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Abstract

The past decades have witnessed an increasing interest in spiking neural networks (SNNs) due to their great

potential of modeling time-dependent data. Many algorithms and techniques have been developed; however,

theoretical understandings of many aspects of spiking neural networks are still cloudy. A recent work [32] dis-

closed that typical SNNs could hardly withstand both internal and external perturbations due to their bifurcation

dynamics and suggested that self-connection has to be added. In this paper, we investigate the theoretical prop-

erties of SNNs with self-connection, and develop an in-depth analysis on structural stability by specifying the

lower and upper bounds of the maximum number of bifurcation solutions. Numerical experiments conducted

on simulation and practical tasks demonstrate the effectiveness of the proposed results.
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Bifurcation Solutions

1. introduction

Spiking neural networks (SNNs) have gained progressive momentum during the last decades due to the flexi-

bility of mimicking the neuronal plasticity and the potential of modeling time-dependent data [26, 29]. Great

progress has been made for SNNs in vision [27], speech recognition [24], reinforcement learning [30], few-

short learning [10], neuromorphic computing [21], etc. The computational process of SNNs complies with

an integration-and-firing paradigm, which usually is formulated as some first-order parabolic equations. An

omnipresent challenge in SNNs is to qualify the behavior of structures under perturbations, that is, structural

stability [1]. However, it is difficult to assess whether and to what extent a given SNN is unaffected by exactly

C1-small perturbations.

Currently, if a model’s capacity to withstand perturbations is measured at all, it is typically investigated heuris-

tically against some tasks [2, 11], e.g., observing the accuracy change of SNNs after adding perturbations, in
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which success is taken as an indicator of stability in an ocular sense. Though undoubtedly helpful, such heuris-

tics are rarely defined concerning an underlying mathematical property of interest, nor do they necessarily have

any correspondence to the tasks subsequently confronted by the trained SNN. In this paper, we theoretically in-

vestigate the structural stability of SNNs. Our starting point is a recent advance of Zhang et al. [32], who proved

that typical SNNs are bifurcation dynamical systems in which small perturbations may cause catastrophic dam-

age, and adding self-connection can enhance the stability ability of SNNs, which fully connects the spiking

neurons in the same hidden layer.

This work initiates an in-depth analysis by providing the lower and upper bounds of the maximum number of

bifurcation solutions in perturbed SNNs with higher-order self-connection; the upper bound indicates the rela-

tion between the structural stability and computational configurations of SNNs, and the lower bound specifies

the difficult nature of this problem. Consequently, the challenge of qualifying structural stability in SNNs can

be re-framed as a mathematical problem with quantitative property.

Our main contributions are summarized as follows:

• We present the spiking neural network with Polynomial bIfuRcATion fiEld (PIRATE), which provides a

more general paradigm for SNNs with self-connection.

• We prove the existence of bifurcation solutions in PIRATE with perturbations in Theorem 1.

• We provide an algorithmic approach for calculating the upper bounds of the maximum number of bifur-

cation solutions in Algorithm 1.

• We prove the lower bound of the maximum number of bifurcation solutions in PIRATE in Theorem 2,

which specifies the difficult nature of the problem of qualifying structural stability.

• Numerical experiments conducted on several simulation and practical tasks demonstrate the above theo-

retical results and the effectiveness of PIRATE, respectively.

The rest of this paper is organized as follows. Section 2 reviews some useful notations. Section 3 presents

the PIRATE model with provable and computational bounds for its structural stability. Section 4 conducts

experiments to verify the theoretical results and effectiveness of PIRATE. Section 5 concludes this work with

discussions and prospects.

2. Notations

We first introduce some useful notations. Let [N ] = {1, 2, . . . , N} be an integer set for N ∈ N+, and | · |#
denotes the number of elements in a collection, e.g., |[N ]|# = N . Given two functions g, h : N+ → R, we

2



denote by h = Θ(g) if there exist positive constants c1, c2, and n0 such that c1g(n) ≤ h(n) ≤ c2g(n) for

every n ≥ n0; h = O(g) if there exist positive constants c and n0 such that h(n) ≤ cg(n) for every n ≥ n0;

h = Ω(g) if there exist positive constants c and n0 such that h(n) ≥ cg(n) for every n ≥ n0; h = o(g) if

there exist positive constants c and n0 such that h(n) < cg(n) for every n ≥ n0. Let C(K,R) be the set of all

scalar functions f : K → R continuous on K ⊂ Rm. Given α = (α1, α2, . . . , αm)>, αi ≥ 0 for i ∈ [m],

|α| =
∑
i∈[m] αi, and x = (x1, x2, . . . , xm) ∈ K, we define an n-tuple partial derivative

D|α|f(x) =
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αn

∂xαn
f(x) .

Further, we define

Cl(K,R) = {f | f ∈ C(K,R), Drf ∈ C(K,R), r ∈ [l]} .

For 1 ≤ p <∞, we define

Lp(K,R) =
{
f
∣∣∣ f ∈ C(K,R), ‖f‖p,K <∞

}
,

where

‖f‖p,K
def
=

(∫
K
|f(x)|p dx

)1/p

.

This work also considers the Sobolev spaceW l,p
µ (K,R), defined as the collection of all functions f ∈ Cl(K,R)

and Drf ∈ Lp(K,R) for all |r| ∈ [l], that is,

‖Drf‖p,K =

(∫
K
|Drf(x)|p dx

)1/p

<∞ .

3. PIRATE with Structural Stability

We begin our work with introducing the bifurcation spiking neuron models proposed by Zhang et al. [32].

∂u(t)

∂t
= −u(t)

τm
+ u∗(λ, t) +

R

τm
WI(t) , (1)

where u(t) = (u1(t), . . . , uN (t))> indicates the membrane potential vector of N spiking neurons at timestamp

t, I(t) = (I1(t), . . . , IM (t))> denotes the M -dimensional input signals, the vector u∗ = (u∗1, . . . , u
∗
N )> por-

trays the mutual promotion between neurons adjusted by the bifurcation parameters λ, W is the learnable con-

nection matrix, τm and R are positive-valued hyper-parameters with respect to membrane time and membrane

resistance, respectively. The advance [32] provided a linear implementation for the term u∗(λ, t) in Eq. (1), i.e.,

unfolding the k-th variable as u∗k(λ, t) =
∑
i 6=k λkiui + o(|uk|) where o(|uk|) denotes the high-order term of

uk for k ∈ [N ]. Hence, Eq. (1) becomes

duk(t)

dt
= −uk(t)

τm
+
∑
i∈[N ]

λkiui(t) +
R

τm

∑
j∈[M ]

WkjIj(t) , (2)
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omitted the high-order term o(|uk|) for k ∈ [N ]. Here,
∑
j∈[M ] WkjIj(t) indicates the signal received by

neuron k at timestamp t, and
∑
i∈[N ] λkiui(t) denotes the effect on the membrane potential of neuron k when

neuron i fires a spike.

This work ponders the effect of self-connection from the perspective of structural stability. We first generalize

the above self-connection topology with linear implementation and present a more general paradigm with a

high-order o(|uk|).

u∗k(λ, t) =
∑

λ1kiui(t) + λpk

n∑
p=2

Pp(u(t), t) , (3)

abbreviated as u∗k(λ, t) = Poly(u(t);n), where

Pp(u(t), t) = (u1)α1(u2)α2 . . . (uN )αN ,

in which α1 + α2 + · · ·+ αN = p. Taking an example of N = 2 and n = 2, we have

u∗1(λ, t) = Poly(u1(t), u2(t);n = 2)

= λ111u1(t) + λ112u2(t)

+ λ211u1(t)2 + λ222u2(t)2 + λ212u1(t)u2(t) ,

and
u∗2(λ, t) = Poly(u1(t), u2(t);n = 2)

= λ121u1(t) + λ122u2(t)

+ λ211u1(t)2 + λ222u2(t)2 + λ212u1(t)u2(t) .

Appendix D records the training procedure of PIRATE.

This work theoretically investigates the structural stability of PIRATE. The key idea is to add the perturbations

led by a small parameter ε to a center point of the algebraic Eq. (4), and observe whether the perturbed system

bifurcates either from the center point or from some periodic orbits surrounding the center point. Hence, the

upper and lower bounds of the maximum number of bifurcation solutions can be bounded by the number of

center points where bifurcation occurs and the concerned periodic orbits (i.e., limit cycles), respectively.

Formally, we define H(n) to denote the maximum number of bifurcation solutions of dynamical systems in

Eq. (1) with n-order polynomial bifurcation fields in Eq. (3). We first exhibit the algebraic formation of Eq. (1)

dui(t)

dt
= −ui(t)

τm
+ Poly(u(t);n) (4)

for i ∈ [N ] and the corresponding perturbed system

dui(t)

dt
= −ui(t)

τm
+ Poly(u(t);n) + ε Poly(u(t);m) , (5)

where ε indicates a small parameter that scales the perturbation magnitude with respect to m ∈ N+. Here, we

are interested in the small limit cycles of Eq. (5), which bifurcate at ε from the center points of Eq. (4) as |ε| → 0.
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In the rest section, we prove the existence of bifurcation solutions in perturbed PIRATE system in Subsection 3.1,

provide an algorithmic way for calculating the upper bound in Subsection 3.2, and find the lower bound in

Subsection 3.3.

3.1. Existence of Bifurcation Solutions

Now, we present the first theorem as follows.

Theorem 1 Let ũ be a center point of system (5). For |ε| > 0 sufficiently small, there exists a 2π-periodic

(bifurcation) solution f(t, ε) of system (5) s.t. f(0, ε)→ ũ as ε→ 0.

Theorem 1 shows the existence of bifurcation solutions (i.e., 2π-periodic bifurcation limit cycles) of the per-

turbed systems. This result holds based on some useful lemmas as follows.

Lemma 1 The perturbed system (5) induces a planar differential equation with the normal form as follows

∂f(t, ε)

∂t
=

K∑
k=0

εkFk(t, f) + εK+1Rest(t, ε, f) , (6)

where Fk : R×K→ R for k ∈ [K] and Rest : R×K× [−ε0, ε0]→ R are Ck-continuous functions in which

ε0 ∈ R.

Lemma 1 shows an equivalent formation of the concerned system (5), which contributes to the periodic solutions

of recursive formations as shown in the following lemma.

Lemma 2 Let ũ and f(t, ε) : [0, T ]× [−ε0, ε0]→ R be the center point and solution of system (5), respectively,

which satisfies that f(0, ε) = ũ. Then for t ∈ [0, T ], we have

f(t, ε) = ũ+

∫ t

0

F0(s, ũ) ds+

K∑
k=0

εkGk(t, ũ)

+ εK+1

[∫ t

0

Rest(s, f(s, ε), ε) ds+O(1)

]
,

where Gk (for k ∈ [K]) is of recursive form as follows

Gk(t, u) =

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds ,

for all r ∈ [k − 1], in which

G =

k∑
r=1

∑
Sr

Dh(r)Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr )

r∏
l=1

Gl(s, u)αj ,

for Sr denotes the set of all r-tuples of non-negative integers {αj}j∈[r] as noted in Section 2, satisfying∑
j

jαj = r and h(r) =
∑
j

αj .
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Lemma 2 provides the recursive formation of the periodic solutions (i.e., limit cycles) of system (5).

Finishing the Proof of Theorem 1. The complete proof of Theorem 1 can be accessed in Appendix A. Let

f(0, ε) = ũ. Let U ⊂ K be a neighborhood of the center point ũ such that Gk(t, u) 6= 0 for all u ∈ Ū/ũ and

the Brouwer degree dB(Gk, U, ũ) 6= 0 [14]. For each u ∈ Ū , there exists ε0 > 0 such that the function f(t, ε)

is defined on [0, T ]× [−ε0, ε0] once ε ∈ [−ε0, ε0]. Thus, f(t, ε) : [0, T ]× [−ε0, ε0]→ R indicates the solution

of system (5), as defined in Lemma 2. From the Existence and Uniqueness Theorem [22, Theorem 1.2.4], the

domain of function f(·, ε) can be bounded according to

t ≤ inf(T, d/M(ε)) ,

where

M(ε) ≥

∣∣∣∣∣
K∑
k=1

εkFk(t, f) + εK+1Rest(t, ε, u)

∣∣∣∣∣ .
Obviously, we can enable inf(T, d/M(ε)) = T by taking a sufficiently large d/M(ε) as ε is sufficiently small.

On the one hand, based on the continuity of the solution f(t, ε) and the compactness of the set [0, T ]× [−ε0, ε0],

there exists an image set K such that f(t, ε) ∈ K, that is, f(t, ε) : [0, T ] × [−ε0, ε0] → K. Informally, we can

re-formulate the solution function f as f(t, ε, u) : [0, T ] × [−ε0, ε0] × K → K throughout this proof. On the

other hand, based on the continuity of the function Rest, we have

|Rest(s, ε, f)| ≤ max{|Rest(t, ε, u)|} = N .

for all (t, ε, u) ∈ [0, T ]× [−ε0, ε0]×K. Further, we have∣∣∣∣∣
∫ T

0

Rest(s, ε, f) ds

∣∣∣∣∣ ≤
∫ T

0

|Rest(s, ε, u)|ds = TN ,

which implies that ∫ T

0

Rest(s, ε, f) ds = O(1) . (7)

Provided

εg(u, ε) = f(T, ε, u)− u ,

then from Lemma 2 and Eq. (7), we have

g(u, ε) =

K∑
k=1

εk−1Gk(T, u) + εKO(1) ,

where u ∈ Ū/ũ. It is self-evident that when T = 2π, it holds that U ⊂ K is a neighborhood of the center point

ũ satisfying that (1) Gk(t, u) 6= 0 for all u ∈ Ū/ũ and (2) the Brouwer degree dB(Gk, U, ũ) 6= 0 [14]. Hence,

we have

g(u, ε) =

K∑
k=r

εk−1Gk(2π, u) + εKO(1) ,
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for the case that Gl ≡ 0 for l ∈ [r − 1] and r ∈ [k] but Gr 6= 0. Thus, it is self-evident that f(t, ε) is an

2π-periodic solution if and only if g(u, ε) = 0. From [14, Lemma 6], we have

dB(Gr, U, ũ) = dB(g(u, ε), U, ũ) 6= 0 ,

for |ε| > 0 sufficiently small. Further, from [5, Charpter VIII], there exists some u(ε) ∈ U such that g(u(ε), ε) =

0. Therefore, we can conclude that f(t, ε, u(ε)) is a periodic solution of system (5), and then, pick up a collection

of u(ε) such that u(ε)→ ũ as ε→ 0. This completes this proof. �

3.2. Algorithmic Upper Bound

Zhang et al. [32, Theorem 2] has provided a upper bound, i.e., 2n−1 for the bifurcation solutions of Eq. (1), which

is obviously a baggy result. However, tightening number of bifurcation solutions of Eq. (1) is a tricky challenge

in confronted of dynamical systems, which coincides with the second part of Hilbert’s 16th problem [7]. In

the near future, it has not been possible to find uniform upper bounds for H(n), referring to the knowledge of

Sanders et al. [23] and Libre et al. [13] for a modern investigation of this problem.

This subsection explores a calculable approach for computing the upper bound rather than finding the explicit

one. From Lemma 2, we specify the general solution of which theK th componentGk(t, ε) is of a recursive form

for k ∈ [K]. So it is feasible to simulate Gk(t, ε) in an algorithmic way. Further, we can obtain the bifurcation

solution f(t, ε), and then, the upper bound of H(n) can be calculable in our hands.

Inspired by this recognition, we present the algorithm for calculating the K th components of bifurcation solu-

tions. The procedure comprises four steps:

• Step One. Simulate Eq. (6) with K th order and ε from the perturbed system (5) in Procedure 1-3;

• Step Two. Formulate the exact formula of Fk(t, ε) for k ∈ [K] in Procedure 4.

• Step Three. Compute the approximation to Gk(t, ε) relative to ∂rFk/∂εr and Rest(t, u, ε) for k ∈ [K]

and r ∈ [k] in Procedure 5-12.

• Step Four. Calculate the upper bound of H(n) using the number of positive simple center points of

Gk(t, ε) for k ∈ [K] in Procedure 13.

Notice that according to Eqs. (14) and (15), the numerator for each K th component Gk(t, ε) is a polynomial

function with degree bN ∗ T = 2 ∗ 2π = 4πc. Drawing on the experience of Huang et al. [8], we can greatly

improve the calculation speed by updating Eq. (6) along with forcing G1 ≡ G2 ≡ · · · ≡ GK−1 ≡ 0.

7



Algorithm 1 Algorithmic Calculation for Upper Bounds.

Input: N = 2 (i and i′), n, m, K, apposite perturbation ε

Output: Kth component Gk(t, ε) for k ∈ [K],

bifurcation solution f(t, ε)

Procedure:

1: Generate Poly(u(t);n) and Poly(u(t);K) in a feed-forward way;

2: Compute dui(t)
dt and dui′ (t)

dt from Eq. (5);

3: Convert the perturbed system (5) into ∂f(t,ε)
∂t in Eq. (6);

4: Compute functions Fk for k = 0 or k ∈ [K] from the Taylor expansion (refer to Eq. (11)) of ∂f(t,ε)
∂t in

Eq. (6);

5: Let δF = 0;

6: for k from 1 to K − 1 do

7: for r from 1 to k do

8: δF ← δF + ∂rFk(t,f(t,ε,u))
∂εr

∣∣
ε=0

;

9: Re-compute Fk provided δF from Eq. (11);

10: Compute Gk provided δF and Fk from Eq. (13);

11: δR←
∫ 2π

0
Rest(s, u, ε) ds by sampling u ∈ K;

12: Compute f provided Gk, Fk, and δR from Eq. (16);

13: return f .

3.3. Provable Lower Bound

Now, we present the second theorem as follows.

Theorem 2 Let H(n) denote the maximum possible number of bifurcation solutions of dynamical systems in

Eq. (1) with n-order polynomial bifurcation fields in Eq. (3). Then H(n) is calculable, and we have

H(n) ∈ Ω((n+ 1)2 ln(n+ 1)) .

Theorem 2 shows the lower bound of the maximum number of bifurcation solutions of the dynamical system led

by Eq. (1). This theoretical result provides solid support for the bifurcation solutions proposed by [32, Theorem

2], which only sheds the “at most” (upper) bound for spiking neural networks.

The complete proof of Theorem 2 can be accessed in Appendix B, and its proof idea can be summarized as

follows. According to Section 3, the lower bound of H(n) coincides with the maximum possible number of

limit cycles of the dynamical system led by Eq. (1). Hence, a key intuition of bounding H(n) is reformulate the

lower bound into a recursive formation. It is observed that equipped with n-order polynomial bifurcation fields
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in Eq. (3), Eq. (1) leads to a Hamiltonian system with perturbation ε,
duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ εfε(uk, uk′) ,

duk′(t)

dt
=
∂H(uk, uk′)

∂uk
+ εgε(uk, uk′) ,

(8)

whereH(uk, uk′) = Poly(uk)2 + Poly(uk′)
2 indicates the Lyapunov energy function [32], 0 < ε <∞ denotes

the noise amplitude, f(uk, ·) and g(uk, ·) are two polynomial functions of degree 2n − 1 for k′ ∈ [N ]. Thus,

the lower bound of H(n) meets the following recursive formation

H(n+ 1) = 4H(n) + (2n − 2)2 + (2n − 1)2 .

With straightforward computation, we can obtain that there exists a constant C such that

H(n) ≥ C(n+ 1)2 ln(n+ 1) .

We begin our proof with some useful lemmas.

Lemma 3 The PIRATE model in Eq. (1) with n-order polynomial bifurcation fields coincides with a Hamilto-

nian system of degree free(n) = 2n − 1.

Lemma 4 The Hamiltonian system led by Eq. (1) with n-order polynomial bifurcation fields has at least P (n)

limit cycles in which

P (n+ 1) = P (n) + (free(n)− 1)2 + free(n)2 . (9)

Lemma 4 provides a recursive sequence P (n) relative to the freedom degree 2n − 1 of system (8), which

contributes to the lower bound of H(n).

Finishing the Proof of Theorem 2. From Lemma 4, the recursive formation of sequence P (n) indicates the

lower bound of H(n). Let P (n) = 22nQ(n). Then Eq. (9) becomes

Q(n+ 1) = Q(n) +
1

2
− 3

2n+1
+

5

4n+1
.

Further, we have Q(2) = 3/16 and

Q(n) = Q(n− 1) +
1

2
− 3

2n
+

5

4n

= Q(2) +
n− 2

2
− 3

4
(1− 2−n+2) +

5

48
(1− 4−(n+2))

= Q(2) +
n

2
−
(

16

5

)−n
− 5 · 4−n

3
− 79

48

=
n

2
−
(

16

5

)−n
− 5 · 4−n

3
− 35

24
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for n ≥ 3. Since H(n) ≥ P (n) ≥ 4nQ(n) and the degree of Eq. (8) is free(n) = 2n−1, we have

H(2n − 1) ≥ 4n−1
(

2n− 35

6

)
+

(
16

5

)n
− 5

3
.

Re-substituting the variable n, the above inequality becomes

H(n) ≥ (n+ 1)2

2
(log2(n+ 1)− 3) + 3n .

Therefore, there exists some constant C such that

H(n) ≥ C(n+ 1)2 ln(n+ 1) .

It is observed that

H(2) ≥ 0, H(3) ≥ 1, H(7) ≥ 25, H(15) ≥ 185, and H(31) ≥ 1262 .

This completes this proof. �

4. Experiments

This section conducts experiments to evaluate the functional performance of PIRATE, where Subsection 4.1

verifies the explicit bounds in Theorem 2 and Subsection 4.2 demonstrates the comparative performance on

Image Recognition.

4.1. Simulation Experiments on Algorithmic Upper Bounds

This subsection illustrate the algorithmic upper bound of H(n) in Subsection 3.2. For convenience, we consider

a simple case of N = 2, n = 2, m = 3, and K = 5, as follows:
du1(t)

dt
= −u1(t)

τm
+ u1(t)2u2(t) + ε Poly1(u(t);m) ,

du2(t)

dt
= −u2(t)

τm
+ u1(t)u2(t)2 + ε Poly2(u(t);m) ,

(10)

where
Polyi(u; 3) = βik,1u1 + βik,2u2

+ βik,3u
2
1 + βik,4u1u2 + βik,5u

2
2

+ βik,6u
3
1 + βik,7u

2
1u2 + βik,8u1u

2
2 + βik,9u

3
2 ,

for i ∈ [N = 2] and k ∈ [K = 5]. Obviously, it is known as a cubic system with m = 3th polynomial

perturbations. Here, we employ K = 5th component to estimate the upper bounds of H(n), and have the

following conclusion.
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Corollary 3 The maximum number of bifurcation solutions of the concerned system (10) is at most 3, which

can be calculated by the 5th components.

Corollary 3 shows that using Algorithm 1 withm = 3 andK = 5 enables the upper bound ofH(n) withN = 2

to be calculable. Combining with the lower bound from Theorem 2, we can conclude that

0 ≤ H(2) ≤ 3 ,

which is a tighter bound than that of Zhang et al. [32]. The detailed materials can be accessed in Appendix C.

4.2. Comparative Performance on Image Recognition

This subsection aims to demonstrate the performance of the PIRATE model from an experimental point of

view. Hence, we compare PIRATE with some typical SNNs on several image recognition tasks to verify its

performance, especially led by an increasing n and N > 2. Limited to space, we move the training procedure

of PIRATE to Appendix D.

The conducted data sets comprise: (1) The MNIST handwritten digit data set1 comprises a training set of 60,000

examples and a testing set of 10,000 examples in 10 classes, where each example is centered in a 28×28 image.

Using Poisson encoding, we produce a list of spike signals with a formation of 784× T binary matrices, where

T denotes the encoding length and each row represents a spike sequence at each pixel. (2) The Neuromorphic-

MNIST (N-MNIST) data set2 [18] is a spiking version of the original frame-based MNIST data set. Each

example in N-MNIST was converted into a spike sequence by mounting the ATIS sensor on a motorized pan-tilt

unit and having the sensor move while it views MNIST examples on an LCD monitor. It consists of the same

60,000 training and 10,000 testing samples as the original MNIST data set, and is captured at the same visual

scale as the original MNIST data set (28× 28 pixels) with both “on” and “off” spikes. (3) The Fashion-MNIST

data set3 consists of a training set of 60,000 examples and a testing set of 10,000 examples. Each example

is a 28 × 28 grayscale image, associated with a label from 10 classes. (4) The Extended MNIST-Balanced

(EMNIST) [4] data set is an extension of MNIST to handwritten, which contains handwritten upper & lower

case letters of the English alphabet in addition to the digits, and comprises 112,800 training and 18,800 testing

samples for 47 classes.

The pre-processing steps for these experiments are the same as those used by [19, 32]. Each static image of

(1) MNIST, (3) Fashion-MNIST, and (4) EMNIST is transformed as a spike sequence using Poisson Encoding,

while each instance in N-MNIST was encoded by a Dynamic Audio / Vision Sensor (DAS / DVS). For these

1http://yann.lecun.com/exdb/mnist/
2https://www.garrickorchard.com/datasets/n-mnist
3https://www.kaggle.com/zalando-research/fashionmnist
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Table 1: Parameter Setting of PIRATE on Image Recognition.

Parameters Value MNIST N-MNIST Fashion-MNIST EMNIST

Batch Size 32 32 32 64

Encoding Length T 300 300 400 400

Expect Spike Count (True) 100 80 100 140

Expect Spike Count (False) 10 5 10 0

Firing Threshold 10 10 10 10

Learning Rate η 0.01 0.01 0.01 0.01

Maximum Time 300 ms 300 ms 400 ms 400 ms

Membrane Time τm 0.2 0.1 0.2 0.2

Refractory Period 16 ms 16 ms 16 ms 16 ms

Time Constant of Synapse τs 8 ms 8 ms 8 ms 8 ms

Time Step τs 1 ms 1 ms 1 ms 1 ms

image classification tasks, we set 10 (47 for EMNIST) output spiking neurons corresponding to the classification

labels. The output label of SNNs is the one with the greatest spike count. Notice that all SNN models are without

any convolution structure, and the self-connection element λ is randomly sampled from [0, 1] with bias = 1/4.

Table 1 lists the typical configuration values in PIRATE. All the experiments were made in Python, running on

Intel Core i7-6500U CPU @2.50 GHz.

Table 2 lists the comparative performance (accuracy) and configurations (setting) of the contenders and PIRATE

on four digit data sets. Notice that BSNN proposed by [32] is a special case of the proposed PIRATE model with

(n = 1). It is observed that the self-connection SNN models (PIRATE with n = 1, 2) perform best against other

competing approaches, achieving very superior testing accuracy (i.e., more than 99.00% on MNIST, 99.20%

on NMNIST, 91.00% on Fashion-MNIST, and 87.50 % on E-MNIST). It is a laudable result, which shows the

power and potential of self-connection in SNNs. On the other hand, we observe that the accuracy of PIRATE

with n = 3 is lower than other models yet with a larger variance, which hints a conspicuous symbol for over-

fitting. Thus, we conjecture that unilaterally increasing the higher-order terms on the self-connection mutual

promotion will not achieve an ideal improvement on accuracy of SNNs. Besides, a higher-order u∗k(λ, t) tends

to cause evidently larger computation consumption. Therefore, we recommend that the self-connection term

u∗k(λ, t) should not exceed order 2 in practical applications.

5. Conclusions, Discussions, and Prospects

In this paper, we present the theoretical understandings of the structural stability of SNNs with polynomial

self-connection, that is, PIRATE. We provided three main results to show the existence, algorithmic upper
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bound, and explicit lower bound of the bifurcation solutions of PIRATE with internal and external perturbations.

Numerical experiments conducted on several simulation systems and image recognition tasks demonstrate the

above theoretical results and the effectiveness of PIRATE, respectively.

Solid Support for SNNs Theory. Despite an increasing focus on the potential of handling spatio-temporal

data, the theoretical understandings of many aspects (e.g., approximation power, computational efficiency, and

stability) of SNNs are still cloudy. To the best of our knowledge, few theoretical guarantees on the universali-

ty [15, 25], approximation complexity [33], and computational efficiency [28, 3] of SNNs have been provided.

This work initiates an in-depth analysis for theoretically investigating the structural stability. In contrast to

the Lyapunov stability that considers perturbations of initial conditions for a fixed system and the algorithmic

stability that characterizes perturbations of training sets for some learning algorithms, structural stability is a

qualitative property that qualifies the behavior of structures under perturbations, dealing with perturbations of

the SNN system itself. We succeed in producing provable and algorithmic bounds for qualifying the structural

stability of SNNs. Besides, our theoretical results show the effect of self-connection on withstanding pertur-

bations (since using higher-order implementation can be regarded as a Taylor approximation to the complex

self-connection function), which disclose the significance and power of self connections for enhancing the sta-

bility of SNNs and may shed some insights on developing provable and sound SNNs. Prospectively, our work

provides solid support for the theory development of SNNs.

Future Issues. In light of the preceding merits, many issues are worthy of being studied in the future. One

important future issue is to explore some practical techniques for scSNNs. Indeed, the current implementation,

i.e., the Taylor expansion of the self-connection function from the k-th neuron to the i-th neuron equals to

the last spike of neuron k as shown in Eq. (3), inevitably leads to a larger memory consumption when the

input spike sequences are high-dimensional and high-frequency. Thus, it is prospective to explore some more

practical techniques or modules for scSNNs. An alternative way is to train SNNs with adversarial examples,

that is, trick SNNs by providing deceptive input or protect their performance from malicious attack signals.

Another important future issue is to develop in-depth theoretical understandings of SNNs, especially explore

the theoretical advantages of SNNs with self connections over SNNs without ones from the perspectives of

approximation, optimization, and generalization.

13



Table 2: The comparative performance of the contenders and PIRATE.

Data Sets Contenders Accuracy (%) Setting

MNIST

Deep SNN-BP [12] 98.71 28×28-800-10 ♠

SNN-EP [17] ♥ 97.63 28×28-500-10

HM2-BP [9] 98.84 ± 0.02 28×28-800-10

SLAYER [27] 98.39 ± 0.04 28×28-500-500-10

SNN-L [20] 98.23 ± 0.07 28×28-1000-R28-10 ♦

BSNN [32] 99.02 ± 0.04 28×28-500-500-10

PIRATE (n = 2) 99.09 ± 0.07 28×28-500-500-10

PIRATE (n = 3) 98.53 ± 0.13 28×28-500-500-10

N-MNIST

Deep SNN-BP 98.78 2*28×28-800-10

SNN-EP 97.74 2*28×28-500-10

HM2-BP 98.84 ± 0.02 2*28×28-800-10

SLAYER 98.89 ± 0.06 2*28×28-500-500-10

SNN-L 98.33 ± 0.11 2*28×28-1000-R28-10

BSNN 99.24 ± 0.12 2*28×28-500-500-10

PIRATE (n = 2) 99.21 ± 0.16 2*28×28-500-500-10

PIRATE (n = 3) 99.07 ± 0.22 2*28×28-500-500-10

Fashion-MNIST

Deep SNN-BP 87.34 28×28-800-10

ST-RSBP [34] 90.00 ± 0.13 28×28-400-R400-10

HM2-BP 88.99 28×28-400-400-10

SLAYER 88.61 ± 0.17 28×28-500-500-10

SNN-L 89.61 ± 0.09 28×28-1000-R28-10

BSNN 91.22 ± 0.06 28×28-500-500-10

PIRATE (n = 2) 91.78 ± 0.12 28×28-500-500-10

PIRATE (n = 3) 88.56 ± 0.23 28×28-500-500-10

EMNIST

Deep SNN-BP 80.51 28×28-800-47

eRBP [16] 78.17 28×28-200-200-47

HM2-BP 84.43 ± 0.10 28×28-400-400-47

SLAYER 85.73 ± 0.16 28×28-500-500-47

SNN-L 83.75 ± 0.15 28×28-1000-R28-47

BSNN 87.51 ± 0.23 28×28-500-500-47

PIRATE (n = 2) 87.62 ± 0.14 28×28-500-500-47

PIRATE (n = 3) 84.78 ± 0.34 28×28-500-500-47

♠ : -800- denotes one hidden layer with 800 spiking neurons, while -300-300- is

two hidden layers with 300 spiking neurons.
♥ : SNN-EP indicates an implementation for training SNN with equilibrium prop-

agation.
♦ : R28 represents a recurrent layer of 28 spiking neurons.
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Supplementary Materials of “Structural Stability of Spiking Neural

Networks” (Appendix)

This Appendix provides the supplementary materials for our work “Structural Stability of Spiking Neural Net-

works”, constructed according to the corresponding sections therein. Before that, we review the useful notations

as follows.

Let [N ] = {1, 2, . . . , N} be an integer set forN ∈ N+, and | · |# denotes the number of elements in a collection,

e.g., |[N ]|# = N . Given two functions g, h : N+ → R, we denote by h = Θ(g) if there exist positive constants

c1, c2 and n0 such that c1g(n) ≤ h(n) ≤ c2g(n) for every n ≥ n0; h = O(g) if there exist positive constants c

and n0 such that h(n) ≤ cg(n) for every n ≥ n0; h = Ω(g) if there exist positive constants c and n0 such that

h(n) ≥ cg(n) for every n ≥ n0; h = o(g) if there exist positive constants c and n0 such that h(n) < cg(n) for

every n ≥ n0.

Let C(K,R) be the set of all scalar functions f : K→ R continuous on K ⊂ Rm. Givenα = (α1, α2, . . . , αm)>,

αi ≥ 0 for i ∈ [m], |α| =
∑
i∈[m] αi, and x = (x1, x2, . . . , xm) ∈ K, we define an n-tuple partial derivative

D|α|f(x) =
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αn

∂xαn
f(x) .

Further, we define

Cl(K,R) = {f | f ∈ C(K,R), Drf ∈ C(K,R), r ∈ [l]} .

For 1 ≤ p <∞, we define

Lp(K,R) =
{
f
∣∣∣ f ∈ C(K,R), ‖f‖p,K <∞

}
,

where

‖f‖p,K
def
=

(∫
K
|f(x)|p dx

)1/p

.

This work considers the Sobolev spaceW l,p
µ (K,R), defined as the collection of all functions f ∈ Cl(K,R) and

Drf ∈ Lp(K,R) for all |r| ∈ [l], that is,

‖Drf‖p,K =

(∫
K
|Drf(x)|p dx

)1/p

<∞ .

A. Full Proof for Theorem 1

This section provides the detailed proof for Theorem 1. Lemma 1 establishes based on the perturbation structure

between original system (4) and perturbed system (5). Lemma 2 generalizes the Faa di Bruno’s Formula in [31],

dg(f)(t)

dt
=
∑
Sr

CS
dh(r)g(f)(t)

dth(r)

r∏
l=1

(
dlf(t)

dtl

)αj

,
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where g, f ∈ CK(R,R) and

CS =
r!

α1!(α2!2!α2) . . . (αr!r!αr )
,

for Sr denotes the set of all r-tuples of non-negative integers {αj}j∈[r] as noted in Section 2, satisfying∑
j

jαj = r and h(r) =
∑
j

αj .

Informally, we re-formulate the solution function f as f(t, ε, u) : [0, T ]× [−ε0, ε0]×K→ K. Hence, we have

f(t, ε, u) = u+

∫ t

0

F0(s, ũ) ds+

K∑
k=0

εkGk(t, u) + εK+1

[∫ t

0

Rest(s, f(s, ε), ε) ds+O(1)

]
for f(0, ε, ũ) = ũ, especially,

f(t, ε) = ũ+

∫ t

0

F0(s, ũ) ds+

K∑
k=0

εkGk(t, ũ) + εK+1

[∫ t

0

Rest(s, f(s, ε), ε) ds+O(1)

]
.

where Gk (for k ∈ [K]) is of recursive form as follows

Gk(t, u) =

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds ,

for all r ∈ [k − 1]. The Taylor expansion of Fk(t, f(t, ε, u)) for k ∈ [K − 1] around ε = 0 is given by

Fk(t, f(t, ε, u)) = Fk(t, f(t, ε, 0)) + εK−k+1O(1) +

K−k∑
r=1

εr

r!

(
∂rFk(t, f(t, ε, u))

∂εr

) ∣∣∣∣
ε=0

. (11)

From the Faa di Bruno’s Formula, we calculate the r-derivatives of Fk(t, f(t, ε, u)) for k ∈ [K − 1] in ε

∂rFk(t, f(t, ε, u))

∂εr

∣∣∣∣
ε=0

=
∑
Sr

CSr!
dh(r)Fk(t, f(t, ε, u))

dth(r)

∣∣∣∣
ε=0

r∏
l=1

Gk(t, u)αl , (12)

where

Gk(t, u) =
1

r!

(
∂rf(t, ε, u)

∂εr

) ∣∣∣∣
ε=0

=

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds (13)

with

G =

k∑
r=1

∑
Sr

Dh(r)Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr )

r∏
l=1

Gl(s, u)αl

for all r ∈ [k − 1].

Substituting Eq. (12) into Eq. (11), the Taylor expansion of Fk(t, f(t, ε, u)) at ε = 0 becomes

Fk(t, f(t, ε, u)) = Fk(t, u) + εK−k+1O(1) +

K−k∑
r=1

∑
Sr

CSε
r dh(r)Fk(t, f(t, ε, u))

dth(r)

∣∣∣∣
ε=0

r∏
l=1

Gk(t, u)αj

for k ∈ [K − 1]. Moreover, the above result hold for the case k = 0. Further, for k = K, we have

Fk(t, f(t, ε, u)) = Fk(t, u) + εO(1) . (14)

Thus, we have

|Fk(t, f(t, ε, u))− Fk(t, u)| ≤ L|f(t, ε, u)− u| = O(1) , (15)
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since the set [0, T ]× [−ε0, ε0]× Ū is compact and Fk(t, u) is locally Lipschitz in Ū with scale L.

Summing up the above results, we can conclude that

f(t, ε, u) = u+

∫ t

0

F0(s, ũ) ds+

K∑
k=0

εkGk(t, u) + εK+1

[∫ t

0

Rest(s, f(s, ε), ε) ds+O(1)

]
, (16)

where Gk (for k ∈ [K]) is of recursive form as follows

Gk(t, u) =

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds ,

for all r ∈ [k − 1], in which

G =

k∑
r=1

∑
Sr

Dh(r)Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr )

r∏
l=1

Gl(s, u)αl ,

for Sr denotes the set of all r-tuples of non-negative integers {αj}j∈[r] as noted in Section 2, satisfying∑
j

jαj = r and h(r) =
∑
j

αj .

This completes this proof. �

B. Full Proof for Theorem 2

This section provides the detailed proof for Theorem 2. The basic theory of the perturbation of planar Hamilto-

nian systems is well known. In general, we can reload Eq. (8) as
duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ εfε(uk, uk′) ,

duk′(t)

dt
=
∂H(uk, uk′)

∂uk
+ εgε(uk, uk′) .

We are going to show the degree of system Eq. (8). We starting this proof with an example of n = 2

H(uk, u
′
k) = (u2k − 1)2 + (u′2k − 1)2 .

Thus, the unperturbed system has 9 critical points, that is, (x, y) for x, y ∈ {−1, 0, 1}, of which 5 points are

non-degenerate, that is, (±1,±1) and (0, 0). Therefore, we can claim that there is a polynomial fε of degree 3,

which meets the degree result 22 − 1 = 3 of Lemma 3, such that
duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ εfε(uk, uk′)

duk′(t)

dt
=
∂H(uk, uk′)

∂uk

has limit cycles around center points (−1,−1), (0, 0), or (1, 1), if ε is sufficiently small but ε 6= 0. This claim is

self-evident if provided

fε(uk, u
′
k) =

1

3
(uk − u′k)2 − ε(uk − u′k) .

Next, it suffices to develop the above result to the case of n via mathematical induction. Then we have the

following proposition.
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Proposition 1 The system Eq. (8) has non-degenerate center points at the origin and at 2n − 2 other points on

each axis, all of which lie within {(x, y) | |x| ≤ 2n−1 and |y| ≤ 2n−1}.

Based on this proposition, we can conclude that

free(n) = 2n−1 + 1 = 2n − 1 .

Consider a clear-cut case that Poly(uk; 1) = uk

Poly(uk;n) = Poly(u2k − 2n−2;n− 1), for n ≥ 2 ,

then system Eq. (8) induces a singular transformation

(uk, u
′
k) 7→ (u2k − 2n−2, u′2k − 2n−2)

that is,

(uk, u
′
k) 7→

[
u2k − (free(n)− 1), u′2k − (free(n)− 1)

]
for n ≥ 2. Further, it is easy to calculate the recursive sequence of Eq. (9) as follows

P (n+ 1) = P (n) + (free(n)− 1)2 + free(n)2 .

This completes this proof. �

C. Full Proof for Corollary 3

We begin our analysis with a recall for the concerned example system. We consider a simple case of N = 2,

n = 2, m = 3, and K = 5, as follows:
du1(t)

dt
= −u1(t)

τm
+ u1(t)2u2(t) + ε Poly1(u(t);m) ,

du2(t)

dt
= −u2(t)

τm
+ u1(t)u2(t)2 + ε Poly2(u(t);m) ,

where
Polyi(u; 3) = βik,1u1 + βik,2u2

+ βik,3u
2
1 + βik,4u1u2 + βik,5u

2
2

+ βik,6u
3
1 + βik,7u

2
1u2 + βik,8u1u

2
2 + βik,9u

3
2 ,

for i ∈ [N = 2] and k ∈ [K = 5]. Obviously, it is known as a cubic system with m = 3th polynomial

perturbations.
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Here, we employ K = 5th component to estimate the upper bounds of H(n). From Procedure 1-3, we first

convert Eq. (10) into
∂f(t, ε)

∂t
=

5∑
k=0

εkFk(t, f) + ε6Rest(t, ε, f) ,

that is,
∂f(t, ε)

∂t
= F0 +

5∑
k=1

εkFk(t, f) +O(ε6) .

Next, we provides the detailed calculation paradigms for f providedGk and Fk (k ∈ [K = 5]). For convenience,

we consider two cases either F0 ≡ 0 or F0 6≡ 0.

Let � denote the Hadamard product. We have the sets Sr for r ∈ [K = 5]

S1 = {1},

S2 = {(0, 1), (2, 0)}

S3 = {(0, 0, 1), (1, 1, 0), (3, 0, 0)},

S4 = {(0, 0, 0, 1), (1, 0, 1, 0), (2, 1, 0, 0), (0, 2, 0, 0), (4, 0, 0, 0)},

S5 = {(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (2, 0, 1, 0, 0), (3, 1, 0, 0, 0), (1, 2, 0, 0, 0), (5, 0, 0, 0, 0)}.

For the case of F0 ≡ 0, we have

G0(u) = 0

G1(u) =

∫ T

0

F1(t, u) dt

G2(u) =

∫ T

0

F2(t, u) ds+
∂F1

∂u
(t, u)y1(t, u)dt

G3(u) =

∫ T

0

(
F3(t, u) +

∂F2

∂u
(t, u)y1(t, u)

)
dt+

∫ T

0

(
∂2F1

∂u2
(t, u)y1(t, z)2 +

∂F1

∂u
(t, u)y2(t, u)

)
dt

G4(u) =

∫ T

0

(
F4(t, u) +

∂F3

∂u
(t, u)y1(t, u)

)
dt+

∫ T

0

(
∂2F2

∂u2
(t, u)y1(t, u)2 +

∂F2

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

∂2F1

∂u2
(t, u)y1(t, u)� y2(t, u) dt+

∫ T

0

(
∂3F1

∂u3
(t, u)y1(t, u)3 +

∂F1

∂u
(t, u)y3(t, u)

)
dt

G5(u) =

∫ T

0

(
F5(t, u) +

∂F4

∂u
(t, u)y1(t, u)

)
dt

+

∫ T

0

(
∂2F3

∂u2
(t, u)y1(t, u)2 +

∂F3

∂u
(t, u)y2(t, u) +

∂2F2

∂u2
(t, u)y1(t, u)� y2(t, u)

)
dt

+

∫ T

0

(
∂3F2

∂u3
(t, u)y1(t, u)3 +

∂F2

∂u
(t, u)y3(t, u) +

∂2F1

∂u2
(t, z)y1(t, u)� y3(t, z)

)
dt

+

∫ T

0

∂2F1

∂u2
(t, u)y2(t, u)2 dt+

∫ T

0

∂3F1

∂u3
(t, u)y1(t, u)2 � y2(t, u) dt

+

∫ T

0

(
∂4F1

∂x4
(t, u)y1(t, u)4 +

∂F1

∂u
(t, u)y4(t, u)

)
dt ,
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where

y1(t, u) =

∫ s

0

F1(s, u) ds

y2(t, u) =

∫ s

0

F2(s, u) +
∂F1

∂u
(s, u)y1(s, u) ds

y3(t, u) =

∫ s

0

(
F3(s, u) +

∂F2

∂u
(s, u)y1(t, z) +

∂2F1

∂u2
(s, u)y1(s, u)2 +

∂F1

∂u
(s, u)y2(s, u)

)
ds

y4(t, u) =

∫ s

0

(
F4(s, u) +

∂F3

∂x
(s, u)y1(s, u)

)
ds+

∫ s

0

(
∂2F2

∂u2
(s, u)y1(s, u)2 +

∂F2

∂u
(s, u)y2(s, u)

)
ds

+

∫ s

0

∂2F1

∂u2
(s, u)y1(s, u)� y2(s, u) ds+

∫ s

0

(
∂3F1

∂u3
(s, u)y1(s, u)3 +

∂F1

∂u
(s, u)y3(s, u)

)
ds

y5(t, u) =

∫ t

0

(
F5(s, u) +

∂F4

∂u
(s, u)y1(s, u)

)
dds

+

∫ t

0

(
∂2F3

∂u2
(s, u)y1(s, u)2 +

∂F3

∂u
(s, u)y2(s, u) +

∂2F2

∂u2
(s, u)y1(s, u)� y2(s, u)

)
ds

+

∫ t

0

(
∂3F2

∂u3
(s, u)y1(s, u)3 +

∂F2

∂u
(s, u)y3(s, u) +

∂2F1

∂x2
(s, u)y1(s, u)� y3(s, z)

)
ds

+

∫ t

0

∂2F1

∂u2
(s, u)y2(s, u)2 ds+ yt

∂3F1

∂u3
(s, u)y1(s, u)2 � y2(s, u) ds

+ 5

∫ t

0

(
∂4F1

∂u4
(s, u)y1(s, u)4 +

∂F1

∂u
(s, u)y4(s, u)

)
ds .

For the case of F0 6≡ 0, we have

G0(u) =

∫ T

0

F0(t, u) dt

G1(u) =

∫ T

0

F1(t, u) +
∂F0

∂u
(t, u)y1(t, u) dt

G2(u) =

∫ T

0

(
F2(t, u) +

∂F1

∂u
(t, u)y1(t, u) +

∂2F0

∂u2
(t, u)y1(t, u)2 +

∂F0

∂u
(t, u)y2(t, u)

)
dt

G3(u) =

∫ T

0

(
F3(t, u) +

∂F2

∂u
(t, u)y1(t, u) +

∂2F1

∂u2
(t, u)y1(t, u)2 +

∂F1

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

(
∂2F0

∂u2
(t, u)y1(t, u)� y2(t, u) +

∂3F0

∂u3
(t, u)y1(t, u)3 +

∂F0

∂u
(t, u)y3(t, u)

)
dt

G4(u) =

∫ T

0

(
F4(t, u) +

∂F3

∂u
(t, u)y1(t, u)

)
dt

+

∫ T

0

(
∂2F2

∂u2
(t, u)y1(t, u)2 +

∂F2

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

∂2F1

∂x2
(t, z)y1(t, z)� y2(t, z)dt

+

∫ T

0

(
∂3F1

∂u3
(t, u)y1(t, u)3 +

∂F1

∂u
(t, u)y3(t, u) +

∂2F0

∂u2
(t, u)y1(t, u)� y3(t, u)

)
dt

+

∫ T

0

∂2F0

∂u2
(t, u)y2(t, u)2 dt+

∫ T

0

∂3F0

∂u3
(t, u)y1(t, u)2 � y2(t, u) dt

+

∫ T

0

(
∂4F0

∂u4
(t, u)y1(t, u)4 +

∂F0

∂u
(t, u)y4(t, u)

)
dt ,
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where

y1(t, u) =

∫ s

0

F1(s, u) +
∂F0

∂x
(s, u)y1(s, u) dt

y2(t, u) =

∫ s

0

(
2F2(s, u) +

∂F1

∂u
(s, u)y1(s, u) +

∂2F0

∂u2
(s, u)y1(s, u)2 +

∂F0

∂u
(s, u)y2(s, u)

)
dt

y3(t, u) =

∫ s

0

(
F3(s, u) +

∂F2

∂u
(s, u)y1(s, u) +

∂2F1

∂u2
(s, u)y1(s, u)2 +

∂F1

∂u
(s, u)y2(s, u)

)
dt

+

∫ s

0

(
∂2F0

∂u2
(s, u)y1(s, u)� y2(s, u) +

∂3F0

∂u3
(s, u)y1(s, u)3 +

∂F0

∂u
(s, u)y3(s, u)

)
dt

y4(t, u) =

∫ s

0

(
F4(s, u) +

∂F3

∂u
(s, u)y1(s, u)

)
dt

+

∫ s

0

(
∂2F2

∂u2
(s, u)y1(s, u)2 +

∂F2

∂u
(s, u)y2(s, u)

)
dt

+

∫ s

0

∂2F1

∂u2
(s, u)y1(s, u)� y2(s, u) dt

+

∫ s

0

(
∂3F1

∂u3
(s, u)y1(s, u)3 +

∂F1

∂u
(s, u)y3(s, u) +

∂2F0

∂u2
(s, u)y1(s, u)� y3(s, u)

)
dt

+

∫ t

0

∂2F0

∂u2
(s, u)y2(s, u)2 dt+

∫ t

0

∂3F0

∂u3
(s, u)y1(s, u)2 � y2(s, u) dt

+

∫ t

0

(
∂4F0

∂u4
(s, u)y1(s, u)4 +

∂F0

∂u
(s, u)y4(s, u)

)
dt .

Recall the concerned example system (10), we have

F1(t, u) = u
(
β1
1,2 + β2

1,1

)
sin t cos t+ u

(
−β1

1,1 + β2
1,2

)
(sin t)2 + uβ1

1,1 ,

and thus,

G1(u) = πu
(
β1
1,1 + β2

1,2

)
.

It is observed that the 1st component G1(u) has no positive center points, and thus, provides no information

about the bifurcation solutions once adding perturbations. Further, it is necessary to compute the higher-order

component. From Procedure 4-12, we have

G2(u) =
πu

2

(
π(β1

1,1)2 + 2πβ1
1,1β

2
1,2 + π(β2

1,2)2 + β1
1,1β

1
1,2 − β1

1,1β
2
1,1 + β1

1,2β
2
1,2 − β2

1,1β
2
1,2 + 2β1

2,1 + 2β2
2,2

)
G3(u) =

1

4
πu
[(
β1
1,1 + 3β1

1,6 + β1
1,8 + β1,7 + 3β2

1,9

)
u2 + 4

(
β1
3,1 + β2

3,2

)]
with β2

2,2 = −β1
2,1

G4(u) =
1

4
πu
[
C1u

2 + 4
(
β1
4,1 + β2

4,2

)]
with β2

1,7 ← β1
1,1 + 3β1

1,6 + β1
1,8 + β1,7 + 3β2

1,9β
2
1,7 and β2

3,2 ← −β1
3,1 − β2

3,2 + β2
3,2

G5(u) =
1

4
πu
[(

2β1
1,1 + 2β1

1,6 + β1
1,8 + β2

1,9

)
u4 + C2u

2 + 4
(
β1
5,1 + β2

5,2

)]
with β2

2,7 ← −C1 + β2
2,7 and β2

4,2 ← −β1
3,1 − β2

3,2 + β2
4,2 ,
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where

C1 = 4β1
1,1β

1
1,2 + 2β1

1,1β
1
1,7 + 2β1

1,1β
2
1,8 + β1

1,2β
1
1,8 + 3β1

1,2β
2
1,9 + β1

1,3β
1
1,4 − 2β1

1,3β
2
1,3 + β1

1,4β
1
1,5 + 2β1

1,5β
2
1,5

+ β1
1,8β

2
1,1 + 3β1

1,1β
2
1,9 − β2

1,3β
2
1,4 − β2

1,4β
2
1,5 + 4β1

2,1 + 3β1
2,6 + β1

2,8 + β2
2,7 + 3β2

2,9

C2 = 4β1
1,1(β1

1,2)2 + 2β1
1,1β

1
1,2β

1
1,7 + 2β1

1,1β
1
1,2β

2
1,8 + 2β1

1,1(β1
1,3)2 + 2β1

1,1β
1
1,3β

1
1,5 − β1

1,1β
1
1,3β

2
1,4 + β1

1,1(β1
1,4)2

− β1
1,1β

1
1,4β

2
1,3 + β1

1,1β
1
1,4β

2
1,5 + β1

1,1β
1
1,5β

2
1,4 − 2β1

1,1β
2
1,3β

2
1,5 − β1

1,1(β2
1,4)2 − 2β1

1,1(β2
1,5)2 + (β1)21,2β

1
1,8

+ 3(β1)21,2β
2
1,9 + β1

1,2β
1
1,3β

1
1,4 + 2β1

1,2β
1
1,4β

1
1,5 + 4β1

1,2β
1
1,5β

2
1,5 + β1

1,2β
1
1,8β

2
1,1 + 3β1

1,2β
2
1,1β

2
1,9 − β1

1,2β
2
1,4β

2
1,5

+ 2β1
1,3β

2
1,1β

2
1,3 + β1

1,4β
1
1,5β

2
1,1 + 2β1

1,5β
2
1,1β

2
1,5 + β2

1,1β
2
1,3β

2
1,4 + 4β1

1,1β
1
2,2 + 2β1

1,1β
1
2,7 + 2β1

1,1β
2
2,8

+ 4β1
1,2β

1
2,1 + β1

1,2β
1
2,8 + 3β1

1,2β
2
2,9 + β1

1,3β
1
2,4 − 2β1

1,3β
2
2,3 + β1

1,4β
1
2,3 + β1

1,4β
1
2,5 + β1

1,5β
1
2,4 + 2β1

1,5β
2
2,5

+ 2β1
1,7β

1
2,1 + β1

1,8β
1
2,2 + β1

1,8β
2
2,1 + 2β1

2,1β
2
1,8 + 3β1

2,2β
2
1,9 − 2β1

2,3β
2
1,3 + 2β1

2,5β
2
1,5 + β1

2,8β
2
1,1 + 3β2

1,1β
2
2,9

− β2
1,3β

2
2,4 − β2

1,4β
2
2,3 − β2

1,4β
2
2,5 − β2

1,5β
2
2,4 + 3β2

1,9β
2
2,1 + 4β1

3,1 + 3β1
3,6 + β1

3,8 + β2
3,7 + 3β2

3,9 .

It is observed that the 5th component G5(u) has at most three positive center points, which provides support for

the existence of the upper bound of H(n) in Corollary 3. This completes this proof. �

D. Implementation for PIRATE

Altering to the thought line of bifurcation spiking neural networks [32], we here provide a concrete scheme for

implementing PIRATE. This work considers a feed-forward PIRATE with M pre-synaptic input channels and

N -dimensional output spiking neurons, and approximate the mutual promotion from the ith neuron to the kth

neuron using the last spike of neuron i, noted as Si(t′i), where t′i = max{s | ui(s) = ufiring, s < ti}. Formally,

for the k-th neuron, we have

duk(t)

dt
= −uk(t)

τm
+ Poly(u(t);n,λ) +

R

τm

M∑
j=1

WkjIj(t) , (17)

which has two types of learnable parameters, i.e., self-connection weights λ and connection weights W.

Akin to the spike response model scheme [6], Eq. (17) has a closed-form solution

uk(t) =

∫ t

t′
exp

(
t′ − s
τm

)
Qk(s) ds (18)

with

Qk(t) =

M∑
j=1

WkjIj(t) + Poly(S(t′);n,λ) ,

where the vector S(t′) = (S1(t′1), . . . , SN (t′N )) except for Sk, and t′ denotes the last firing time t′ = max{s |

ui(s) = ufiring, s < t} for a pre-given firing threshold ufiring > 0. Finally, the generated spike is transmitted

to the next neuron via the spike excitation function fe : u→ S.
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Provided supervised signals, the PIRATE model can be optimized via error back-propagation. In general, we

formulate the input (spike) sequence to a spiking neuron as

Ij(t) =
∑
firing

δj

(
t− tfiringj

)
,

where tfiringj is the spike time of the jth input and δ(t) is a corresponding Dirac-delta function. Summing up

the loss of the kth target supervised signal Ŝk(t) related to Sk(t) in time interval [0, T ]

Ek =
1

2

∫ T

0

Ek(t) dt =
1

2

∫ T

0

(
Sk(t)− Ŝk(t)

)2
dt . (19)

So for time t, we have
∂Ek(t)

∂Wkj
=
∂Ek(t)

∂Sk

∂Sk
∂uk

∂uk
∂Wkj

, (20)

where the first term is the error back-propagation of the excitatory neurons, the second term is that of the

generated spikes with respect to the membrane potential, and the third term denotes the that of basic bifurcation

neuron. Plugging Eqs. (18) and (19) into Eq. (20), we have

∂Ek(t)

∂Wkj
=
(
Sk(t)− Ŝk(t)

)
f ′e(uk) ∆w

j (t)

with

∆w
j (t) =

εj(t)

τm
exp

(
− t

τm

)
.

However, the derivative of the spike excitation function f ′e(u) is a persistent problem for training SNNs with

supervised signals. Recently, there have emerged many seminal approaches for addressing this problem, such as

the smoothing derivative via the probability density functions [27] or modified spike excitation functions [33].

Therefore, we obtain the back-propagation pipeline relative to connection weights Wkj

∇Wkj
E =

∫ T

0

∂Ek(t)

∂Wkj
dt .

Similarly, the correction with respect to some element λ of λ is given by

∇λE =

∫ T

0

(
Sk(t)− Ŝk(t)

)
f ′e(uk) ∆λ(t) dt

with

∆λ(t) =
1

τm

∂Poly(S(t′);n,λ)

∂λ
exp

(
− t

τm

)
.

Notice that ∂Poly(S(t′);n,λ)/∂λ indicates a polynomial partial derivative, especially we have

∇λE =

∫ T

0

(
Sk(t)− Ŝk(t)

)
f ′e(uk)

Si(t
′
i)

τm
exp

(
− t

τm

)
dt

for n = 1. Finally, we can also add a learning rate to help convergence, just like most deep artificial neural

networks.
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