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Research Interests

I am interested in the following topics:
» Neural Computation & Deep Neural Networks

» With Spiking Neural Networks. Spiking neural networks (SNNs) take into account the time of spike firing rather than simply
relying on the accumulated signal strength in conventional neural networks, and thus offering the possibility for modeling time-
dependent data. Here, we provide a theoretical framework for investigating spiking neural models from a perspective of dynamical
systems.

» With Neuroscience. Recently, we proposed a novel bio-plausible neuron model, the Flexible Transmitter (FT) model. The FT
model is inspired by the one-way communication neurotransmitter mechanism in nervous systems, and has the formation of a
two-variable two-valued function, which takes the commonly-used MP neuron model as its special case. We empirically show its
potential with handling spatio-temporal data and present theoretical understandings on the advantages of FT model.

» With Complex-valued Neural Networks. Recent years have witnessed an increasing interest on complex-valued neural
networks. Here, we formulate a practical formation of complex-valued neural networks, and provide theoretical understandings
on the merits of complex-valued neural networks in comparison with real-valued ones, especially in terms of approximation,
optimization dynamics, and generalization.

» Time Series Analysis

» Recently, I am working on time series forecasting, including accurate forecasting, quantitative analysis, etc.
» [ also make some efforts on the forecasting theory, including predictable theory and long/short-term causal system.
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Topic

Representation and learning of long-term memory is a fundamental problem confronted in machine
learning to sequential data.

LONG SHORT-TERM MEMORY

NEUvRAL CompuTATION 9(8):1735-1780, 1997

Do RNN and LSTM have Long Memory?
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Hierarchical Recurrent Neural Networks for ) )
Long-Term Dependencies Learning Long-Term Dependencies
with Gradient Descent is Difficult

Yoshua Bengio, Patrice Simard, and Paolo Frasconi, Student Member, IEEE
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A Statistical Investigation of Long Memory in Language and Music
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largely limited to heuristic tools



Long-term Memory & Long-range Dependency

Predictor, Learning Models,
or Neural Networks

y = f(x)

/ e

Output, Label for Input, Observations,
classification or regression or Sequential data

Definition 1 (Dependency in Statistic) Let {X;,t € Z} be a second-order
stationary univariate process with auto-covariance function yx (k) for all k € Z.
Then the concerned process {X¢,t € Z} has (1) long-term dependency, or (2)
short-term dependency if

(o.@}

@) Y x(k)=o00, or (20< Y x(k) < oo, (1)

k;:—oo kZ—OO

Predictor f learns the “rules” or
patterns from observations (x,y).

\j i_' Linear, Kernel, Long-term Memory,
v et

The long-term memory of the concerned model is
closely related to the long-range dependency of
the data.

Auto-Regressive Moving Average (ARMA) model

p
AR(p) Z (0 204 1 P el o
=1l

under a well-defined Fourier spectral density fx(w) = (2m) ' > oo vx (k)exp(—ikw)

for w € [—m, 7.

p
'Ykzzci)\?—)o with |M\| <1, as k — oc.
1=1



Long-range Dependency

The auto-correlation of AR(p):

p
%ch@-)\?—w with |[X\;| <1, as k — oo.
i=1

Auto-correlation exponential decays, not at polynomials.

Intuitively,
First, strengthen the model. Second, develop the Besides, for reality.
measure.
- Complex enough. - Polynomial correlation. - Long-range dependency.
- Clear formulation or specification. - Non-stationarity.

RNN, LSTM, and their variants X R
- Aperiodic spectrum.



ARISE: ApeRlodic SEmi-parametric Process

Part I: Parametric Integrated Process Part II: Aperiodic Spectrum Estimation
(]. e %)dl 0 X—lt €1t
e WA T =i e e 05 ) B (),
(i,k)EJ
0 (1-28)4 /) \ Xy €t :

where

[-dimensional generation process {X;}:2, with E(X;;) = 0 for i € [¢]

source process {€; = (€i¢,...,€1) ¥, is weakly stationary whose spectral
density f.(\) is bounded and bounded away from zero when frequency A tends

to zero
d=(dy,...,d;)" €(-1/2,1/2)"

B is the backward-shift operator, satisfying that B*X,;; = Xit—k) for k €
Nt and i € [[]



Parametric Integrated Process

(]. b %)dl 0 Xlt €1t

Xy = diagieqy,... iy {(1 = B)"%} e = diagieqs,... gy

where I['(+) is the Gamma function.

d is called memory parameter.
For d; > 0 and 7 € [I],

e x k2%~ as k — 0o, and fx(A) c A72% ag A — 0.

In contrast, d; < 0 leads to an anti-persistent process.

['(d; +
= ['(d;) 5!

has the power and potential of mimicking the data
with long-range dependency.



Solving the Memory Parameter

(]. = %)dl 0 Xlt €1t

A trivial solution way: maximum likelihood estimation.

There exists a symmetric and positive-definite matrix G € R s.t. H|gh||ghts

= A f) ) el oy e G indicates the covariance matrix.
with A(A\) = diag;c(q ... ,l}{(l —B)~%}. Thus, the estimation value of Y z g
d can be empirically calculated by maximizing fX IS consistent, Correspondlngly,

¢ 1S weakly-stationary.

A(A;) G A(A)

LL.(G,d) = 1 Z { log

m
=1

tr [(A(Aj) G A(Aj))_le (Aj)] } _
otherwise, &; must be Gaussian.

where m = [{\;}| denotes the number of empirical frequencies {;}.



Aperiodic Spectrum Estimation

Spectrum Density Estimation for fy.

Parametric: Inconsistent.
DFT and FFT.
Semi-Parametric: Inconsistent.

windows functions, taper function, and kernel smooth.

Non-parametric: Consistent, provide appropriate thresholds.
Wavelet (via threshold): plug-in estimation of the variance
and log-transformation of the periodogram.

Threshold 5 T
8 i =@ ([ o) 1) - f210(lrle)
R N Gl o Bl !
(i:HJ)EﬁT/ \

Key Idea: local weighted [, norms of the

Threshold function (soft or hard) Basis function _
periodogram.



Recall ARISE Process

In general, we can solve this issue by empirically maximizing the following Gaussian log-likelihood
function localized to the origin

LLY (G, d) = EZ{lag A(N) G A(AJ}‘ +tr (;-x(,xj} G JT{AJM(AJ})_II }
; i
_ 1 {lng A(N;) G AN }‘ +tr |G Re [(ﬂ(hj}.]y (Aj}i-xuj})d” }
1 i

m 4
j

(8)

where m = |[{A;}|4 denotes the number of empirical frequencies {A; }. So, the estimation value

d s of the memory parameter is the minimization of the following function

T

&ASE = arg uﬁn log |-§A5]: | - Z Z dilog Aj 2 . (9)
i=1 j=1
h Algorithm 1 Aperiodic Semi-parametric Estimation for d
where o m o 4 Input: Input dalif {X¢}{_o. discrete Fourier frequency {A; 12, and a collection of wavelet basis {y: .« }: Hyper-
Gase(d) = 1o Y e (W) IO ] pemenCin
Procedure:

1: Compute the periodogram Iy (A;) at the Founier frequency A; = 2wy /T

2: Construct the indicator set Jjr. where (i, £) € Jr.

3: Compute the standard discrete wavelet transformation coefficient &; .. of Ir-(A;) via a fast algorithm provided
by Coifman and Donoho (1995). _

4: Compute the threshold ;.. o C'\/2Tog([dr ) with C' = O(T~*/?) from Eq. (71 and Theorem 1

5: Compute the empirical threshold function 7(-; &; ., ;. ) via hard or soft threshold rules.

6: Compute S-“SE according to Eq. (9.

7: Compute dase by solving the minimization optimization described in Eq.191.




Theoretical Guarantee

Theorem 1 Ler {X;}72, be an I-dimensional process specified by Eq. (1), which meets Assumption 1
and fx is the corresponding spectral density matrix, which satisfies that fx(A\) > 0 and [x(A)
is of finite total variation over |—m,w|. Then there exists some threshold p; . in which p; .
v 21og(|37|4), such that

SUp {IE [
f_}l’.' EE#:.:}':ELER]

where B;j‘q(]ﬁ; R) is a Besov space with p,q.m = 1 and a radius scalar R = (), detailed in
Appendix B Furthermore, if d” € Qg, we have

|} =0 (twsryrninn).

Lo(|—m,x])

ﬁASE[:d{}) = lf-;{] + 1,

where 17 is an infinitesimal number that converges in probability to zero at a constant rate, denoted
asn = op(1).

Theorem 1 establishes the consistency of G s, including a guarantee that

G asg has the near-optimal rate of mean-square convergence and a consistent
approximation in probability. There optimal rate of mean-square convergence,
alternatively known as minimax rate is T =2/ (2n+1),



Theoretical Guarantee

Theorem 2 Let Assumptions 2.5 hold. Then we have
&,455 L d' as T — .
Let Assumptions 4 and 6-9 hold. We have
m(as,jg — dﬂ) i} N (ﬂ, E_l) and G (&,s_:gg) i} GY oas T — o,
where

_4+?TE
2

) GO o (G4

Theorem 2 establishes the consistency and asymptotic normality of d ssg.

Notice that both Theorems 1 and 2 hold without Periodogram and Gaussianity assumptions.



Brief Summary

Part I: Parametric Integrated Process Part II: Aperiodic Spectrum Estimation

(1—B)%h 0 X1t €1t
' H : JT(AJ) = Z T('; g g pi,fs)(pi,m()\j)'

(’i,ﬁ:)EﬁT

Characteristics of Data: PhearenealGnirantee:

- Long-range dependency.  Solved by Part I about modeling. - Near-optimal convergence.

- Non-stationarity. - Consistency.

Solved by Part Il about handling time

- Aperiodic spectrum. series. - Asymptotic normality .

Both Theorems 1 and 2 hold without Periodogram and Gaussianity assumptions.
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Generalized ARISE Models

Next, we proceed to develop some generalized formations of the ARISE process.

ARISE-ARMA(p,d,q): ARMA(p,q)

diagie{l,--- 1Y {(1 F %)di} Xt = Cb_l(%) e: Y(*B).

ARISE-0(p,d,q):
(p,d,q) Machine learning model

diagie{lj_,,ﬁl} {(1 = iB)d?‘}Xt = @(Et).



Investigation as the Memorability Indicator

Step 1.

Step 2.

Step 3.

Define the averaged memory statistic

d = AVERAGE(dasg) = 1" dasg/!.

For the task of estimating the long-range dependency of the
concerned data {X;}$2,, we test the null hypothesis Ho : d = 0
the one-side alternative of long memory #H; : d > 0 with 0.05 test

level.

For the task of estimating the long-term memorability of the
conducted model ©. the testable criteria becomes to test the null
hypothesis Hg : d — d* = 0 the one-side alternative of long
memory Hi : d — d* < 0, which corresponds to the model’ failure
to represent the full strength of fractional integration observed in

the data.

Table 3: Residual estimation of the concerned models for pursuing long-range dependency.

Input Signals Models  Statistic (d — d*) x10~° p-value Reject Ho
RNN —34.55 + 460 0.5353 No
MGU —1.548 + 250 0.6327 No
Gaussian White Noise GRU —62.05 + 180 0.5584 No
LSTM —1.455 + 310 0.5412 No
FTNet —71.84 + 630 0.5551 No
RNN —66.47 + 42 4.097 x 1072 Yes
MGU —8.707 + 4.3 <1x 10716 Yes
CSI 300 Index GRU —8.203 £ 2.6 <1x 10716 Yes
LSTM —3.842+22 <1x 10716 Yes
FTNet —9.504 + 6.5 4.172 x 1072 Yes
RNN —46.59 + 34 3.354 x 102 Yes
MGU —4.005 + 0.50 <1x 10716 Yes
Winton Stock Exchange GRU —1.837+0.12 <1x 10716 Yes
LSTM —1.968 +0.10 < 1x10716 Yes
FTNet —9.359 +0.71 3.147 x 1072 Yes
RNN —37.21+26 3.265 x 1072 Yes
MGU —5.170 +0.53 <1x 10716 Yes
SSEC GRU —1.645 +0.13 <1x 10716 Yes
LSTM —1.798 + 0.09 <1x 10716 Yes
FTNet —8.934 +0.49 2.743 x 102 Yes
RNN —90.19 + 54 2.701 x 1072 Yes
MGU —2.358 +0.82 <1x 10716 Yes
Penn TreeBank GRU —1.101 £0.53 <1x 10716 Yes
LSTM —1.394 +0.61 <1x 10716 Yes
FTNet —7.388 +1.40 3.152 x 1072 Yes




Latent State-Space Model for Inference and Forecasting

Observations Xi 1 X; ) S
Model f ‘ U ‘ U ‘ U
ARISE (p,d, q) hy_4 h; hiiq
(W, V) (W,V) (W, V)

Source Signals €1 €; €ti1



Summary

In this paper, we proposed the ARISE process for investigating the issue of long-term memory in
machine learning. The ARISE process 1s a semi-parametric approach that consists of a parametric
integrated process with an infinite-sum function of some known processes and the non-parametric
ASE based on apposite wavelet-threshold methods, thus with the power and potential of modeling
the price data with long-term memory, non-stationarity, and aperiodic spectrum. We theoretically es-
tablish the well-posed properties, such as the mean-square convergence, consistency, and asymptotic
normality, of the ARISE process without assuming periodogram and Gaussianity.

Something not mentioned:
- Proof for Theorems 1 and 2, corresponding Monte-Carlo study
- Developed model for inference and forecasting Thank you |
- Retrieve some physical systems, such as the Lorenz attractor
- Hyper-parameters, training methods, and techniques
- Computational Complexity Q & A

Shao-Qun Zhang and Zhi-Hua Zhou. ARISE: ApeRIodic SEmi-parametric Process for Efficient
Markets without Periodogram and Gaussianity Assumptions. 2021. [arXiv:2111.06222]
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