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Abstract
Ensemble pruning that combines a subset of individual learn-
ers generated in parallel to make predictions is an important
topic in ensemble learning. Past decades have developed a lot
of pruning algorithms that focus on the external behavior of
learners on samples, which may lead to over-fitting. In this
paper, we conjecture that the generalization performance of
an ensemble is not only related to its external behavior on
samples but also dependent on the internal structure of in-
dividual learners. We propose the general MEPSI approach
based on Kolmogorov complexity and the Minimum Descrip-
tion Length (MDL) principle, which formulates the ensem-
ble pruning task as the two-objective optimization problem
that comprises the empirical error and structural informa-
tion among individual learners. We also provide a concrete
implementation of MEPSI on decision trees. The theoreti-
cal results provide generalization bounds for both the general
MEPSI approach and tree-based implementation. The com-
parative experiments conducted on multiple real-world data
sets demonstrate the effectiveness of our proposed method.

1 Introduction
Ensemble learning is a powerful learning paradigm that
trains and combines multiple learners to solve a single learn-
ing problem (Dietterich 2000; Zhou 2012), and has already
achieved state-of-the-art results in real-world tasks, such
as gradient boosting (Chen and Guestrin 2016; Dorogush,
Ershov, and Gulin 2018; Friedman 2001), voting (Zhou
2012), and stacking (Breiman 1996; Wolpert 1992). Ensem-
ble pruning is a key topic in ensemble learning, which se-
lects a subset of individual learners generated in parallel
to make predictions. It is observed that ensemble pruning
not only reduces storage and computation costs but also
achieves better performance than an ensemble of all individ-
ual learners. Conventional ensemble pruning methods can
be roughly categorized into three classes: the order-based
method, the clustering-based method, and the optimization-
based method. The order-based method generates a prior-
ity for each learner according to a certain criterion and only
selects learners with a high priority (Martı́nez-Muñoz and
Suárez 2006). The clustering-based method employs clus-
tering techniques to partition the individual learners into
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several groups and combines the representative prototype
learners in each group to make predictions (Giacinto, Roli,
and Fumera 2000; Lazarevic and Obradovic 2001). The
optimization-based method converts ensemble pruning tasks
into optimization problems, which can be solved by some
mature approaches, such as the relaxation techniques and
evolutionary algorithms (Wu et al. 2022; Zhou and Tang
2003; Zhou, Wu, and Tang 2002).

Previous studies often used empirical errors as the op-
timization objectives or the criteria for order, and all of
them only paid attention to the external behavior of learners
on the samples, which may lead to over-fitting. Intuitively,
the learner with both a lower empirical error and a simpler
structure tends to achieve better generalization performance.
Thus, we conjecture that the generalization performance of
an ensemble is not only related to its external behavior on
samples but also dependent on the internal structure of indi-
vidual learners. In ensemble pruning, one can quantify the
structural information among individual learners to upper
bound the complexity of the combined learner. Nevertheless,
quantifying structural information is one of the three great
challenges for half-century-old computer science, summa-
rized in the 50th year of Journal of the ACM by Brooks Jr
(2003). For decades, it still remains open about how to mea-
sure structural information. Thus, we bridge the learner’s
structure and generalization performance.

In this paper, we investigate the structural information
among individual learners by exploiting the Kolmogorov
complexity and the MDL principle. We propose the MDL-
based Ensemble Pruning approach with Structural Informa-
tion, equally MEPSI approach in short. MEPSI converts
the ensemble pruning task to the two-objective optimization
problem that minimizes the weighted sum of empirical er-
rors and structural information of individual learners, which
is measured by the algorithmic mutual information. Thus,
MEPSI induces a general learning approach for ensemble
pruning by building the bridge between the learner’s struc-
ture and generalization. Besides, we provide a concrete im-
plementation for MEPSI on decision trees, in which we im-
plement the structural information term by the edit distance
of decision trees.

Our main contributions are summarized as follows.

• We propose a general ensemble pruning approach
MEPSI based on the theory of Kolmogorov complex-



ity and MDL principle, which formulates the ensemble
pruning task as an optimization problem that comprises
empirical error and structural information.

• We provide an implementation for the general MEPSI
on decision trees, where we propose the edit similarity
measure to approximate the structural information term
with a concrete algorithm procedure.

• We give the generalization bounds for both general
MEPSI and tree-based implementation, which com-
pletely match our proposed optimization problems.

• We conduct experiments to compare MEPSI with 13 en-
semble pruning methods on 11 classification data sets.
The numerical results show that our method achieves
good results and sufficiently outperforms other methods
on average.

The rest of this paper is organized as follows. Section 2
introduces related notations and terminologies. Section 3
presents the MEPSI and its implementation algorithms. Sec-
tion 4 theoretically investigates the generalization abilities of
MEPSI. Section 5 conducts experiments on multiple multi-
classification data sets. Section 6 concludes this work with
discussions and prospects.

2 Preliminaries
This section will introduce useful notations, terminologies,
and related studies.

2.1 Notations
This work considers the classification tasks. Let X be the
feature space, and Y denotes the set of labels {1, 2, . . . , C}.
Let D = {(x1, y1), (x2, y2), . . . , (xm, ym)} be the data set,
where (xi, yi) ∈ X × Y .

Provided a set of individual learners H = {ht}Tt=1, en-
semble pruning selects a subset S ⊆ H whose size is k
and combines the individual learners in S as the combined
learner HS =

∑k
i=1 wihSi

, where Si denotes the index of
the ith learner in S and wi is the weight to combine the
learners, satisfying wi > 0 and

∑k
i=1 wi = 1. Provided the

scoring function hi : X × Y → R, we can get a classifier
fi : X → Y as follows

fi(x) = argmax
y∈Y

hi(x, y) . (1)

For convenience, we denote hi as both the scoring function
and classifier simultaneously. We also refer to a learner here-
after as a model or a hypothesis.

For a character set {0, 1}, we denote {0, 1}∗ as the set
of finite strings over the character set {0, 1}, and we have
{0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, . . . }, where ϵ means
the empty string. We also use l(x) to denote the length of
the string x. Let x = x1x2 . . . xn be a binary string whose
length l(x) is n. We call x̄ the self-delimiting (prefix) ver-
sion of x, i.e.,

x̄ = 1 1 · · · 1︸ ︷︷ ︸
n times

0 x1x2 . . . xn .

Given binary strings x and y, we define the standard in-
vertible function ⟨·, ·⟩ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ with

⟨x, y⟩ = x̄y, which maps the pair of binary strings (x, y) to
another one ⟨x, y⟩. The standard invertible function above
can be extended to the multivariate version as follows

⟨z1, z2, . . . , zk⟩ = ⟨z1, ⟨z2, z3, . . . , zk⟩⟩ ,

where (z1, z2, . . . , zk) is a k-tuple of binary strings. It is effi-
cient to recover the k-tuple (z1, z2, . . . , zk) unambiguously
from the ⟨z1, z2, . . . , zk⟩ without any delimiter. We denote
+
< and

+
> as inequalities within an additive constant. More

precisely, for two functions u : D → R, v : D → R, we say

u(x)
+
< v(x) if and only if there exists a constant c such that

∀x ∈ D we have u(x) < v(x) + c. Let u(x) +
= v(x) if both

u(x)
+
< v(x) and u(x)

+
> v(x) hold.

2.2 Kolmogorov Complexity and Algorithmic
Mutual Information

Kolmogorov complexity was originally proposed for mea-
suring the randomness and complexity of individual ob-
jects (Solomonoff 1964; Kolmogorov 1965). In contrast
to Shannon’s information theory (Shannon 1948) which is
based on the classical probability theory to measure the un-
certainty and randomness of a known random source, Kol-
mogorov complexity is to measure the randomness of an
individual object through computational theory. It is natu-
ral to say that an object is simple if it can be briefly de-
scribed by a string or language. According to this motiva-
tion, Kolmogorov’s theory provides a formal measurement
of the object’s complexity. Approximately, the Kolmogorov
complexity of an object can be understood as the length of
the shortest computer program written in the universal pro-
gramming language that can print the object and then halt.

Formally, Li and Vitányi (2019) gives the definition of
the prefix variant of Kolmogorov complexity; we also call
it Kolmogorov complexity for convenience.

Definition 2.1. The Kolmogorov complexity K : {0, 1}∗ →
N maps objects represented by binary strings to natural num-
bers. Let x, y, p be binary strings, and U be the reference
prefix machine. The conditional Kolmogorov complexity
of x conditional to y is defined by

K(x | y) = min
p
{l(p) : U(⟨y, p⟩) = x} ,

where U(⟨y, p⟩) indicates the output of reference prefix ma-
chine whose input is ⟨y, p⟩. The Kolmogorov complexity of
x is defined by

K(x) = K(x | ϵ) = min
p
{l(p) : U(p) = x} ,

where ϵ denotes the empty string.

Algorithmic mutual information is derived from Kol-
mogorov complexity and formalizes the complexity-based
similarity between two individual objects. Formally, one has
the definition (Grünwald and Vitányi 2008; Li and Vitányi
2019) as follows



Definition 2.2. Let x, y be objects represented by binary
strings. The algorithmic information about x contained in
y is defined as

I(x : y) = K(y)−K(y | x∗) ,

where x∗ represents the first shortest prefix program that
prints x (Li and Vitányi 2019). It is observed that I(x : y) is
symmetric within an additive constant, i.e., I(x : y)

+
= I(y :

x). Thus, we also call I(x : y) the algorithmic mutual in-
formation between x and y.

Informally, the algorithmic mutual information between x
and y can be understood as the description length of y that
can be reduced with the help of x. It measures the structural
similarity between x and y. The larger the algorithmic mu-
tual information is, the more similarity objects x and y have.

2.3 The Minimum Description Length Principle
The MDL principle was first developed by Rissanen (1978),
in which the best hypothesis that describes data x is the one
that minimizes the two-part code length that is the sum of
• the length, in bits, of the description of the hypothesis,
• the length, in bits, of the description of the data x when

the data is described with the help of the hypothesis.
The MDL principle provides a way of identifying hy-

potheses to avoid over-fitting, usually regarded as a concrete
formulation of Occam’s Razor. The ideal MDL principle re-
lies on Kolmogorov complexity to measure the description
length of the hypothesis and data (Li and Vitányi 2019).

Definition 2.3. Once both the hypothesis h and data set D
can be expressed by strings, the ideal MDL principle selects
the hypothesis h by minimizing

K(h)︸ ︷︷ ︸
hypothesis description

+ K(D | h)︸ ︷︷ ︸
data-to-model code

, (2)

where K(h) measures the description length of the h and
K(D | h) measures the minimum description length of the
D with the help of h.

The Kolmogorov-based MDL theory indicates that find-
ing the MDL estimator in a hypothesis space of prescribed
maximal Kolmogorov complexity gives the hypothesis that
best fits the data (Vereshchagin and Vitányi 2004).

3 The MEPSI Approach
In this section, we propose the MEPSI, a general ensemble
pruning approach, via the theory of Kolmogorov complex-
ity and MDL principle. Section 3.1 introduces the general
MDL-based optimization objective including empirical er-
rors and structural information. Section 3.2 proposes an ap-
proximation method for the ensemble of tree-based models.

3.1 The General MDL-based Optimization
Objective

We begin our work with the ensemble pruning task in which
all individual learners are in a hypothesis class of prescribed
maximal Kolmogorov complexity.

Assumption 3.1. Provided the set of individual learners
H = {h1, h2, . . . , hT }, we assume that ∀h ∈ H , their Kol-
mogorov complexity K(h) is upper bounded by a constant
Ch, that is, K(h) ≤ Ch for h ∈ H .

This assumption is natural in pruning tasks for homoge-
nous ensembles, such as random forests, in which all de-
cision trees have similar node numbers and upper-bounded
Kolmogorov complexities.

We follow the MDL principle in Definition 2.3 and rep-
resent the second term (data-to-model code) in Eq. (2) us-
ing the empirical error of the combined learner. Thus, the
MDL principle can be regarded as minimizing the weighted
sum of Kolmogorov complexity and the empirical error of
combined learners. Hence, the ensemble pruning task can
be re-formulated as the following two-objective optimiza-
tion problem

min
S

λK (HS)︸ ︷︷ ︸
complexity

+
1

m

m∑
i=1

I (HS(xi) ̸= yi)︸ ︷︷ ︸
empirical error

, (3)

where λ ≥ 0 is the trade-off parameter. Let hSi:k
de-

note the set {hSi
, hS2

, . . . , hSk
}, and ⟨hSi:k

⟩ denotes the fi-
nite string ⟨hSi

, hS2
, . . . , hSk

⟩. Then the Kolmogorov com-
plexity K (HS) of the combined learner HS can be upper
bounded by K(hSi:k

), because HS can be described with the
help of the individual learners within a constant cost. Thus,
the optimization objective in (3) could be upper bounded by

λK(hSi:k
) +

1

m

m∑
i=1

I (HS(xi) ̸= yi) . (4)

We expand K(hSi:k
) into the sum of the conditional Kol-

mogorov complexity of the individual learners hSi:k

K(hS1:k
)

+
=

k∑
i=1

K
(
hSi
| ⟨hSi+1:k

⟩∗
)
,

which holds from the additivity property of Kolmogorov
complexity (Li and Vitányi 2019). According to Defini-
tion 3.1, K(hS1:k

) can be upper bounded by

K(hS1:k
)

+
≤ kCh +

k∑
i=1

[
K

(
hSi
| ⟨hSi+1:k

⟩∗
)
−K(hSi

)
]
.

According to Definition 2.2, we transform the conditional
complexity into the algorithmic mutual information among
different individual learners, then K(hS1:k

) can be upper
bounded by

K (hS1:k
)

+
≤ kCh −

k∑
i=1

I
(
hSi : hSi+1:k

)
. (5)

Substituting Inequality (5) into Eq. (4), we get the following
optimization problem

min
S
− λ

k∑
i=1

I
(
hSi

: hSi+1:k

)
︸ ︷︷ ︸

structural information

+
1

m

m∑
i=1

I (HS(xi) ̸= yi)︸ ︷︷ ︸
empirical error

.

(6)



The surrogate objective above implies that minimizing the
empirical error while maximizing the algorithmic mutual in-
formation among individual learners should be considered
simultaneously. Recall Definition 2.2, the algorithmic mu-
tual information I(hSi

: hSi+1:k
) not only means the de-

scription length of hSi
that can be reduced with the help of

the set hSi+1:k
but also measures the structural similarity be-

tween the individual learner hSi
and the set of individual

learners hSi+1:k
. Thus, we call the first item of Eq. (6) the

structural information term.
Notice that the Kolmogorov complexity is not com-

putable, and thus, one cannot precisely calculate the opti-
mization objective in Eq. (6), but can only approximate it
by some surrogate objectives. Besides, it is hard to estimate
K(HS) directly since HS is the average of multiple individ-
ual learners. Inspired by this recognition, we conjecture that
it is easier to design similarity metrics to approximate the
algorithmic mutual information among different structural
individual learners.

3.2 Implementation with Tree-based Model
This subsection shows a specific implementation for the gen-
eral MDL-based objective and presents the concrete ensem-
ble pruning algorithm based on decision trees.

The key challenge for implementation is to approximate
the structural information term. The decision tree is a model
in which each internal node represents a test on a fea-
ture, and each leaf node represents a class label. There are
many successful ensemble models based on decision trees,
such as random forest (Breiman 2001), extremely random-
ized trees (Geurts, Ernst, and Wehenkel 2006), and rotation
forest (Rodriguez, Kuncheva, and Alonso 2006). Here, we
choose the decision tree as the individual learners for imple-
mentation. Thanks to the tree-like structure and good com-
prehensibility of decision trees, the Kolmogorov complexity
of a decision tree can be approximated by its node num-
ber (Li and Vitányi 2019). Hence, we can design some met-
rics to approximate the structural information term for en-
semble pruning with decision trees.

We first introduce the edit distance between decision
trees, which is proposed by Sun and Zhou (2018).

Definition 3.2. Let h, g be two decision trees, where we ne-
glect the leaf nodes and reserve the internal nodes. The tree
edit distance TED(h, g) is defined as the minimum number
of node operations to transform h into g, correspondingly,
the sequence of node operations is called tree edit sequence
TES(h, g), where three node operations are considered

• [INSERT] inserting a node.
• [REMOVE] removing a node and connecting its children

node to its parent node.
• [UPDATE] updating the associated feature of a node.

The tree edit distance TED(h, g) can be efficiently calcu-
lated within polynomial time complexity (Pawlik and Aug-
sten 2011; Zhang and Shasha 1989). Now, we define the edit
similarity measure ESM according to the TED measure be-
tween decision trees.

Algorithm 1: The Tree-based Implementation for MEPSI

Input: A data set D = {(xi, yi)}mi=1 whose number of
samples is m, a candidate decision trees H = {hi}Ti=1
whose size is T , the pruning size k, and the hyperpa-
rameter coefficient λ

Output: A subset of decision trees S whose size is k
1: Initialize S ← ∅
2: Initialize minObj←∞
3: for tree hi ∈ {h1, h2, . . . , hT−1} do
4: for tree hj ∈ {hi+1, hi+2, · · · , hT } do
5: error← 1

m

∑m
i=1 I(

hi+hj

2 (xi) ̸= yi)
6: comp← NC(hi) + NC(hj)− TED(hi, hj)
7: if error− λ comp < minObj then
8: S ← {hi, hj}
9: minObj← error− λ comp

10: end if
11: end for
12: end for
13: while |S| < k do
14: Initialize A← ∅
15: Initialize minObj←∞
16: for tree h ∈ {h1, h2, · · · , hT } \ S do
17: error← 1

m

∑m
i=1 I(

h+
∑

g∈S g

|S|+1 (xi) ̸= yi)

18: ESM(h, S)← NC(h)−ming∈S{TED(g, h)}
19: if error− λ ESM(h, S) < minObj then
20: A← {h}
21: minObj← error− λ ESM(h, S)
22: end if
23: end for
24: S ← S ∪A
25: end while

Definition 3.3. Let h be the concerned decision tree, and
G = {g1, g2, . . . , gk} indicates a set of decision trees. We
define the edit similarity measure ESM(h,G) as

ESM(h,G) = NC(h)−min
g∈G
{TED(g, h)} ,

where NC(h) denotes the number of internal nodes of h.

With slight abuse of symbol, we use G to denote both
set {g1, g2, . . . , gk} and finite string ⟨g1, g2, . . . , gk⟩. Now,
we claim that ESM(h,G) is a good approximation of the
algorithmic mutual information I(h : G). Firstly, the Kol-
mogorov complexity K(h) can be approximated well by
NC(h) according to (Li and Vitányi 2019). Secondly, for
all g ∈ G, the structure of h could be recovered accord-
ing to the structure of g and the node operation sequence
TES(g, h) when G is given. Thus, the minimum value for
all g ∈ G of TED(g, h) could be taken as a good approx-
imation of K(h | G∗). Thus, I(h : G) could be approxi-
mated well by ESM(h,G) according to Definition 2.2 that
indicates I(h : G) = K(h)−K(h | G∗).

Here, we implement the algorithmic mutual information
in Eq. (6) with ESM, so that the ensemble pruning task can



be converted into the following optimization problem

min
S
−λ

k∑
i=1

ESM
(
hSi : hSi+1:k

)
+

1

m

m∑
i=1

I (HS(xi) ̸= yi) .

Inspired by Kappa pruning (Margineantu and Dietterich
1997), the above problem can be solved by a heuristic tree-
based MEPSI algorithm. We first enumerate all the pairs of
individual learners to find the pair with the minimum opti-
mization objective and add them to the selected subset S.
Then, we heuristically select the individual learner with the
minimum optimization objective and add it to the selected
subset until the size of S equals the pruning size k. Algo-
rithm 1 lists the detailed MEPSI algorithm.

Notice that the proposed ESM in Definition 3.3 is one of
the feasible metrics for approximating the algorithmic mu-
tual information I(h : G). Besides, the MEPSI approach
also applies to other homogenous models or even heteroge-
neous models besides decision trees. So, it is interesting to
explore alternative similarity metrics that utilize the struc-
tural information to approximate I(h : G) in the future.

4 Theoretical Results
Now, we present our first generalization theorem for the gen-
eral MEPSI approach handling the pruning task, in which
all individual learners are in a hypothesis class of prescribed
maximal Kolmogorov complexity Ch as follows

Theorem 4.1. Let H be the countable hypothesis class of
the individual learners. If ∀ h ∈ H, it holds K(h) ≤ Ch,
then for every sample size m, confidence parameter δ, and
probability distribution D, with probability greater than
1 − δ over the choice of D ∼ D, the following bound holds
(simultaneously) ∀S ⊆ H whose cardinality is k

LD(hS) ≤ LD(hS)+√
kCh + β −

∑k
i=1 I(hSi : hSi+1:k

) + ln (2/δ)

2m
,

where hS is an ensemble of the individual learners in S,
β is a constant that is independent to the choice of S and
sufficiently less than Ch.

Theorem 4.1 shows that empirical errors of the com-
bined learner should be reduced while increasing the al-
gorithmic mutual information among individual learners,
which matches the two-objective optimization in the gen-
eral MEPSI approach. The complete proof of Theorem 4.1
can be found in the appendix.

For the tree-based implementation shown in Section 3.2,
we assume that the node number of decision trees is simi-
lar to their Kolmogorov complexities and further present the
second theorem as follows

Theorem 4.2. Let H be the countable hypothesis class of
the decision trees. If K(h) ≤ Ch,∀ h ∈ H and |NC(h) −
K(h)| ≤ τ,∀ h ∈ H, then for every sample size m, con-
fidence parameter δ, and probability distribution D, with
probability greater than 1− δ over the choice of D ∼ D,the

following bound holds (simultaneously) ∀S ⊆ H whose car-
dinality is k

LD(hS) ≤ LD(hS)+√
k(Ch + τ) + γ −

∑k
i=1 ESM(hSi

, hSi+1:k
) + ln (2/δ)

2m
,

where hS is the ensemble of the individual learners in S,
Ch and α are constants, γ is a constant that is independent
to the choice of S and sufficiently less than Ch, NC(·) is
the node number of decision trees, and ESM(·, ·) is the edit
similarity measure in implementation.

Theorem 4.2 shows that empirical errors of the combined
learner should be reduced while increasing ESM among in-
dividual learners. The theoretical guarantee for tree-based
implementation is practical since we can easily estimate the
upper bound Ch of K(h) and τ . The complete proof of The-
orem 4.2 can be found in the appendix.

We claim that the above bounds and our methods match.
The generalization bound for the general MEPSI approach
in Theorem 4.1 derives the following optimization problem

S∗ = argmin
S

LD(hS) + λ1

√√√√∆−
k∑

i=1

I(hSi
, hSi+1:k

) ,

(7)
where λ1 ≥ 0, λ1 and ∆ are constants given by the gener-
alization bound. This optimization problem can be written
equivalently as

S∗ = argmin
S

LD(hS)

s.t.

√√√√∆−
k∑

i=1

I(hSi
, hSi+1:k

) ≤ t ,
(8)

where t is a constant that corresponds one-to-one with λ1.
Actually, Eq. (7) is obtained by applying the method of La-
grange multipliers to Eq. (8), and λ1 is a Lagrange variable.
Eq. (8) also can be written equivalently as

S∗ = argmin
S

LD(hS)

s.t. −
k∑

i=1

I(hSi , hSi+1:k
) ≤ t2 −∆ ,

(9)

By adding a Lagrange multiplier, Eq. (9) can be written
equivalently as

S∗ = argmin
S

− λ2

k∑
i=1

I(hSi
, hSi+1:k

) + LD(hS) , (10)

where λ2 is the Lagrange multiplier that corresponds one-to-
one with t and λ1. It is observed that Eq. (10) is identical to
our designed optimization objective in Eq. (6). Thus, we can
achieve the best generalization performance in Theorem 4.1
by adjusting λ in Eq. (6), which verifies the effectiveness
of our results in Theorem 4.1. The above conclusion also
applies to the tree-based implementation in Section 3.2.



Table 1: Comparison of test accuracy (mean ± std) for MEPSI and other methods on multiple data sets. Bold highlights the top
three methods with the highest average accuracy for each data set. The last line counters the number of bold highlights of all
methods on multiple data sets.

Ours Baseline Order/Optimization/Clustering-based Pruning Diversity-based Pruning

Data Set MEPSI All Random Kappa Orient Boost SDP HAC TreeMatch QStat Disagree Entropy KWVar InAgree

Sklearn-Digits 82.1±1.7 78.2±1.1 73.8±1.9 75.7±3.1 67.6±4.3 80.1±2.0 74.7±3.1 79.4±2.6 78.3±1.8 75.3±3.2 81.4±1.5 78.6±2.0 81.3±1.5 79.0±2.2
USPS 59.1±2.2 45.6±0.7 45.4±2.1 49.7±4.4 47.4±6.1 58.6±2.3 46.8±2.8 58.8±2.2 56.1±2.6 57.6±2.6 59.0±2.6 57.5±2.5 59.0±2.6 58.9±2.4
Breast-Cancer 79.1±3.2 71.4±0.0 71.4±0.0 75.2±2.8 78.2±2.1 75.3±2.7 71.4±0.0 78.7±0.4 77.6±1.4 79.5±0.4 78.7±0.4 78.9±1.0 78.7±0.4 78.8±0.5
Breast-W 95.6±0.9 96.0±0.3 95.4±0.7 94.9±0.3 93.2±0.4 92.7±1.4 95.2±0.7 95.7±0.5 95.6±0.3 93.6±0.6 95.1±0.3 94.5±0.5 95.1±0.3 95.8±0.5
Vowel 43.7±3.4 42.9±2.2 36.4±4.0 29.5±3.0 23.5±3.8 42.9±2.6 38.4±2.9 40.7±3.6 44.6±4.0 26.9±4.6 43.7±1.9 42.1±2.1 44.1±2.2 39.6±3.9
Mfeat-Factors 87.1±1.1 84.6±1.1 78.8±3.6 79.1±3.9 73.3±1.6 85.6±2.1 78.2±4.0 80.5±3.0 84.4±1.5 76.3±1.9 85.6±1.9 84.3±1.9 85.5±2.0 80.4±3.5
Splice 68.9±4.7 50.2±0.0 53.3±5.6 58.5±0.0 50.2±0.0 60.7±8.8 50.6±1.8 74.7±3.0 78.5±4.2 71.0±3.3 70.8±3.7 63.4±4.3 70.8±3.7 75.7±2.8
Credit-A 89.8±0.0 86.7±3.8 81.4±9.1 83.2±2.1 50.0±0.0 61.8±8.8 77.4±8.9 87.4±2.4 87.1±3.3 89.6±0.4 86.7±3.2 89.5±0.4 86.8±3.2 89.4±0.6
Tic-Tac-Toe 78.3±7.8 64.9±0.0 64.9±0.0 83.5±0.7 64.9±0.0 83.3±2.2 65.0±0.4 80.1±5.6 83.6±1.9 64.9±0.0 75.2±7.2 75.7±7.9 75.2±7.2 82.0±3.4
Vehicle 61.9±0.9 60.3±2.8 54.3±7.9 47.3±3.4 50.7±9.3 61.9±0.6 56.3±4.6 59.5±4.8 61.1±1.0 39.9±7.6 62.0±0.8 61.7±0.5 62.0±0.8 61.2±1.7
Sick 96.4±0.6 91.8±0.0 91.8±0.0 91.8±0.1 96.4±0.0 96.8±1.2 91.8±0.0 96.2±0.6 95.1±0.8 92.5±1.4 91.8±0.0 91.8±0.0 91.8±0.0 96.4±0.5

Top3 Count 8/11 1/11 0/11 1/11 1/11 3/11 0/11 2/11 3/11 2/11 5/11 2/11 4/11 3/11

5 Experiments
This section conducts comparative experiments on several
real-world image data sets and tabular data sets for multi-
class ensemble pruning tasks to demonstrate the effective-
ness of our proposed MEPSI.

5.1 Configurations

Data sets. The tree-based MEPSI is evaluated on 11 real-
world image data sets and tabular data sets, including the
scikit-learn digits (Pedregosa et al. 2011), USPS (Hull
1994), and multiple UCI data sets (Kelly, Longjohn, and
Nottingham 2017), which are most frequently used in en-
semble learning and ensemble pruning (Li and Zhou 2009;
Rodriguez, Kuncheva, and Alonso 2006; Sun and Zhou
2018; Zhou and Tang 2003; Zhou and Feng 2019). Because
the data sets are commonly used, we left out the details of
the data. The default methods to split train and test data are
employed if the data sets have been split into the training
and testing parts. Otherwise, we randomly split the data for
training and testing. The detailed split configurations of data
sets are shown in the appendix.
Settings. For the generation of decision trees, we employ
both bootstrap sampling and random feature selection ap-
proaches to train 200 CART decision trees (Breiman 2017)
and select 20 of them to combine and make predictions.
The trees are generated according to the implementation of
scikit-learn’s random forest (Pedregosa et al. 2011), and the
detailed settings and hyperparameters of random forests are
shown in the appendix. For the hyperparameter of Algo-
rithm 1, we also show the setting of the trade-off weight
λ in the appendix. The training and pruning processes are
conducted according to the training data and are repeated 20
times randomly, and we report the mean and variance of the
combined learners’ accuracies on test sets.
Contenders. We employ 13 other pruning methods as con-
tenders for our proposed MEPSI. Specifically, we compare
the tree-based MEPSI approach with 2 baseline methods,
including the ensemble of all learners and the ensemble
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Figure 1: The average ranks of MEPSI and contenders on 11
data sets, where the horizontal axis and vertical axis indicate
the average ranking and pruning method, respectively.

of 20 randomly selected learners. We also compare our
method with 3 order-based ensemble pruning approaches,
including Kappa pruning (Margineantu and Dietterich
1997), orientation pruning (Martı́nez-Muñoz and Suárez
2006), and Boosting-based pruning (Martinez-Munoz and
Suárez 2007), 1 optimization-based approach named SDP-
Relaxation (Zhang et al. 2006), and 1 clustering-based ap-
proach named HAC Pruning (Giacinto, Roli, and Fumera
2000). We call them typical pruning methods in the ex-
periments. Besides, we also compare our method with
6 other ensemble pruning approaches, which employ
the same heuristic optimization method as Kappa prun-
ing (Margineantu and Dietterich 1997) but use ensemble di-
versity measures as optimization objectives. Ensemble di-
versity indicates the difference among individual learners,
and combining diverse learners often achieves better per-
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Figure 2: Comparison results of the Friedman test and Ni-
menyi test about the rank of MEPSI and contenders on 11
data sets, where the CD bar indicates the critical difference
with the Nimenyi test at a significance level of 0.95.

formance (Banfield et al. 2005). Many works explicitly op-
timize diversity measures to select the subset of individ-
ual learners (Margineantu and Dietterich 1997; Martinez-
Munoz, Hernández-Lobato, and Suárez 2008; Sun and Zhou
2018). To demonstrate the superiority of our proposed op-
timization objective that exploits the structural information
among individual learners, we use the same heuristic opti-
mization method as Kappa pruning to optimize pairwise di-
versity measures including Tree Match Diversity (Sun and
Zhou 2018), Q-Statistic (Yule 1900), Disagreement Mea-
sure (Skalak 1996), and non-pairwise diversity measures in-
cluding Entropy (Cunningham and Carney 2000), Kohavi-
Wolpert Variance (Kohavi and Wolpert 1996), and Interrater
agreement (Kuncheva and Whitaker 2003). We call them
diversity-based pruning methods in the experiments.

5.2 Results
Table 1 shows the mean and variance of test accuracies of the
proposed MEPSI and its contenders, which comprise 2 base-
line methods, 5 typical pruning methods, and 6 diversity-
based methods. Our method ranks top three among 14 meth-
ods on 8 data sets. As demonstrated, MEPSI performs well
on most data sets. We also show the ranks of all methods on
each data set in the Figure 1 and appendix, from which it is
observed that our method ranks first on average.

In order to further compare the performance of different
methods, we perform the Friedman test in conjunction with
the Nimenyi test at a significance level of 0.95 to compare
the performance of all methods according to their ranks on
20 repeated times pruning processes for multiple data sets.
The test results are shown in Figure 2, which demonstrates
that our method sufficiently outperforms other methods on
average and verifies the effectiveness of MEPSI.

We also compute the Jaccard indexes between each pair of
the learner sets returned by MEPSI and the other 13 meth-
ods. The Jaccard index is a measure of the similarity be-
tween two finite sets. The smaller the Jaccard indexes be-
tween the learner sets returned by MEPSI and the other

methods, the more different the behavior of MEPSI and the
other methods will be. The comparison results of the Jac-
card index are shown in the appendix, from which we can
find that the MEPSI approach selects quite different sets of
decision trees for pruning from other methods.

In summary, our proposed MEPSI performs better than
and is different from all other conducted pruning methods.
The fact that our method performs better than diversity-
based methods demonstrates that our proposed optimization
objective is superior to other diversity measures for ensem-
ble pruning when employing the heuristic optimization al-
gorithm in Algorithm 1. Thus, it is necessary for MEPSI to
exploit the structural information among individual learners
when ensemble pruning.

6 Conclusions, Discussions, and Prospects

In this paper, we proposed an ensemble pruning approach,
the MEPSI, by considering the internal structural informa-
tion of individual learners. The proposed MEPSI converts
the pruning task into a general optimization problem that
comprises empirical error and structural information by ex-
ploiting the Kolmogorov complexity and MDL principle.
We also provided an implementation of MEPSI on decision
trees. The generalization bounds were given for both the
general MEPSI approach and the concrete tree-based imple-
mentation, which leverage the effects of structural informa-
tion on pruning approaches. Experiments conducted on sev-
eral real-world image data sets and tabular data sets showed
the superiority of our method.

Discussions. We are not the first to consider the general-
ization performance for ensemble pruning. Wu et al. (2022)
employed margin distribution items into the optimization
objective to measure the generalization performance of the
combined learner. However, we are the first to consider gen-
eralizing ensemble pruning through the internal structure of
individual learners. In addition, our method is practical for
the pruning task of homogeneous ensembles but is hard to
apply to heterogeneous ensembles due to the lack of struc-
tural information metrics. The measurement of structural in-
formation has been a well-known great challenge (Brooks Jr
2003), and it is extremely challenging to measure the struc-
tural information among heterogeneous models. However,
our approach has taken a meaningful step toward measuring
models’ structural information.

Prospects. In Section 3.2, we designed an edit similarity
measure to implement the structural information of deci-
sion trees. It is worth mentioning that the edit similarity
measure is not the only feasible metric for approximating
structural information; various implementations are worthy
of exploring, especially when one considers the more de-
tailed substructure of decision trees. Besides, this work only
provides a concrete scheme for handling the ensemble of
tree-based models; however, the MEPSI approach is also ap-
plicable to the ensemble of other models, such as neural net-
works (Zhang et al. 2023). It is attractive for further study to
design and explore more metrics.
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Appendix
In this Appendix, we provide the supplementary materials for our work “MEPSI: An MDL-based Ensemble Pruning Approach
with Structural Information”, constructed according to the corresponding sections therein.

A Full Proof for Theorem 4.1
Proof of Theorem 4.1. We first introduce Hoeffding’s Inequality, which quantifies the gap between the empirical average of
random variables and their expected value.

Lemma A.1. Let X1, X2, · · · , Xm be a sequence of i.i.d. random variables and we assume for ∀ i ∈ {1, 2, . . . ,m} we have
Xi ∈ [a, b]. Let X̄ be the empirical average, i.e.

X̄ =
1

m

m∑
i=1

Xi ,

then the following inequality holds for any ϵ:

P
[
X̄ − E

[
X̄
]
≥ ϵ

]
≤ exp

(
−2mϵ2

(b− a)2

)
. (11)

The proof can be found in (Hoeffding 1963).
According to Eq. (5), we have

K(hS1:k
) ≤ kCh −

k∑
i=1

I(hSi
: hSi+1:k

) + β, ∀S ⊆ H and |S| = k , (12)

where β is a constant. According to the theory of Kolmogorov complexity, β is sufficiently less than Ch and does not depend
on the choice of S (Li and Vitányi 2019).

Because the K(·) is the length of the prefix program, according to the Kraft inequality we have∑
S⊆H and |S|=k

2−K(hS1:k
) ≤ 1 . (13)

Combining the Eq. (12) and Eq. (13), we have∑
S⊆H and |S|=k

2−(kCh−
∑k

i=1 I(hSi
:hSi+1:k

)+β) ≤ 1 . (14)

For a fixed subset of individual learners S, the corresponding combined learner is HS . Because the 0-1 loss function LD(·) can
be represented with 1

m

∑m
i=1 I(HS(xi) ̸= yi) and the indicator function I(·) is lower bounded by a = 0 and upper bounded by

b = 1, we have the following result according to Theorem A.1:

P [LD(HS)− LD(HS) ≥ ϵ] ≤ exp
(
−2mϵ2

)
, ∀S ⊆ H and |S| = k . (15)

For ∀δ ∈ (0, 1), and let exp(−2mϵ2) = 2−(kCh−
∑k

i=1 I(hSi
:hSi+1:k

)+β)δ, we have

ϵ =

√
kCh −

∑k
i=1 I(hSi : hSi+1:k

) + ln (2/δ)

2m
, (16)

then substituting Eq. (16) into Eq. (15), for ∀S ⊆ H and |S| = k, we have

P

LD(HS)− LD(HS) ≥

√
kCh −

∑k
i=1 I(hSi : hSi+1:k

+ β) + ln (2/δ)

2m


≤ 2−(kCh−

∑k
i=1 I(hSi

:hSi+1:k
)+β)δ .

(17)

Applying the union bound and according to Eq. (14), we have

P

∃S ⊆ H and |S| = k : LD(HS)− LD(HS) ≥

√
kCh −

∑k
i=1 I(hSi

: hSi+1:k
) + β + ln (2/δ)

2m


≤

∑
S⊆H and |S|=k

2−(kCh−
∑k

i=1 I(hSi
:hSi+1:k

)+β)δ

≤ δ ,

(18)



which implies

P

∀S ⊆ H and |S| = k : LD(HS) ≤ LD(HS) +

√
kCh −

∑k
i=1 I(hSi

: hSi+1:k
) + β + ln (2/δ)

2m


≥ 1− δ .

The theorem is proved.

B Full Proof for Theorem 4.2
Proof of Theorem 4.2. The edit similarity measure ESM is defined in Definition 3.3. For the decision tree hSi and the set of
decision tree hSi+1:k

, the edit similarity measure between them is defined as

ESM(hSi
, hSi+1:k

) = NC(hSi
)− min

j∈Si+1:k

{
TED(hSj

, hSi
)
}

, (19)

where NC(h) denotes the number of internal nodes of h, and TED is the tree edit distance defined in Definition 3.2.
We first introduce the following lemma which provides the lower bound of the second item in Eq. (19):

Lemma B.1. The minimal tree edit distance minj∈Si+1:k

{
TED(hSj , hSi)

}
is lower bounded by the condition Kolmogorov

complexity K(hSi
|hSj

) within an additivity constant, i.e.

min
j∈Si+1:k

{
TED(hSj

, hSi
)
}
≥ K(hSi

|⟨hSi+1:k
⟩∗) + γi ,

where γi is a constant that does not depend on the choice of S.

Proof of Theorem B.1. Because we can recover hSi according to the structure of hSj and the tree edit sequence TES(hSj , hSi)
defined in Definition 3.2, we have

TED(hSj , hSi)
+
≥ K(hSi |hSj )

+
≥ K(hSi |hSi+1:k

)
+
≥ K(hSi |⟨hSi+1:k

⟩∗), ∀j ∈ {i+ 1, i+ 2, . . . , k} .
Thus, there is a sequence of constant γi that do not depend on the choice of S such that

min
j∈Si+1:k

{
TED(hSj

, hSi
)
}
≥ K(hSi

|⟨hSi+1:k
⟩∗) + γi .

According to the theory of Kolmogorov complexity, γi is sufficiently less than Ch and does not depend on the choice of S (Li
and Vitányi 2019).

Because we assume that the node number of decision trees is similar to their Kolmogorov complexities, i.e.
|NC(h)−K(h))| ≤ τ, ∀h ∈ H .

Thus, we have
NC(hSi

) ≤ K(hSi
) + τ . (20)

Combining Theorem B.1 and Eq. (20), we have the upper bound of edit similarity measure, i.e
ESM(hSi

, hSi+1:k
) ≤K(hSi

)−K(hSi
|⟨hSi+1:k

⟩∗) + τ − γi

≤I(hSi
: hSi+1:k

) + τ − γi .
(21)

Combining the inequality Eq. (21) and Eq. (12), we have

K(hS1:k
) ≤ k(Ch + τ)−

k∑
i=1

ESM(hSi
, hSi+1:k

) + γ, ∀S ⊆ H and |S| = k , (22)

where γ denotes β −
∑k

i=1 γi, which is a constant not depending on the choice of S and is sufficiently less than Ch.
Combining the (22) and Eq. (13), we have∑

S⊆H and |S|=k

2−(k(Ch+τ)−
∑k

i=1 ESM(hSi
,hSi+1:k

)+γ) ≤ 1 . (23)

For the immediate result Eq. (23), we apply the same techniques as Appendix A and follow the same approach as Eq. (15),
Eq. (16), Eq. (17), and Eq. (18). Thus, for ∀δ ∈ (0, 1), we have

P

∀S ⊆ H and |S| = k : LD(HS) ≤ LD(HS) +

√
k(Ch + τ)−

∑k
i=1 ESM(hSi , hSi+1:k

) + γ + ln (2/δ)

2m


≥ 1− δ .

The theorem is proved.



Claim B.1. The theoretical bounds in both Theorem 4.1 and Theorem 4.2 are practical, i.e. it is easy to estimate the constants
in the bounds, which include Ch, τ , and γ.

When h is a decision tree, K(h) can be upper bounded by NC(h) because the decision tree can be described by its nodes, τ
can be upper bounded by max{K(h),NC(h)} that is also upper bounded by NC(h). γ is a constant, which is sufficiently less
than Ch and can be almost ignored in practice. Therefore, our theoretical guarantees are practical.

C Experiments
C.1 Experimental Settings

Table S1: Special settings for each data set. The ’Split’ column means the way to split the data for the training part and testing
part, where ’random (test size=0.3)’ represents the random split with 0.3 test proportion, and ’default’ represents the default
split given by the data set. The ’ccp alpha’ means the complexity parameter, which is a parameter in the scikit-learn decision
tree (Pedregosa et al. 2011).

Data sets Split ccp alpha Data sets Split ccp alpha
Sklearn-Digits random (test size=0.3) 0.2 USPS default 0.2
Breast-Cancer random (test size=0.3) 0.1 Breast-W random (test size=0.3) 0.2
Vowel default 0.2 Mfeat-Factors random (test size=0.3) 0.2
Splice random (test size=0.3) 0.2 Credit-A random (test size=0.3) 0.2
Tic-Tac-Toe random (test size=0.3) 0.05 Vehicle random (test size=0.3) 0.2
Sick random (test size=0.3) 0.05

Table S2: General experimental settings of training and pruning for the random forest. The ’pruning size’ means the number
of decision trees to select in the ensemble pruning task, and the other parameters can be found in the scikit-learn decision
tree (Pedregosa et al. 2011).

Parameters Value Parameters Value
pruning size 20 n estimators 200
criterion entropy max features sqrt
bootstrap True max samples 1.0

The setting of trade-off weight λ in tree-based MEPSI implementation is related to the node’s number of decision trees. We
set λ as C

ESMavg
, where ESMavg denotes the average value of ESM term over all subsets of trees and can be estimated by

sampling. Moreover, C is the weight that trades off between the empirical error term and structural information term in the
objective after such scaling. The setting of C for different data sets is shown in Table S3. Here, We explain why λ is set as
above. The two terms in the objective have different scales, i.e., the value of the empirical error term is in the interval [0, 1]
while the structural information term ESM may be at most as large as the number of tree nodes. Thus, we divide ESM by
ESMavg to scale the structural information term down to the same scale as the empirical error term.

Table S3: The setting of C about the trade-off weight λ for each data set.

Dataset C Dataset C

Sklearn-Digits 0.8 USPS 0.8
Breast-Cancer 0.5 Breast-W 0.75
Vowel 0.75 Mfeat-Factors 0.75
Splice 0.75 Credit-A 0.75
Tic-Tac-Toe 0.5 Vehicle 0.75
Sick 0.5



C.2 Additional Experimental Results

Table S4: Ranks of test accuracy for MEPSI and other methods on multiple data sets. The last line shows the average rank for
each method on multiple data sets.

Ours Baseline Order/Optimization/Clustering-based Pruning Diversity-based Pruning

Data Set MEPSI All Random Kappa Orient Boost SDP HAC TreeMatch QStat Disagree Entropy KWVar InAgree

Sklearn-Digits 1 9 13 10 14 4 12 5 8 11 2 7 3 6
USPS 1 13 14 10 11 6 12 5 9 7 2 8 2 4
Breast-Cancer 2 12 12 11 8 10 12 5 9 1 5 3 5 4
Breast-W 5 1 6 10 13 14 7 3 4 12 8 11 8 2
Vowel 3 5 11 12 14 6 10 8 1 13 3 7 2 9
Mfeat-Factors 1 5 11 10 14 3 12 8 6 13 2 7 4 9
Splice 7 13 11 10 13 9 12 3 1 4 5 8 5 2
Credit-A 1 8 11 10 14 13 12 5 6 2 8 3 7 4
Tic-Tac-Toe 6 11 11 2 11 3 10 5 1 11 8 7 8 4
Vehicle 3 8 11 13 12 4 10 9 7 14 1 5 1 6
Sick 3 9 9 8 2 1 9 5 6 7 9 9 9 3

Average Rank 3.00 8.55 10.91 9.64 11.45 6.64 10.73 5.55 5.27 8.64 4.82 6.82 4.91 4.82

Table S5: The Jaccard indexes between all methods except ‘All’, averaged over all datasets and 20 rounds.

MEPSI Random Kappa Orient Boost SDP HAC TreeMatch QStat Disagree Entropy KWVar InAgree

MEPSI 1 0.0512 0.2695 0.0849 0.2632 0.1196 0.3608 0.2166 0.33 0.3713 0.362 0.3838 0.3723
Random 1 0.0560 0.0568 0.0571 0.0660 0.0552 0.0652 0.0609 0.0626 0.0616 0.0643 0.05713

Kappa 1 0.0599 0.1913 0.0943 0.3687 0.1688 0.2576 0.368 0.3147 0.3594 0.3574
Orient 1 0.0679 0.0488 0.1001 0.0571 0.1178 0.0874 0.0976 0.0868 0.0977
Boost 1 0.0799 0.2966 0.2471 0.2148 0.349 0.3425 0.3481 0.293
SDP 1 0.0939 0.0759 0.1091 0.1095 0.1157 0.1166 0.0975

HAC 1 0.2186 0.3818 0.541 0.4258 0.533 0.715
TreeMatch 1 0.1318 0.2423 0.2314 0.2423 0.229

QStat 1 0.3792 0.3877 0.393 0.3896
Disagree 1 0.6504 0.961 0.5186
Entropy 1 0.6816 0.4158
KWVar 1 0.512
InAgree 1


