. When the capac-
ity of buffer increases, more samples are used for updating,
resulting in better performance and more storage cost.

Related Work
Test-time Adaptation. Test-time adaptation (Zhou et al.
2023a,b, 2021; Zhou, Jin, and Li 2024) aims to adapt a
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source model to the distribution shift in testing data with-
out using any source data. TENT (Wang et al. 2021) in-
troduces entropy minimization to update the BN (Ioffe and
Szegedy 2015) layers at test time. EATA (Niu et al. 2022)
additionally proposes the sample selection and weighting
strategies for efficiency. NOTE (Gong et al. 2022) adopts
instance-aware batch normalization and prediction-balanced
reservoir sampling to ensure robustness under non-i.i.d. sce-
narios. However, for these TTA methods that update the BN
layer parameters of the model, the vision-language model
uses LN (Xu et al. 2019) instead of BN. CoTTA (Wang et al.
2022), another way to update model parameters, adopts the
weight-averaged model, augmentation-averaged prediction,
and stochastically restores to enable the continual adaptation
ability in changing environments, which updates all param-
eters of the model. However, the vision language model has
a large number of parameters, and updating the entire model
is time-consuming and may not necessarily improve perfor-
mance due to the small size of the dataset. Therefore, tradi-
tional TTA methods cannot be directly transferred to vision-
language models. In this work, we propose test-time prompt
tuning that works on a single domain in the vision-language
model. Our work does not involve any training process and
can directly work with the zero-shot classification.

Prompt tuning. Prompt tuning (Hossain et al. 2021;
Li and Liang 2021) is first proposed in natural lan-
guage processing(NLP), hoping to adapt pre-trained visual-
language models to various downstream tasks. Recently, the
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Figure 6: Performance of ADAPROMPT with different con-
fidence threshold on CIFAR100-C with corruption level 3.

Dataset Metrics Source TPT Ours

CIFAR10-C Acc(%) 62.37 63.81 66.12
Time cost(s) 393.15 41257.35 2143.8

ImageNet-R Acc(%) 70.86 74.19 73.98
Time cost(s) 98.11 9875.10 531.30

Table 6: The time consumption and accuracy in CIFAR10-C
with corruption level 5 and ImageNet-R with ViT-B/16.

idea of prompt has been transferred to some multi-modal
tasks. CoOp (Zhou et al. 2022b) applies prompt tuning to
CLIP (Radford et al. 2021), which proposes to use con-
trastive loss to pull together images and their textual descrip-
tions while pushing away unmatched pairs in the feature
space. CoOp effectively improves CLIP’s performance on
the corresponding downstream tasks by tuning the prompt
on a collection of training data. However, the learning of
these prompts requires training data, which may not be avail-
able in practical situations. Recently, TPT (Shu et al. 2022)
proposes test-time prompt tuning that works on a single test
sample. However, TPT encounters performance degradation
on certain domains and requires a significant time cost for
data augmentation. Our paper focuses on solving the prob-
lem of performance degradation and alleviating Model Bias
and Data Bias, which further adapts the model to the current
data at a small time cost.

Conclusion
In this paper, we study the problems of zero-shot classifi-
cation based on the pre-trained CLIP model. We show that
existing methods suffer from two fundamental issues: Data
Bias and Model Bias. These issues significantly weaken
the robustness of existing methods and lead to performance
degradation problems. Therefore, we propose robust test-
time adaptation for zero-shot prompt tuning. For Data Bias,
we ensemble multiple hand-crafted prompts and fine-tune all
prompts with unlabeled test data. For Model Bias, we store
high-confidence, class-balanced samples in a confidence-
aware buffer, which ensures robust updates in a balanced and
confident way. Extensive experiments on multiple bench-
mark datasets demonstrate our method mostly achieves
SOTA performance at a small time cost.
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