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Abstract

Spiking neural networks have attracted increasing attention in recent years due
to their potential of handling time-dependent data. Many algorithms and tech-
niques have been developed; however, theoretical understandings of many aspects
of spiking neural networks are far from clear. A recent work [44] disclosed that
typical spiking neural networks could hardly work on spatio-temporal data due
to their bifurcation dynamics and suggested that the self-connection structure has
to be added. In this paper, we theoretically investigate the approximation abil-
ity and computational efficiency of spiking neural networks with self connections,
and show that the self-connection structure enables spiking neural networks to
approximate discrete dynamical systems using a polynomial number of parame-
ters within polynomial time complexities. Our theoretical results may shed some
insight for the future studies of spiking neural networks.

1 Introduction

The past decades have witnessed an increasing interest in spiking neural networks (SNNs) due to
their great potential of modeling time-dependent data [28, 32, 37]. The fundamental units of SNNs
are usually formulated as the combination of an integrated process (e.g., some first-order parabolic
equations) and a step firing function. There has been significant progress on computational and
implementation techniques for SNNs in computer vision [13, 33], speech recognition [30, 39], rein-
forcement learning [11, 38], few-short learning [16, 22, 25], etc. However, theoretical understand-
ings of many aspects of SNNs, such as the approximation ability and computational efficiency on
spatio-temporal systems, are far from clear.

Some researchers [19, 20, 21, 31] focused on the approximation universality of SNNs, in which some
typical SNNs can simulate the standard computational models such as Turing machines, random
access machines, threshold circuits, sequence-to-sequence mapping, etc. There are also efforts on
the computational efficiency of SNNs for some specific issues, such as the convergence in the limit
results and computational complexity of SNNs for the sparse coding problem [34, 35] and temporal
quadratic programming [5, 8], respectively.

Amazingly, a recent study [44] theoretically proved that, contrary to previous beliefs, typical SNNs
can hardly work well on spatio-temporal data, because they in nature are bifurcation dynamical
systems with fixed eigenvalues in which many patterns inherently cannot be learned. They also
suggested that adding self-connection structure can enhance the representation ability of SNNs on
spatio-temporal systems that fully connect the spiking neurons in the same layer and solves adaptive
eigenvalues of discrete dynamical systems.
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In this paper, we theoretically investigate the approximation ability and computational efficiency of
the self-connection spike neural networks (scSNNs). Our theoretical results show that equipped with
self connections, scSNNs can approximate discrete dynamical systems using polynomial number
of parameters within polynomial time complexities. Our main contributions are summarized as
follows:

• We prove that the proposed scSNNs are universal approximators in Theorem 1.
• As for spatial approximation, we prove that a broad range of radial functions can be well

approximated by scSNNs with polynomial spiking neurons in Theorem 2.
• As for temporal approximation, we prove that multivariate spike flows can be approximated

by scSNNs within polynomial time in Theorem 3 and verify this conclusion in simulation
experiments.

The rest of this paper is organized as follows. Section 2 introduces notations. Section 3 presents the
scSNNs and some related concepts. Section 4 provides three key theorems to show the universal ap-
proximation ability and (parameters and time) complexity of scSNNs for approximating the discrete
dynamical system. Section 5 develops in-depth discussions of the effects led by self-connection.
Section 6 concludes this work.

2 Notations

Here, we provide some useful notations, which are detailed in Appendix. Let [N ] = {1, 2, . . . , N}
be an integer set for N ∈ N+, and | · |# denotes the number of elements in a collection, e.g.,
|[N ]|# = N . Let i =

√
−1 be the imaginary unit, and x ≼ 0 means that every element xi ≤ 0 for

any i. Let the sphere S(r) and globe B(r) be S(r) = {x | ∥x∥ = r} and B(r) = {x | ∥x∥ ≤ r}
for any r ∈ R, respectively. Given a function g(n), we denote by h1(n) = Θ(g(n)) if there
exist positive constants c1, c2 and n0 such that c1g(n) ≤ h1(n) ≤ c2g(n) for every n ≥ n0;
h2(n) = O(g(n)) if there exist positive constants c and n0 such that h2(n) ≤ cg(n) for every
n ≥ n0; h3(n) = Ω(g(n)) if there exist positive constants c and n0 such that h3(n) ≥ cg(n) for
every n ≥ n0; h4(n) = o(g(n)) if there exists positive constant n0 such that h4(n) < cg(n) for
every c > 0 and n ≥ n0.

Let C(K,R) be the set of all scalar functions f : K → R continuous on K ⊂ Rn. Given α =
(α1, α2, . . . , αm)⊤ ∈ Nm, we define

Dαf(x) =
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αm

∂xαm
f(x) ,

where x = (x1, x2, . . . , xn) ∈ K. Further, we define

Cl(K,R) = {f | f ∈ C(K,R) and Drf ∈ C(K,R), for r ∈ [l]} .

For 1 ≤ p < ∞, we define

Lp(K,R) =

{
f

∣∣∣∣∣ f ∈ C(K,R) and ∥f∥p,K ≜
(∫

K

|f(x)|p dx
)1/p

< ∞

}
.

This work considers the Sobolev space W l,p
µ (K,R), defined as the collection of all functions f ∈

Cl(K,R) and Drf ∈ Lp(K,R) for all |α| ∈ [l], that is,

∥Dαf∥p,K =

(∫
K

|Dαf(x)|p dx
)1/p

< ∞ .

This paper employs En to denote the n × n unit matrix and det(·) to indicate the determinant
operation on the matrix. Two n-by-n matrices A and B are called similar, denoted as A ∼ B, if
there exists an invertible n × n matrix P such that B = P−1AP. The general linear group over
field F, denoted as GL(n,F), is the set of n × n invertible matrices with entries in F. Especially,
we define that a special linear group SL(n,F) is the subgroup of GL(n,F) and consists of matrices
with determinant 1. For any field F, the n× n orthogonal matrices form the following subgroup

O(n,F) = {P ∈ GL(n,F) | P⊤P = PP⊤ = En}
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Figure 1: Illustrations of scSNNs and Self Connections.

of the general linear group GL(n,F). Similarly, we have the special orthogonal group, denoted as
SO(n,F), which consists of all orthogonal matrices of determinant 1 and is a normal subgroup of
O(n,F). This group is also called the rotation group, generalizing that linearly transforms geome-
tries while holding the surface orientation.

Let ϕ2(x) be the density function of some probability measure µ, which satisfies∫
x∈Rm

ϕ2(x) dx =

∫
x∈B(1)

1 dx = 1 .

For continuous functions f and g, we have the following equalities under Fourier transform

∥f̂ϕ− ĝϕ∥L2(µ) = ∥fϕ− gϕ∥L2(µ) and f̂ϕ = f̂ ∗ ϕ̂ ,

for the convolution operator ∗.

3 Self-connection Spiking Neural Networks

Let n be the number of spiking neurons, u(t) ∈ Rn and s(t) ∈ Rn denote the vectors of membrane
potentials and spikes in which ui(t) and si(t) are the membrane potential and spikes of neuron
i ∈ [n] at time t ≥ 0, respectively. Inheriting the recognition in [44], we here consider the self-
connection SNN (scSNN) as follows:

dui(t)

dt
= − 1

τm
ui(t) +

∑
j∈[n]

Vijsj(t) +
∑
k∈[m]

WikIk(t) , (1)

where τm is a positive-valued hyper-parameter with respect to membrane time, Ik(t) indicates the
signal from input channel k ∈ [m] at time t, V ∈ Rn×n and W ∈ Rn×m denote the self-connection
and connection weights matrices, respectively. Hence,

∑
k∈[m] WikIk(t) indicates the signal re-

ceived by neuron i at time t, and
∑

j∈[n] Vijsj(t) denotes the effect on the membrane potential
of neuron i when neuron j fires a spike, as illustrated in Figure 1. In general, we force the self-
connection matrix V to be symmetric.

Based on the spike response model scheme [12], Eq. (1) has the following solution with the boundary
condition urest = 0

ui(t) =

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

Vijsj(t) +
∑
k∈[m]

WikIk(t)

)
ds , (2)
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where t′ denotes the last firing time t′ = max{s | ui(s) = ufiring, s < t} for a pre-given firing
threshold ufiring > 0. Spiking neuron model employs the typical threshold rule, that is, neuron i
fires spikes si(t) at time t if and only if ui(t) ≥ ufiring . After firing, the membrane potential is
instantaneously reset to a lower value urest (rest voltage). Note that this work does not consider
using absolute refractory periods [14] or refractory kernels [9].

Let the timing set Ti = {t | ui(t) = ufiring, t ∈ [0, T ]} record the firing times of neuron i and
Ni = |Ti|#. In general, we consider using the firing rate fave

i (T ) = Ni/T to characterize the spike
dynamics, where fave

i (T ) indicates the average number of spikes of neuron i at time interval [0, T ].
It is clearly observed that fave

i (t) is discontinuous since Ni is a step function regarding ui(t) and
time t. To ensure the well-posed characteristics of the firing rate functions, we here employ the spike
excitation function fe : u → s to smooth the firing procedure, for example,

Linear: fe(ui(t)) ≜
ui(t)

ufiring
,

Cos-based: fe(ui(t)) ≜
[
1− cos

(
π

2

t− t(k)

t(k+1) − t(k)

)]⌊
ui(t)

ufiring

⌋
,

(3)

where t(k) and t(k+1) are two adjacent timings from Ti in which k ∈ N+ and t(k) < t(k+1). Sim-
ilar smooth treatments on spike excitation functions can refer to [13, 33]. Thus, fave

i (T ) can be
approximated by an Instantaneous Firing Rate (IFR) function

fi(x, t) = fe(ui(t))/(t− t′) , (4)
where x ∈ Rm, t′ ∈ Ti, and t ∈ [T ]. It is observed that the proposed IFR function fi(x, t) induces
a discrete dynamical system, in which f(·, t) : Rm → R is a Spatial function and f(x, ·) : R → R
is a temporal flow.

About Neural Encoding. The actual input data (e.g., image or video) should usually be pre-
converted into a spiking version before fed up to SNNs. The conversion procedure is called neural
encoding, as shown in Figure 1. There are two main categories of neural encoding approaches: tem-
poral encoding and rate-based encoding; the former encodes input data by exploiting the distance
between time instances that fire spikes [40], and the latter encodes input data as a count sequence
of the fired spikes within temporal windows [18]. The rate-based encoding is the simplest and most
popular scheme in SNNs. The representative techniques are usually encoded by a Poisson distribu-
tion or recorded by a dynamic vision sensor [3, 27]. Recent years have witnessed a lot of efforts on
the information capacity of neural encoding, specially rate-based encoding, from empirical [6, 17]
and theoretical [24, 35, 36] sides. Throughout this paper, we adopt rate-based encoding as the de-
fault and focus on the firing rates of SNNs, generalizing the computational powers concerning the
spike count.

About Firing Rates. When we investigate the dynamics and neural computation of SNNs, the
firing rates or equally the number of firing spikes are the key measure of network activities for in-
vestigating neural computation and model dynamics because of the close relation between firing
rates and network function (including neural input, connectivity, spiking function, and firing pro-
cess) [1, 2]. There are great efforts to use firing rates in SNNs for some real-world tasks, such as
vision [13, 33, 44] and speech recognition [30, 39]. Besides, Barrett et al. [5] and Chou et al. [8]
showed that the averaged firing rate can approximate the optimal solutions of some quadratic pro-
grams within polynomial complexity. This work employs an “instantaneous” firing rate rather than
the averaged firing rate or the total number of firing spikes used in previous studies. This manner
provides a feasible way to construct the discrete dynamical systems using the IFR functions, based
on which we can develop in-depth understandings of SNNs from spatial and temporal aspects.

4 Approximation to Discrete Dynamical Systems

In this section, we first present the universal approximation for scSNNs, and then show the parame-
ters and time complexities of the IFR functions led by scSNNs for approximating discrete dynamical
systems from spatial and temporal aspects, respectively.

4.1 Universal Approximation

Now, we present our first theorem about the universal approximation of scSNNs as follows:
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Definition 1 Let l ∈ N+. The function f(x) is said to be l-finite if f is an l-times differentiable
scalar function that satisfies

0 <

∣∣∣∣∫
R
Dlf(x) dx

∣∣∣∣ < ∞ .

Theorem 1 Let K ⊂ Rm be a compact set. If the spike excitation function fe is l-finite and wi ∈ R
where i ∈ [n], then for all r ∈ [l], there exists some time t such that the set of IFR functions
f(·, t) : K → R of the form f(x, t) =

∑
i∈[n] wifi(x, t) is dense in Cr(K,R).

Theorem 1 shows that the scSNN is a universal approximator, which provides a solid cornerstone
for developing SNNs’ theory.

The proof idea of this theorem can be summarized as follows. We utilize the invertibility of the
Fourier transform on Sobolev space W l,p

µ (K,R) (p > 1), to project the concerned functional space
Cr(K,R) into a characteristic space, and the corresponding objective function is transformed as
a single integral over the characteristic space. According to Fubini’s theorem, the approximation
problem on Cr(K,R) can be converted into another that uses multiple integrals to a single integral
on the characteristic space. The subsequent proof can then be completed along the thought lines of
the technical exposition given by Carslaw and Rogosinski [7]. The full proof of Theorem 1 can be
obtained in Appendix A.

4.2 ϵ-Approximation with Parameters Complexity

This subsection presents our second theorem about the parameters complexity of scSNNs as follows:

Definition 2 We say that g is a radial function if g(x′) = g(x) for any ∥x′∥ = ∥x∥.

Theorem 2 Given a compact set Km ⊂ Rm, a probability measure µ, and a radial function
g : Km → R. For some apposite spike excitation function fe and any ϵ > 0, there exists some
time t such that the radial function g can be well approximated by a one-hidden-layer scSNN of
O(Cm15/4) spiking neurons, that is,

∥f(x, t)− g(x)∥L2(µ) < ϵ .

Theorem 2 shows that the scSNNs with polynomial spiking neurons can well approximate a broad
scope of radial functions, which may shed some insights on that scSNNs admit input rotations [36],
such as the rotation-based data argument techniques [29] and invariant models [23].

This paper provides two ways for proving this theorem. Here, we only introduce the proof idea of the
interesting one (full proof is shown in Appendix B), and another proof way can be accessed in Ap-
pendix C. This proof idea can be summarized as follows. The radial function is invariant to rotations
and dependent on the input norm, corresponding to the phase and norm (i.e., radial) of inputs, respec-
tively. It is observed that s(t) in Eq. (1) induces a local recurrent function concerning the input x(t).
Thus, there exists a collection of parameters such that the IFR function is dependent on the norm of
inputs. Besides, the IFR function admits the phase since V is a symmetric matrix. Thus, there exist
some linear connections (including rotation transformations) such that the weighted aggregation of
these spiking neurons is invariant to rotations. Summing up the approximation recognition, there is
a family of radial functions that can be well approximated by one-hidden-layer scSNNs.

We formally begin our proof of Theorem 2 with some useful lemmas.

Lemma 1 Let g : [r,R] → R be an L-Lipschitz function for r ≤ R. For any δ > 0, Cs ≥ 1, and
n ≤ CsR

2Lm/(
√
rδ), there exist some time t and an IFR function f(x, t) led by a one-hidden-layer

scSNN of n spiking neurons such that

sup
x∈Rm

|g(∥x∥)− f(x, t)| ≤ δ .

Lemma 2 For m > C2 > 0, g : Rm → R is an L-Lipschitz radial function supported on the set

S∆ = {x : 0 < C2

√
m ≤ ∥x∥ ≤ 2C2

√
m} .
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For any δ > 0, there exist some time t and an IFR function f(x, t) led by scSNNs of one-hidden
layer with width at most Cs(C2)

3/2L(m)7/4/δ such that

sup
x∈Rm

|g(x)− f(x, t)| < δ .

Lemma 2 shows that the L-Lipschitz radial functions can be approximated by the IFR function
f(x, t) led by scSNNs of one-hidden layer with polynomial parameters.

Lemma 3 Define

g(x) =

N∑
i=1

ϵigi(x) with gi(x) = I{∥x∥ ∈ Ωi} , (5)

where ϵi ∈ {−1,+1}, N is a polynomial function of m, and Ωi’s are disjoint intervals of width
O(1/N) on values in the range Θ(

√
m). For any ϵi ∈ {−1,+1} (i ∈ [N ]), there exists a Lipschitz

function h : S∆ → [−1,+1] such that∫
Rm

(g(x)− h(x))
2
ϕ2(x) dx ≤ 3

(C2)2
√
m

.

Lemma 3 shows that any non-Lipschitz function h(x) can be approximated and bounded by a Lips-
chitz function with density ϕ2.

Proof of Theorem 2. Let g(x) =
∑N

i=1 ϵigi(x) be defined by Eq. (5) and N ≥ 4C
5/2
2 m2. Accord-

ing to Lemma 3, there exists a Lipschitz function h with range [−1,+1] such that

∥h(x)− g(x)∥L2(µ)
≤

√
3

C2(m)1/4
.

Based on Lemmas 1 and 2, any Lipschitz radial function supported on S∆ can be approximated by
an IFR function f(x, t) led by scSNNs of one-hidden layer with width at most C3Cs(m)15/4, where
C3 is a constant relative to C2 and δ. This means that there exists some time t such that

sup
x∈Rm

|h(x)− f(x, t)| ≤ δ .

Thus, we have
∥h(x)− f(x, t)∥L2(µ) ≤ δ .

Hence, the range of f(·, t) is in [−1− δ,+1 + δ] ⊆ [−2,+2]. Provided the radial function, defined
by Eq. (5), we have

∥g(x)− f(x, t)∥L2(µ) ≤ ∥g(x)− h(x)∥L2(µ) + ∥h(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ .

This implies that given constants m > C2 > 0 and C3 > 0, for any δ > 0 and ϵi ∈ {−1,+1}
(i ∈ [N ]), there exists some time t, such that the target radial function g can be approximated by an
IFR function f(x, t) led by scSNNs of one-hidden layer with range in [−2,+2] and width at most
C3Cs(m)15/4, that is,

∥g(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ < δ1 .

This completes the proof. □

4.3 ϵ-Approximation with Time Complexity

The IFR function generates a discrete dynamical system, comprising a Spatial function and a tem-
poral flow. Both Theorems 1 and 2 focus on the Spatial (e.g., spatial) approximation characteristics
of the IFR function. This subsection investigates its temporal characteristics, especially how long it
takes for a self-connected SNN to achieve a specified task or target function. Now, we present our
third theorem about the time complexity of scSNNs as follows.
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Definition 3 A matrix V ∈ Rm×n (if m ≤ n) is said to be non-degenerate if any m×m sub-matrix
of V has full rank.

Theorem 3 Let n ≥ m. Let xk(t) ∈ π(λk) and E(xk) = λk for λk > 0, k ∈ [m], and t ∈ [T ]. If
V is a non-degenerate matrix, then for any ϵ > 0 and matrix G ∈ Rm×n with ∥G∥2 < ∞, when
the time complexity satisfies

T ≥ Ω

(√
n ∥G∥2

ϵ
√
∥V∥2

)
,

there exists some one-hidden-layer scSNNs with the IFR vector f = (f1, . . . , fn)
⊤ such that

∥Ex [Vf(x, T )]−Gλ∥2 < ϵ . (6)

Theorem 3 shows that without training, the scSNNs can well approximate the multivariate spike
flows (MSF, i.e., linear functions of λ) within an explicit polynomial time complexity. In contrast
to the conventional ANN theory and our proposed theorems above that show the spatial approxima-
tion ability, this theorem portrays the computational efficiency of a flow function led by scSNNs.
Besides, there are few studies on the computational efficiency of SNNs, and we summarize the com-
parative results in Table 1. Notice that approximating specific functions, such as MSF in this work,
is more challenging than solving some problems with locally competitive algorithms [34]. Thus,
it is observed that Theorem 3 provides a rigorous guarantee for SNNs to solve some algorithmic
problems. Besides, Theorem 3 relaxes the dimension of the self-connection matrix V from n×n to
n×m, which provides a more general result for approximating MSF with any dimension.

Table 1: Comparative Results on Computational Efficiency of SNNs.
Works Models Objects Computational Complexity

Tang et al. [35] configured SNNs solving Sparse Coding Problem Convergence
Chou et al. [8] simple SNNs solving Quadratic Programming Polynomial Complexity

Our Work scSNNs with Poisson inputs approximating MSF Polynomial Complexity

The proof idea of this theorem originates from the attractor theory in dynamical systems. One key
lemma is as follows.

Lemma 4 Given U =
√
ΛU Ũ⊤, λ̃ ∈ Rn, and ϵ > 0, when t ≥ Ω

(√
n ∥ΛG∥2

ϵ ∥U∥2

)
, it holds

∥Uf̃(λ̃, t)− λ̃∥ ≤ ϵ, where the modified IFR function f̃(λ̃, t) is led by a scSNN without connection
matrix W and fed up to the constant spike sequence λ̃ at every timestamp.

Lemma 4 shows that when fed up to a constant spike sequence λ̃ at every timestamp, a weighted
sum of IFR functions can converge to an attractor around the inputs within a polynomial temporal
computation. Based on the results of Lemma 4, it suffices to prove that the expectation of the
concerned IFR function f(x, t) can approximate f̃(λ̃, t∗) within time interval [0, T ] where t∗ ≤
T ≤ Ω(

√
n ∥G∥2

ϵ
√

∥V∥2

). Full proof of Theorem 3 can be obtained in Appendix D.

The aforementioned results, time complexity bound in detail, can be verified by a simulated experi-
ment. We here simulate a 4×10, 000 spike sequence from the Iris data sets with a timestamp of 0.001
using Poisson encoding. We employ the one-hidden-layer scSNN [44] that contains self-connection
structure as the conducted SNN model. The number of input channels and hidden neurons are 4 and
10, respectively. The self-connection matrix V is randomly sampled from [0, 1] with bias = 1/3.
The above configurations meet the conditions of Theorem 3. Table 2 lists the hyper-parameter values
in the conducted scSNN. For any linear matrix G ∈ R4×10 with ∥G∥2 < ∞, we define an indica-
tor tc =

√
n ∥G∥2

ϵ
√

∥V∥2

. Thus, by exploiting the relation among ϵ, t, and tc, we can verify the explicit

polynomial bound, especially the order of magnitude function Ω(·) in Theorem 3.

Figure 2 plots the experimental results. From Figure 2(a), the conducted scSNN first approximates
the objective function at a faster rate and then maintains a lower approximation error. Figure 2(b)
signifies that log(ϵ) is inversely proportional to log(tc), i.e., a log(tc)+ b log(ϵ) = c where a, b, c >
0. Figure 2(c) shows the relation plots between log(tc) and log(t). Notice that the conducted ScNN
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Table 2: Hyper-parameter Setting of scSNNs.
Parameters Value Parameters Value
Time Step 0.001 Firing Threshold 1

Expect Spike Count (True) 100 Membrane Time τm 0.2
Expect Spike Count (False) 10 Time Constant of Synapse τs 0.008

Encoding Length T 10, 000 Maximum Firing 10
Refractory Period 0.016 Maximum Time 10

can achieve the same approximation error at different timestamps, we only care about the shortest
one, that is, the blue solid curve below the red dashed line. It is observed that log(t) is proportional
to log(tc), i.e., log(t) = a log(tc) + b where a > 0 and b ∈ R. In summary, we have demonstrated
the effectiveness of our theoretical results.

(a) Curve: t-ϵ. (b) Curve: log(tc)-log(ϵ). (c) Curve: log(tc)-log(t).

Figure 2: Magnitude Curves of ϵ, t, and tc.

5 Discussions

Despite an increasing focus on the potential of handling spatio-temporal data, the theoretical un-
derstandings of many aspects (e.g., approximation ability and computational efficiency) of SNNs
are still far from clear. Some seminal studies focused on the universality of SNNs. Maass et
al. [19, 20, 21] showed that some typical SNNs can simulate the standard computational models
such as Turing machines, random access machines, threshold circuits, etc. She et al. [31] showed
some universal approximation properties of SNNs by exploiting the spike propagation paths. How-
ever, to the best of our knowledge, few theoretical guarantees on the approximation complexity and
computational efficiency of SNNs have been provided. There are only some academic studies on the
convergence in the limit results for SNNs solving the sparse coding problem [34, 35] and the con-
vergence rates for SNNs solving temporal quadratic programming [8]. Recently, two studies [41]
and [44] provided calculable ways for approaching the lower and upper bounds of adaptive SNN
systems, respectively.

Our starting point is a recent advance proposed by Zhang and Zhou [44], in which they showed that
adding self connections enables SNNs to achieve adaptive dynamical systems with spatio-temporal
representation. This work developed an in-depth analysis of approximation ability and computa-
tional efficiency of self connections in SNNs. It is observed that self connections facilitate our re-
sults; re-using firing spike variables s(t) contributes to approximating the norm of input sequences
x(t), and the symmetric self-connection matrix coincides with rotation and dual transformations,
which are crucial in the proofs of Theorems 2 and 3. Our theoretical derivatives not only show
the universal approximation properties of scSNNs but also disclose the parameters and time com-
plexities for scSNNs approximating discrete dynamical systems, which prospectively provide solid
support for the theory development of SNNs. Unfortunately, this paper has not yet shown the the-
oretical advantages of scSNNs over non-self-connection SNNs (it is valuable to be studied in the
future). But we believe that the current results have disclosed the importance and power of self
connections for enhancing the approximation and computational ability of SNNs, which may shed
some insights on developing provable and sound SNNs.

8



In light of the preceding merits, many issues are worthy of being studied in the future. One im-
portant future issue is to explore some practical techniques for scSNNs. For example, Theorem 2
shows the power of scSNNs on representing radial or equally rotation-invariant functions. So we
conjecture that adding self connections may be more compatible with some invariant models and
data augmentation techniques, such as image rotation [23, 29]. Besides, the current implementation
roughly follows the ideas of Zhang and Zhou [44], i.e., the effect from the k-th neuron to the i-th
neuron equals to the last spike of neuron k multiplied by a weighted factor as shown in Eq. (1).
Such a self-connection graph enable SNNs to maintain adaptive characteristics for representing dis-
crete dynamical systems. However, it inevitably leads to a larger memory consumption when the
input spike sequences are high-dimensional and high-frequency. Therefore, it is prospective to ex-
plore some more practical techniques or modules for scSNNs, which may open up possibilities for
achieving sound SNNs.

Another important future issue is to develop in-depth theoretical understandings of SNNs, from
aspects of approximation complexity, computational efficiency, representation ability [15, 26, 43],
and over-parameterized architectures [4, 45]. Furthermore, it is interesting to explore the theoretical
advantages of SNNs with self connections over SNNs without ones, especially from the perspectives
of approximation, optimization, and generalization.

6 Conclusions

In this paper, we present the theoretical understandings of the approximation ability and computa-
tional efficiency of the self-connection SNNs, i.e., scSNNs. We provided three main theorems to
show the universal approximation properties, parameters complexity for spatial approximation, and
time complexity for temporal approximation of the scSNNs. Our theoretical results disclose the ef-
fects of self connections of scSNNs for approximating discrete dynamical systems using polynomial
number of parameters within time complexities.
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Supplementary Materials of Theoretically Provable Spiking
Neural Networks (Appendix)

In this Appendix, we provide the supplementary materials for our work “Theoretically Provable
Spiking Neural Networks", constructed according to the corresponding sections therein. Before that,
we review the useful notations as follows.

Let [N ] = {1, 2, . . . , N} be an integer set for N ∈ N+, and | · |# denotes the number of elements
in a collection, e.g., |[N ]|# = N . Let i =

√
−1 be the imaginary unit, and x ≼ 0 means that every

element xi ≤ 0 for any i. Let the sphere S(r) and globe B(r) be S(r) = {x | ∥x∥ = r} and
B(r) = {x | ∥x∥ ≤ r} for any r ∈ R, respectively. Given a function g(n), we denote by h1(n) =
Θ(g(n)) if there exist positive constants c1, c2 and n0 such that c1g(n) ≤ h1(n) ≤ c2g(n) for every
n ≥ n0; h2(n) = O(g(n)) if there exist positive constants c and n0 such that h2(n) ≤ cg(n) for
every n ≥ n0; h3(n) = Ω(g(n)) if there exist positive constants c and n0 such that h3(n) ≥ cg(n)
for every n ≥ n0; h4(n) = o(g(n)) if there exists positive constant n0 such that h4(n) < cg(n) for
every c > 0 and n ≥ n0.

Let C(K,R) be the set of all scalar functions f : K → R continuous on K ⊂ Rn. Given α =
(α1, α2, . . . , αm)⊤ ∈ Nm, we define

Dαf(x) =
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αm

∂xαm
f(x) ,

where x = (x1, x2, . . . , xn) ∈ K. Further, we define

Cl(K,R) = {f | f ∈ C(K,R) and Drf ∈ C(K,R), for r ∈ [l]} .

For 1 ≤ p < ∞, we define

Lp(K,R) =

{
f

∣∣∣∣∣ f ∈ C(K,R) and ∥f∥p,K ≜
(∫

K

|f(x)|p dx
)1/p

< ∞

}
.

This work considers the Sobolev space W l,p
µ (K,R), defined as the collection of all functions f ∈

Cl(K,R) and Drf ∈ Lp(K,R) for all |α| ∈ [l], that is,

∥Dαf∥p,K =

(∫
K

|Dαf(x)|p dx
)1/p

< ∞ .

This paper employs En to denote the n × n unit matrix and det(·) to indicate the determinant
operation on the matrix. Two n-by-n matrices A and B are called similar, denoted as A ∼ B, if
there exists an invertible n × n matrix P such that B = P−1AP. The general linear group over
field F, denoted as GL(n,F), is the set of n × n invertible matrices with entries in F. Especially,
we define that a special linear group SL(n,F) is the subgroup of GL(n,F) and consists of matrices
with determinant 1. For any field F, the n× n orthogonal matrices form the following subgroup

O(n,F) = {P ∈ GL(n,F) | P⊤P = PP⊤ = En}
of the general linear group GL(n,F). Similarly, we have the special orthogonal group, denoted as
SO(n,F), which consists of all orthogonal matrices of determinant 1 and is a normal subgroup of
O(n,F). This group is also called the rotation group, generalizing that linearly transforms geome-
tries while holding the surface orientation.

Let ϕ2(x) be the density function of some probability measure µ, which satisfies∫
x∈Rm

ϕ2(x) dx =

∫
x∈B

1 dx = 1 ,

where B is an abbreviation of the unit ball B(1). For continuous functions f, g, we have the following
equalities under Fourier transform

∥f̂ϕ− ĝϕ∥L2(µ) = ∥fϕ− gϕ∥L2(µ) ,

and
f̂ϕ = f̂ ∗ ϕ̂, for the convolution operator ∗ .
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A Full Proof for Theorem 1

For convenience, we abbreviate f(·, t) as f(·) in this proof. For r ∈ [l], we have

Drf(x) =

∫
Rm

D̂rf(y) exp
(
2π iy⊤x

)
dy

=

∫
Rm

D̂rf(βy) exp
(
2πβ iy⊤x

)
d(βy)

=

∫
Rm

(2πβ iy)rf̂(βy) exp
(
2πβ iy⊤x

)
|β|m dy

=

∫
Rm

[
yr|β|mf̂(βy)

] [
(2πβ i)r exp

(
2πβ iy⊤x

)]
dy

=

∫
Rm

yr|β|mf̂(βy)

f̂e(β)

[
D̂rfe(β) exp

(
2πβ iy⊤x

)]
dy

=

∫
Rm

yr|β|mf̂(βy)

f̂e(β)

[∫
R
Drfe(α) exp (−2π iβα) dα

]
exp

(
2πβ iy⊤x

)
dy ,

(7)

where α, β ∈ R, and the above equations hold from the Fourier transforms and some of their prop-
erties. By taking the real part of Eq. (7), we have

Drf(x) =

∫
Rm

∫
R
yrDrfe(α)K(α, β,y) dα dy , (8)

where

K(α, β,y) =
|β|mf̂(βy) exp

[
2πβ i(y⊤x− α)

]
f̂e(β)

.

In this proof, we set

α = y⊤x+ ~, y = Wi,[m], ~ =
∑
j∈[n]

− 1

τm
exp

(
−s− t′

τm

)
Vi,jsj(t

′) ,

and the k-th element of vector x equals to a temporal-weighted average of Ik(t) at time interval
[t′, t]

xk =

∫ t

t′
exp

(
−s− t′

τm

)
Ik(s) ds.

Thus, we have

K(α, β,y) =
|β|mf̂(βy) exp (2πβ~ i)

f̂e(β)
≜ Kβ(~,y) and sup

x∈K
|x| ≤ Cx .

Based on Eq. (8), we can construct a family of approximation functions of the form

fκ(x) =

∫
B1

∫
B2

fe(y
⊤x+ ~)Kβ(~,y) d~ dy , (9)

where B1 = {x | x ≼ κ} and B2 = {x | x ≼ (Cxm+ 1)κ}. Thus, we have

Drfκ(x) =

∫
B1

∫
B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy . (10)

It suffices to prove that Drfκ → Drf uniformly on K, as κ → ∞. Now

Drfκ(x)−Drf(x) =

∫
Rm/B1

∫
R
yrDrfe(y

⊤x+ ~)Kβ(~,y) d~ dy

+

∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy

≜ R1 +R2 .
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For R1, one has

|R1| =

∣∣∣∣∣
∫
Rm/B1

∫
R
yrDrfe(y

⊤x+ ~)Kβ(~,y) d~ dy

∣∣∣∣∣
≤
∫
Rm/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ~)Kβ(~,y) d~
∣∣∣∣ dy

≤
∫
Rm/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ~) d~
∣∣∣∣
∣∣∣∣∣ |β|mf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥Drfe(y

⊤x+ ~)
∥∥
1,R

∫
Rm/B1

∣∣∣∣∣ |β|myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥Drfe(y

⊤x+ ~)
∥∥
1,R

∫
R/B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣ d(βy)
≤

∥∥Drfe(y
⊤x+ ~)

∥∥
1,R∣∣∣f̂e(β)|β|r∣∣∣
∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣ dy ,

where B̃1 = {βx | βx ≼ βκ}. For R2, one has

|R2| =

∣∣∣∣∣
∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy

∣∣∣∣∣
≤
∫
B1

∣∣∣∣∣
∫
R/B2

Drfe(y
⊤x+ ~) d~

∣∣∣∣∣
∣∣∣∣∣ |β|myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∫
R/B̃2

|Drfe(µ)| dµ ·
∫
B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣ d(βy)
≤
∫
R/B̃2

|Drfe(µ)| dµ
∥Drfe(µ)∥1,B̃1∣∣∣f̂e(β)|β|r∣∣∣ ,

where µ = y⊤x+ ~ and B̃2 = {x | x ≼ κ} since |µ| ≥ κ. Summing up the inequalities above, we
have

sup
x∈K

|Drfκ(x)−Drf(x)| ≤ C1
κ + C2

κ∣∣∣f̂e(β)|β|r∣∣∣
with

C1
κ =

∥∥Drfe(y
⊤x+ ~)

∥∥
1,R

∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣ dy and C2

κ = ∥Drfe(µ)∥1,B̃1

∫
R/B̃2

|Drfe(µ)| dµ ,

which tends to 0 as κ → ∞.

Given κ, it suffices to construct a series of approximations to fκ in Eq. (9). Formally, we define

f̃n
κ (x) =

∑
µ∈U

β̃fe(ỹ
⊤x+ ~̃) ,

where 
µ = (µ1, µ2, . . . , µm)⊤ with µi ∈ [−n, n] ∩ Z for i ∈ [m],

β̃ = (Cxm+ 1)(κ/n)m+1Kβ(~̃, ỹ) ,
ỹ = µκ/n ,

~̃ = µ∗(Cxm+ 1)κ/n with µ∗ ∈ [−n, n] ∩ Z .

It is observed that f̃n
κ belongs to the set of IFR functions, and

Drf̃n
κ (x) =

∑
µ∈U

(Cxm+ 1)(κ/n)m+1 ỹrDrfe(ỹ
⊤x+ ~̃) Kβ(~̃, ỹ) . (11)
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Next, we are going to prove that Drf̃n
κ → Drfκ uniformly on K, as n → ∞. For simplicity, we

define the following function

Gβ(x,y, ~) = yrDrfe(y
⊤x+ ~)Kβ(~,y) .

Thus, Eq. (10) and Eq. (11) become

Drfκ(x) =
∑
µ∈U

∫
B3

Gβ(x,y, ~) d~ dy

and
Drf̃n

κ (x) =
∑
µ∈U

∫
B3

Gβ(x, ỹ, ~̃) d~ dy

respectively, where ∪µ∈UB3 = {(x0, x1, . . . , xm) | x0 ∈ B2, (x1, . . . , xm)⊤ ∈ B1} ⊂ Rm+1.
Hence, one has

sup
(ℏ,y),(ℏ̃,ỹ)∈B3

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ < ∞ .

Let
Cn

κ (δ) ≜ sup
(ℏ,y),(ℏ̃,ỹ)∈B3

|(ℏ,y)−(ℏ̃,ỹ)|≤δm+1

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ .

Thus, we have∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤ ∑
µ∈U

∫
B3

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ d~ dy

≤
∑
µ∈U

∫
B3

Cn
κ (κ/n) d~ dy

≤ Cn
κ (κ/n)

∑
µ∈U

∫
B3

d~ dy

≤ Cn
κ (κ/n) (2n)

m+1 (Cxm+ 1)(κ/n)m+1,

where the last inequality holds from∫
B3

d~ dy = (Cxm+ 1)(κ/n)m+1 and |U|# = (2n)m+1.

Further, we can obtain

sup
x∈K

∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤ (Cxm+ 1)(2κ)m+1 Cn
κ (κ/n) ,

which tends to 0 as n → ∞.

Finally, we finish the proof by taking double limits n → ∞ before κ → ∞. □
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B Full Proof for Theorem 2

There are two proof methods for Theorem 2, one based on the rotation group action and one based
on the Fourier transformation, which are detailed in this and the following sections, respectively.

This proof idea can be summarized as follows. It is observed that the IFR function comprises
the radius and phase since V is a symmetric matrix. Thus, there exist some linear connections
(including rotation transformations) such that the combination of these spiking neurons is invariant
to rotations. In other words, the IFR function led by scSNNs with one-hidden layer can easily
and well approximate some radial functions, see Lemma 1, since the radial function is invariant to
rotations, and is dependent on the input norm.

B.1 Proof of Lemma 1

Let f ′ : Rm → R be a radial function with f ′(x) = ∥x∥. According to Theorem 1, for any δ > 0,
i ∈ [n], and m ≥ 1, there exists some time t such that

sup
x∈Rd

∣∣∣f ′(x)− |fi(x, t)|
∣∣∣ ≤ δ/2 , (12)

where fi denotes the IFR function of the i-th hidden spiking neuron, defined by Eq. (4). Further, we
define a new function g′ : R → R as follows.

g′(s) =

n′∑
i=1

α′
ife(s) ,

where α′
i, a

′
i ∈ R. For Lipschitz continuous function r

√
· and from [42, Lemma 1], we have

sup
s∈[rk,Rk]

∣∣g( k
√
s)− g′(s)

∣∣ ≤ δ/2 , (13)

where n′ ≤ C ′L(Rk − rk)/( k
√
rδ) for some constant C ′ > 0 and integer k ≥ 2. Further, we have

|g′(s)− f(x, t)| ≤ |g′(s)− f ′(x)|+ |f ′(x)− f(x, t)| , (14)
where

f ′(x) =

n′∑
i=1

w′
i |fi(x, t))| ,

in which {w′
i} denotes another collection of weighted parameters that corresponds to f(·, t) =∑

i∈[n] wifi(·, t). The first term of Eq. (14) can be bounded by δ/4 from [42, Lemma 1] for any
s ∈ [rk, Rk]. The second term is at most δ/4 when n ≥ n′ from Eq. (12). This follows that

|g′(s)− f(x, t)| ≤ δ/2 . (15)
Combining with Eqs. (13) and (15), we have

|g(∥x∥)− f(x, t)| ≤
∣∣g( k

√
s)− g′(s)

∣∣+ |g′(s)− f(x, t)| ≤ δ ,

where x ∈ Rm and s ∈ [rk, Rk]. We finally obtain

n ≤ Cs(R
k − rk)Lm/( k

√
rδ) ,

provided n ≤ mn′ and C ′ ≤ Cs. Finally, we can complete the proof by setting k = 2 in the above
upper bound. □

B.2 Proof of Lemma 2

Let r = C2
√
m, R = 2C2

√
m, and m ≥ 1, then we have r ≥ 1, which satisfies the condition

of [42, Lemma 1]. Invoke Lemma 1 to construct the concerned spiking neural networks and define
δ′ ≤ δ/d. Then for any L-Lipschitz radial function g : Rm → R supported on S∆, we have

sup
x∈Rm

|g(x)− f(x, t)| ≤ δ′ ,

where the width of the hidden layer is bounded by

n ≤ Cs(C2)
3/2mL

δ
(m)3/4 ≤ Cs(C2)

3/2L

δ
(m)7/4 .

This completes the proof. □
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B.3 Proof of Lemma 3

Define a branch function

hi(x) =

{
max{I{∥x∥ ∈ Ωi}, NDi}, if Bi = 1,

0 , if Bi = 0,

with

Di = min

{∣∣∣∣∥x∥ − (1 + i− 1

N

)
C2

√
m

∣∣∣∣ , ∣∣∣∣∥x∥ − (1 + i

N

)
C2

√
m

∣∣∣∣} .

Let

h(x) =

N∑
i=1

ϵihi(x) ,

Bi = 1, Ωi’s are disjoint intervals, hi(x) is an N -Lipschitz function. Thus, h is also an N -Lipschitz
function. So we have∫

Rm

(
h(x)−

N∑
i=1

ϵigi(x)

)2

ϕ2(x) dx =

∫
Rm

N∑
i=1

ϵ2i (hi(x)− gi(x))
2
ϕ2(x) dx

=

N∑
i=1

∫
Rm

(hi(x)− gi(x))
2
ϕ2(x) dx

≤ (3/(C2)
2
√
m) ,

where the last inequality holds from [10, Lemma 22]. This completes the proof. □
Based on the lemmas above, we can finish the proof of Theorem 2.

Finishing the Proof of Theorem 2. Let g(x) =
∑N

i=1 ϵigi(x) be defined by Eq. (5) and N ≥
4C

5/2
2 m2. According to Lemma 3, there exists a Lipschitz function h with range [−1,+1] such that

∥h(x)− g(x)∥L2(µ)
≤

√
3

C2(m)1/4
.

Based on Lemmas 1 and 2, any Lipschitz radial function supported on S∆ can be approximated by
an IFR function f(x, t) led by scSNNs of one-hidden layer with width at most C3Cs(m)15/4, where
C3 is a constant relative to C2 and δ. This means that there exists some time t such that

sup
x∈Rm

|h(x)− f(x, t)| ≤ δ .

Thus, we have
∥h(x)− f(x, t)∥L2(µ) ≤ δ .

Hence, the range of f(·, t) is in [−1− δ,+1 + δ] ⊆ [−2,+2]. Provided the radial function, defined
by Eq. (5), we have

∥g(x)− f(x, t)∥L2(µ) ≤ ∥g(x)− h(x)∥L2(µ) + ∥h(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ .

This implies that given constants m > C2 > 0 and C3 > 0, for any δ > 0 and ϵi ∈ {−1,+1}
(i ∈ [N ]), there exists some time t, such that the target radial function g can be approximated by an
IFR function f(x, t) led by scSNNs of one-hidden layer with range in [−2,+2] and width at most
C3Cs(m)15/4, that is,

∥g(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ < δ1 .

This completes the proof. □
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C Another Proof for Theorem 2

The another proof idea can be summarized as follows. Given any permutation operation on the input
channels, there are some permutation operations on the self-connection and final connection weights
such that the output of SNNs are invariant. In other words, the IFR function led by scSNNs with
one-hidden layer admits the rotation transformations. Therefore, it suffices to show that before final
weighted aggregation, the component IFR functions of hidden spiking neurons can approximate any
L-Lipschitz radial function, similar to the proof line of Lemma 1, and then find a special radial
function that can be well approximated by these IFR functions within the polynomial parameter
complexity, similar to the proof line of Lemma 3.

Lemma 5 Let fe and f(x, t) be an l-finite function and the IFR function led by scSNNs with one-
hidden layer, respectively. For any δ > 0 and A ∈ SO(m,R), there exists some time t such that

|f(Ax, t)− ∥x∥| < δ .

Lemma 6 Let fe be an l-finite function, g : R → R is a scalar function, and f(x, t) is the IFR
function led by scSNNs with one-hidden layer, where x ∈ S(r) and S(r) is a sphere supported with
density ϕ2 for 0 < r < ∞. For any δ > 0, if there exists some time t ∈ R such that it holds

|f(x, t)− g(∥x∥)| < δ if and only if |f(Ax, t)− g(∥x∥)| < δ ,

for any A ∈ SO(m,R).

Lemma 7 Define a radial function g′ : R → R with the form of

g′(∥x∥) def
=

N∑
i=1

ϵi I{∥x∥ ∈ Ωi} ,

where N is a polynomial function of m, ϵ = (ϵ1, . . . , ϵN ) ∈ {−1,+1}N , and Ωi’s are disjoint
intervals of width O(1/N) on values in the range Θ(

√
m). For C2, C3 > 0 with d > C2, any δ > 0,

and any choice of ϵi ∈ {−1,+1} (i ∈ [N ]), there exist some time t and A ∈ SO(m,R) such that

|g′(∥x∥)− f(Ax, t)| ≤
√
3

C2(m)1/4
+ δ ,

where f(x, t) indicates the IFR function led by scSNNs of one-hidden layer with range in [−2,+2]
and at most C3Cs(m)15/4 hidden spiking neurons.

Finishing the Proof of Theorem 2. The rest proof is a straightforward combination of Lemmas 5, 6
and 7. Define a radial function g′ : R → R with the form of

g′(∥x∥) def
=

N∑
i=1

ϵi I{∥x∥ ∈ Ωi} ,

where N is a polynomial function of m, ϵ = (ϵ1, . . . , ϵN ) ∈ {−1,+1}N , and Ωi’s are disjoint
intervals of width O(1/N) on values in the range Θ(

√
m). Obviously, g′ is equivalent to another

radial function defined in Eq. (5) as follows

g(x) =

N∑
i=1

ϵigi(x) with gi(x) = I{∥x∥ ∈ Ωi} ,

provided x ∈ S(r). From Lemma 7, it is observed that provided the concerned radial function g(x)
with a collection of choices ϵ, there exist some time t and n ∈ O(C3Cs(m)15/4) such that g(x) can
be approximated a IFR function f(x, t) led by one-hidden-layer scSNNs of with range in [−2,+2]
and at most n hidden spiking neurons, such that

|g′(∥x∥)− f(Ax, t)| ≤
√
3

C2(m)1/4
+ δ .

Let A ∈ SO(m,R). If ∥x∥ ∈ Ωi ⊆ S(r) for 0 < r < ∞, then it holds ∥Ax∥ ∈ Ωi ⊆ S(r) and
g′(∥x∥) = g′(∥Ax∥). According to Lemma 6, we have

∥g(x)− f(x, t)∥L2(µ)
= |g′(∥x∥)− f(x, t)| = |g′(∥x∥)− f(Ax, t)| ≤

√
3

C2(m)1/4
+ δ ,

without any incremental change in the parameter complexity. This completes the proof. □
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D Full Proof for Theorem 3

We begin this proof with an investigation that acting SVD on the matrix G. Let G = P ΛG Q⊤,
where P ∈ Rm×m and Q ∈ Rn×n are two unitary matrices, ΛG ∈ Rm×n is a diagonal matrix.
Thus, we have

∥Ex [Vf(x, t)]−Gλ∥2 =
∥∥∥QṼ Ex [f(x, t)]−PΛGλ

∥∥∥
2

∥∥Q⊤∥∥
2
≤ 2

∥∥∥Ṽ Ex [f(x, t)]−ΛGλ
∥∥∥
2
.

(16)
If the matrix G is degenerate, then ΛG contains some null diagonal elements. Then there must exists
a non-degenerate sub-matrix Gsub of G such that Inequality (6) degenerates to one about Gsub in a
lower dimensional space within at most constant time cost. Thus, we only care about the case that
G is a non-degenerate matrix. When m ≤ n, the vector ΛGλ becomes a constant vector, denoted
as λ̃, whose elements consist of λ1, . . . , λm and n−m zeros.

Notice that the n×n-dimensional matrix Ṽ is symmetric and non-degenerate, since V is a symmet-
ric and non-degenerate matrix and Q ∈ O(n). Thus, we have Ṽ = Ũ ΛU Ũ⊤, where Ũ ∈ O(n)
and ΛU = diag{ρ1, . . . , ρn} in which ρk ̸= 0 for any k ∈ [n]. Then we have the following lemma.

Lemma 8 (Lemma 4 as aforementioned) Given U =
√
ΛU Ũ⊤, λ̃ ∈ Rn, and ϵ > 0, when

t ≥ Ω
(√

n ∥ΛG∥2

ϵ ∥U∥2

)
, it holds ∥Uf̃(λ̃, t) − λ̃∥ ≤ ϵ, where the modified IFR function f̃(λ̃, t) is led

by a scSNN without connection matrix W and fed up to the constant spike sequence λ̃ at every
timestamp.

This lemma is a straightforward derivation of [8, Theorem 1] due to the following two facts. (1) For
any 0 < γ ≤ min{ρk, k ∈ [n]}, the matrix U meets the regular conditions of [8, Definition 1]. (2)
The optimal solution of Uz = λ̃ becomes z∗ = U−1λ̃. Hence, we omit the detailed proof of this
lemma.

Finally, it suffices to prove that the concerned IFR function f(x, t) can approximate f̃(λ̃, t∗) within
time interval [0, T ] where t∗ ≤ T and T ≥ Ω(

√
n ∥G∥2

ϵ
√

∥V∥2

). Since fe is the linear function defined by

Eq. (3). The approximation above can be converted into another one between

ui(t) =

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

Vijsj(t) +
∑
k∈[m]

Wikxk(t)

)
ds

and

ũi(t
∗) =

∫ t∗

t′′
exp

(
s− t′

τm

)
λ̃i(s) ds .

Since

E [ui(t)] =

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

VijE [sj(t)] +
∑
k∈[m]

WikE [xk(t)]

)
ds

=

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

VijE [sj(t)] +
∑
k∈[m]

Wikλk(t)

)
ds ,

we have

∥E [u(T )]− ũ(t∗)∥ ≤ ϵ,
∥∥∥Ũ E [u(T )]− ũ(t∗)

∥∥∥ ≤ ϵ, and ∥U E [u(T )]− ũ(t∗)∥ ≤ ϵ .

Thus, we have ∥∥∥U E [f(x, T )]− f̃(x, t∗)
∥∥∥ ≤ ϵ .

We finally complete the proof according to ∥G∥2 = ∥ΛG∥2 and
√
∥V∥2 = ∥U∥2. □
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